
Graphics Programming

527970
Fall 2020
9/17/2020

Kyoung Shin Park
Computer Engineering

Dankook University

Coordinate Systems

2D Cartesian Coordinate Systems

 Cartesian Coordination Systems

+x

+y

-x

-y

x-axis

y-axis
The origin is located in the
center of the coordinate system
and its value is (0, 0).

Two axes: x-axis and y-axis,
two straight lines
perpendicular to each other,
both pass through origin
and extends infinitely in two
opposite directions

3D Cartesian Coordinate Systems

 In left-handed coordinate
system, x+ is right, y+ is
up, z+ is inside the screen.

 In right-handed coordinate
system, x+ is left, y+ is up,
z+ is inside the screen.

y

z

x

y

x

z

Screen Coordinate System

+y

+xx-axis

y-axis

(0, 0)

 In screen
coordinate system,
the origin is
located at the top
left of the screen
and the value is (0,
0). x+ is right. y+
is down.

 1 unit = 1 pixel

3D Coordinate Systems

 OpenGL use a
right-handed
coordinate system

 x+ is right, y+ is
up, z+ is out of
the screen.

y

x

z

OpenGL Camera

 In OpenGL, the camera is located at the origin of the
object’s coordinate system and is point at the z-
direction.

 By default, a 2x2x2 viewing volume is used.

(-1, -1, -1)

(1, 1, 1)

Orthographic Viewing

 Orthographic parallel projection
 Ortho(left, right, bottom, top, zNear, zFar);
 In orthographical projection, points are projected onto the

z=0 plane towards the z- axis.

z=0

Perspective Viewing

 Perspective projection
 Frustum(left, right, bottom, top, zNear, zFar);
 Perspective(fovy, aspect, zNear, zFar); - Instead of setting

up/down/left/right, it uses the y-direction viewing angle
(FOV) and the aspect ratio (the value of the width of the
nearest clipping plane divided by the height)

Viewport

 Viewport
 The space set inside the window. Drawing is restricted to

inside the viewport.

 glViewport(x, y, width, height)
 When the window is first created, the pixel area

corresponding to the entire window is set as the viewport; To
set a smaller area as a viewport, use glViewport(). Typically the
entire window is used as a viewport.

 In the GLUT reshape function, glViewport() must be included.

 In OpenGL, the transformation matrix is used for
transformation.

 Transformation function was used to transform the
coordinate system.

 However, transformation functions prior to OpenGL 3.0
are deprecated (recommended not to use anymore).

 3 choices
 Application code
 GLSL functions
 GLM (OpenGL Mathematics) vector, matrix

Transformations and Viewing

Conventional OpenGL Rendering Pipeline

 It is inefficient in low-spec HW because it determines
whether it is applied by examining the options and
state variables supported by OpenGL.

 Modified Phong Illumination Model supports only the
fixed lighting calculation.

 Fixed shading supports only the Gouraud Shading.
 After vertex color calculation, it interpolates the vertex color to

determine the pixel color.
 Mach Band may appear or pixel values may be incorrectly

calculated. Viewer

Extending OpenGL

 Need to support functions to apply advanced graphics
techniques with the advent of graphics hardware

 OpenGL supports functions added in new versions as
extensions.
 Maintains backward compatibility by not modifying the

previous versions’ API.
 Name the function or macro constant name with a suffix ro

identify the extension.
 _ARB, _EXT, _NV, _ATI, etc

 API to support programmable hardware is provided as
an extension function.
 Instead of using a fixed pipeline, it is possible to use a

programmable pipeline that can shade according to the code
written by the user.

 Various rendering techniques can be applied by
creating Vertex Shader and Fragment Shader.

Programmable Pipeline

OpenGL Shader

 Basic Shaders
 Vertex shader
 Fragment shader

Vertex Shader Applications

 Moving vertices
 Morphing
 Wave motion
 Fractals

 Lighting
 More realistic models
 Cartoon shaders

 Per-fragment lighting calculations

per vertex lighting per fragment lighting

Fragment Shader Applications

 Texture mapping

Smooth shading Environment mapping Bump mapping

Fragment Shader Applications

Simple Vertex Shader

in vec4 vPosition;
void main(void)
{

gl_Position = vPosition;
}

Input from application

Must link to variable in application

Built-in variable

Execution Model

Vertex
Shader

GPU

Primitive
Assembly

Application
Program

glDrawArrays Vertex

Vertex data
Shader Program

Simple Fragment Program

void main(void)
{

gl_FragColor = vec4(1.0, 0.0, 0.0, 1.0);
}

Execution Model

Fragment
Shader

Application

Frame BufferRasterizer

Fragment Fragment
Color

Shader Program

GLSL Data Types

 C types: int, float, bool
 Vectors

 float vec2, vec3, vec4
 int (ivec)와 boolean (bvec)

 Matrices: mat2, mat3, mat4
 Columns-major
 m[row][column]

 Texture Sampler: a sampler type with texture access
 sampler1D, sampler2D, sampler3D, samplerCube
 sampler1DShadow, sampler2DShadow

 C++ style constructors
 vec3 a = vec3(1.0, 2.0, 3.0)
 vec2 b = vec2(a)

GLSL Pointers

 There is no concept of pointer in GLSL.
 C language structure is used to pass it to the function.
 Matrices and Vectors are basic types, and can be used

as parameter inputs or return type outputs to GLSL
functions.
mat3 func(mat3 a)

GLSL Qualifiers

 Variable Qualifiers
 const – constant
 attribute – This is a global variable, can be changed for each

vertex, and the value is changed from the OpenGL program to
Vertex Shader. This qualifier is used only on Vertex Shader. It is
read-only in shader.
 Built-in vertex attribute: gl_Position
 User-defined vertex attribute: in vec3 velocity

 uniform – This is a global variable, can be changed for each
Primitive, and the value is changed with the shader in the
OpenGL program. This qualifier can be used on both Vertex
Shader and Fragment Shader. It is a constant in shader.

 varying – This is variable passed from Vertex Shader to
Fragment Shader. Write is allowed in the Vertex Shader, but
read-only in Fragment Shader.
 In the latest version, Vertex Shader is used as “out”, and Fragment

Shader is used as “in”.
 User-defined varying variable: out vec4 color;

Example: Vertex Shader

const vec4 red = vec4(1.0, 0.0, 0.0, 1.0);
out vec3 color_out;
void main(void)
{

gl_Position = vPosition;
color_out = red;

}

Required Fragment Shader

in vec3 color_out;
void main(void)
{

gl_FragColor = color_out;
}
// in latest version use form
// out vec4 fragcolor;
// fragcolor = color_out;

GLSL Operators and Functions

 General C functions
 Trigonometric
 Arithmetic
 Normalize, reflect, length

 Overloading of vector and matrix types
mat4 a;
vec4 b, c, d;
c = b*a; // a column vector stored as a 1d array
d = a*b; // a row vector stored as a 1d array

GLSL Constructor

 Constructor
 Variable initialization uses the C++ constructor

 vec3 n = vec3(0.0, 1.0, 0.0);

 Constructor can be used in expressions other than initialization
 greenColor = myColor + vec3(0.0, 1.0, 0.0);

 Assigning a scalar value to a vector assigns it to all elements of
the vector.
 ivec4 whiteColor = ivec4(255);

 Can mix scalars, vectors, and matrices in the constructor, and are
discarded if there are extra elements
 vec4 v = vec4(x, vec2(y, z), w);

 If you specify a single scalar value, it becomes a diagonal matrix
(non-diagonal elements are padded with zeros)
 mat2 m = mat2(1.0, 0.0, 0.0, 1.0);

 mat2 m = mat2(1.0);

 Typecasting is only possible through a constructor
 float j = 4 7; int i = int(j);

GLSL Swizzling and Selection

 Access vector or matrix elements using [] or (.) operator
 x, y, z, w
 r, g, b, a
 s, t, p, q
 vec3 a = vec3(0.0, 0.0, 1.0); a[2], a.b, a.z, a.p are all the same
 mat3 m = mat3(1.0); float element21 = m[2][1]; // 0.0
 mat3 m = mat3(1.0); vec3 column1 = m[0]; // (1, 0, 0)

 Can be repositioned and duplicated using element
selector
 vec3 myZYX = s.zyx;

 Only some elements of the vector can be modified
using the element selector
 vec4 a; a.yz = vec2(1.0, 2.0);

GLSL Passing Values

 All types except arrays can be used as the return type
of the function.

 All types including arrays and structures can be used as
function arguments.

 Since it is call only with “Call by value”, you can
specify whether the argument value within the function
can be changed using the following qualifier.
 in (default)
 const in
 out
 inout (deprecated)

OpenGL Geometry

 The most basic element for expressing each object
 In real-time graphics, linear primitives are mainly used,

which is the simplest form of graphics expression.
 Point, vertex
 Line segments
 Polygon
 Polyhedron

OpenGL Geometry Primitives

GL_POINTS GL_LINES GL_LINE_STRIP GL_LINE_LOOP

GL_TRIANGLES GL_TRIANGLE_STRIP GL_TRIANGLE_FAN

OpenGL Attributes

 Each geometry primitive has properties. Properties
control how basic elements can appear on the screen.
 Color
 Line thickness
 Line styles
 Polygon patterns

Polygon fillingLine thickness and styles

OpenGL Attributes

 OpenGL Color Model
 RGB (Red Green Blue) or RGBA(Red Green Blue Alpha)
 RGB colors are separated and stored in the framebuffer.

Color Triangle
const float vertexColor[] = { 1.0f, 0.0f, 0.0f, 1.0f, 0.0f,
1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f };
const float vertexPositions[] = { -0.75f, -0.75f, 0.0f, 1.0f,
0.75f, -0.75f, 0.0f, 1.0f, 0.75f, 0.75f, 0.0f, 1.0f };
void SetData() {

glGenVertexArrays(1, &vao); // vao
glBindVertexArray(vao);
glGenBuffers(2, &vbo[0]); // vbo
glBindBuffer(GL_ARRAY_BUFFER, vbo[0]); // vertex position
glBufferData(GL_ARRAY_BUFFER, 12*sizeof(GLfloat), vertexPositions, GL_STATIC_DRAW);
glVertexAttribPointer(0, 4, GL_FLOAT, GL_FALSE, 0, 0);
glEnableVertexAttribArray(0);
glBindBuffer(GL_ARRAY_BUFFER, vbo[1]); // vertex color
glBufferData(GL_ARRAY_BUFFER, 12*sizeof(GLfloat), vertexColor, GL_STATIC_DRAW);
glVertexAttribPointer(1, 4, GL_FLOAT, GL_FALSE, 0, 0);
glEnableVertexAttribArray(1);
glBindVertexArray(0);

}

