Input and Interaction

527970
Fall 2020
9/24/2020
Kyoung Shin Park
Computer Engineering
Dankook University

O Introduce the basic input devices

Physical input devices
Mouse, Keyboard, Trackball

Logical input devices
String, Locator, Pick, Choice, Valuators, Stroke device
O Input modes
Request mode
Sample mode
Event mode

0 GLUT Devices & Event-driven programming
mouse, keyboard, menu, joystick, tablet, ..

0 One of the major advances in computer technology is
that users can interact using computer screens.

O Interaction

The user takes action through an interactive device such as a
mouse.

The computer detects user input.

The program changes it state in response to this input.
The program displays this new status.

The users sees the changed display.

The processes in which the user reacts to this change are
repeated.

Graphical Input

O Input devices can be described either by
= Physical properties
Mouse, Keyboard, Trackball
= Logical properties
Characterized by upper interface with application program, not by
physical characteristics

O Input modes

= The way an input device provides an input to an application
program can be described as a measurement process and
device trigger.
Request mode
Sample mode
Event mode

Physical Input Devices

@ é Threshold

detector Computer
—b

mouse trackball

light pen
R, TR
\ | \ '
data tablet joy stick space ball

Physical Input Devices

O Physical input devices
= Pointing devices

Allows the user to point to a location on the screen

In most cases, the user has more than one button to send a
signal or interrupt to the computer.

Mouse, trackball, tablet, lightpen, joystick, spaceball
= Keyboard devices

A device that returns a character code to a program
Keyboard

Relative Positioning Device

0 Devices such as the data tablet return a position
directly to the operating system

0 Devices such as the mouse, trackball, and joy stick
return incremental inputs (or velocities) to the
operating system
= Must integrate these inputs to obtain an absolute position

Rotation of cylinders in mouse

Roll of trackball

Difficult to obtain absolute position
Can get variable sensitivity

Logical Input Devices

O

O

O

O

O

String device - keyboard
= Provide ASCII strings of characters to the program

Locator device — mouse, trackball

= Provide real world coordinate position to the program

Pick device — mouse button, gun

m Return the object’s identifier(ID) to the program

Choice device — widgets, function keys, mouse button
m Let the user choose one of the options (menu)

Valuators - slide bars, joystick, dial
= Provide analog input (range of value) to the program

Stroke — mouse drag
= Return array of positions

Input Modes

O Input devices contain a trigger which can be used to
send a signal to the operating system
= Button on mouse
m Pressing or releasing a key

0 When triggered, input devices return information (their
measure) to the system

= Mouse returns position information
m Keyboard returns ASCIl code

Request Mode

O In request mode, input measurement are not returned
to the program until the user triggers the device.

O Standard for typical non-GUI program requiring
character input

m For example, when the C program’s scanf function is used, the
program stops while waiting for the terminal to type a
character. Then, you can type and edit until you hit the enter-

key(trigger).
Request

Trigger | - Measure I< P gram |
process , process -
Trigger Measure

Sample Mode

O Sample mode provides immediate input measures. As
soon as the program encounters a function call, the
measurement is returned. Therefore, no trigger is
required.

0 Example: getc function in C program

Sample

Measure

process -
Measure

Program

Event Mode

O Most systems have more than one input device, each
of which can be triggered at an arbitrary time by a
user.

O Each trigger generates an event whose measure is put
In an event queue which can be examined by the user
program.

O Use the callback function for a specific event.

Await

Trigger Measure Event
process process queue fagien
Trigger Measure Event

O O O 0O 0O

Window — window resize, expose, iconify
Keyboard — press and release a key
Mouse — click one or more mouse button
Motion — move mouse

ldle — no event (define what should be done if no
other event is in queue)

Programming Event-Driven Input

0 Programming interface for event-driven input

0 Define a callback function for each type of event the
graphics system recognizes

0O This user-supplied function is executed when the event
OCCUrs

0 GLUT example, the callback function for mouse event
is specified through glutMouseFunc(mouse) in the
main function.

void mouse(int button, int state, int x, int y)

GLUT Devices

0 Keyboard
= “"normal” keys
m “special” keys
O Mouse
= Position
= buttons

O Joystick

O Tablet

0 Dial/button box
O Spaceball

GLUT Keyboard Functions

0 glutKeyboardFunc(func)
= Called when the ACII ‘character’ key is pressed

0O glutSpecialFunc(func)
= Called when the ‘special’ key is pressed

0 glutKeyboardUpFunc(func)

= Called when the ACII ‘character’ key is released

0 glutSpecialUpFunc(func)

= Called when the ‘special’ key is released

0 glutGetModifiers()

= Indicate the Shift, Control, Alt keys status when an event occurs

0O glutlgnoreKeyRepeat(val)
= Tell GLUT to ignore automatic keyboard repeat

GLUT Keyboard Event Callback

0 void keyboard(unsigned char key, int x, int y)
m Specify the handling of keyboard
m 7he key argument is the designated as ACIl character code

m The x, y arguments are the position of the mouse when the
key is pressed

void keyboard(unsigned char key, int x, int y) {
switch (key): /* q-key exits the program */
{
case ‘q'’:
exit(0);

GLUT Special Key

0 GLUT special key
m GLUT_KEY_{F1,F2..F12}
» GLUT_KEY_{UP,DOWN,LEFT,RIGHT} — arrow key
m GLUT_KEY_{PAGE_UP,PAGE_DOWN,HOME,END,INSERT}

void specialkey(int key, int x, inty) {
switch(key) {
case GLUT KEY F1:
red = 1.0; green = 0.0; blue = 0.0; break;
case GLUT KEY F2:

GLUT Modifier Key

0O int glutGetModifiers(void) to check if the CTRL, ALT,
SHIFT modifier keys are pressed.
m GLUT_ACTIVE_SHIFT — SHIFT key (or Caps Locked)
= GLUT_ACTIVE_CTRL
= GLUT_ACTIVE_ALT

void keyboard(unsigned char key, int x, int y) {
if (key == 27) /* ESC-key exits the program */
exit(0);
else if (key =='r') {
int mod = glutGetModifier();
if (mod == GLUT _ACTIVE_CTRL)
red = 0.0;
else
red = 1.0;
}
}

GLUT Mouse Functions

0 glutMouseFunc(void(*func)(int button, int state, int x, int y))
= Called when the mouse button is pressed

0 glutMotionFunc(void(*func)(int x, int y))
= Called when the mouse moves while the button is pressed

0 glutPassiveMotionFunc(void (*func)(int x, int y))
= Called when the mouse button is moved without being pressed

GLUT Mouse Event Callback

0O void mouse(int button, int state, int x, int y)

m 7he button argument is GLUT_LEFT_BUTTON,
GLUT _MIDDLE_BUTTON, GLUT RIGHT _BUTTON

m The state argument is GLUT_DOWN (when mouse button is
pressed) or GLUT_UP (when mouse button is released)

m 7he x, y arguments are the position of the mouse when the
mouse button is pressed or released (in GLUT window
coordinates)

void mouse(int button, int state, int x, int y) {

GLUT Motion Event Callback

O void motion(int x, int y)

m 7he x, y arguments are the latest mouse position (in GLUT
window coordinates)

void motion(int x, int y) {

}

Mouse Positioning

0 The GLUT screen coordinate increase the origin to the
top-left corner, x+ to the right and y+ to the bottom
by 1 pixel.

0 In OpenGL, the 2D drawing coordinate has the origin

at the bottom-left corner, x+ is increasing to the right,
y+ IS increasing upwards.

/' A
(0,0) h

(0,0)

Drawing geo at cursor location

void mouse(int button, int state, int x, int y) {
if(button==GLUT_RIGHT BUTTON && state==GLUT_DOWN)
exit(0);
if(button==GLUT _LEFT BUTTON &&: state==GLUT_DOWN)
g_mousemove = true;
else if(button==GLUT _LEFT BUTTON && state==GLUT_UP)
g_mousemove = false;
}

void motion(int mx, int my) {

int w = glutGet(GLUT_WINDOW_WIDTH);

int h = glutGet(GLUT_WINDOW_HEIGHT);

float x = (float) 10 * (mx - w*0.5) / w; // 0~600(x+right) => -5~5(x+
right)

float y = (float) 10 * (h*0.5 - my) / h; // 0~600(y+down) => x -5~5(y+ up)

if (g_mousemove) {

geo->setPosition(glm:vec3(x, y, 0));
}
glutPostRedisplay();

If both a mouse button and ALT key are
pressed

void mouse(int button, int state, int x, int y)

{
specialKey = glutGetModifiers();

if((state==GLUT_DOWN)&&(specialkey == GLUT_ACTIVE_ALT))

{
if (button == GLUT_LEFT_BUTTON) {

red = 1.0; green = 0.0, blue = 0.0;
}

else if (button = GLUT_MIDDLE_BUTTON){
red = 0.0; green = 1.0, blue = 0.0;
}

Idle Callback

0 glutldleFunc(void (*func)(void)) callback is executed when
there is no event.

O Idle is used for animation, e.g. rotating square
void idle() {
/* change something */
t += dt
glutPostRedisplay();
}

void display() {
glClear();

/* draw something that depends on t */
glutSwapBuffers();

}
O ldle’s default callback function is NULL.

The display callback

0O The display callback is executed whenever GLUT
determines that the window should be refreshed,
for example

= When the window is first opened

= When the window is reshaped

= When a window Is exposed

= When the user program decides it wants to change the
display

O Every GLUT program must have glutDisplayFunc(display).

glutPostRedisplay

0 Many events may invoke the display callback

function

= Can lead to multiple executions of the display callback on

a single pass through the

0 We can avoid this prob
glutPostRedisplay() whic

0 GLUT checks to see if t
the event loop

event loop

em by instead using
n sets a flag.

ne flag is set at the end of

O If set then the display callback function is

executed

Animating a Display

0 When we redraw the display through the display

callback, we usually start by clearing the window
m giClear()

Then, draw the altered display

O Problem

m The drawing of information in the frame buffer is
decoupled from the display of its contents

O Hence we can see partially drawn display

Double Buffering

0O Instead of one color buffer, we use two
= Front Buffer: one that is displayed but not written to
= Back Buffer: one that is written to but not displayed

0O Program then requests a double buffering
= Double buffering initialization
glutinitDisplayMode(GLUT_DOUBLE| GLUT_RGB)

m Clear the buffer at the beginning of the display callback
glClear(GL_COLOR_BUFFER_BIT | ...)

= Swap the buffer at the end of the display callback
glutSwapBuffers()

The Reshape callback

0 glutReshapeFunc(reshape) callback reconfigure the
window shape.

0O void reshape(int w, int h)

= Return the window width and height.
= This callback automatically calls redisplay.

0 Reshape callback is a good place to put the viewing
functions since it is called the first time the window is
opened.

Example Reshape

void reshape(int w, int h) {
g_aspectRatio = (float) (w/h);
g_Projection = glm::perspective(g_fovy, g_aspect, g_near, g_far);

glViewport(0, 0, w, h);
glutPostRedisplay();

