
Input and Interaction

527970
Fall 2020
9/24/2020

Kyoung Shin Park
Computer Engineering

Dankook University

 Introduce the basic input devices
 Physical input devices

 Mouse, Keyboard, Trackball

 Logical input devices
 String, Locator, Pick, Choice, Valuators, Stroke device

 Input modes
 Request mode
 Sample mode
 Event mode

 GLUT Devices & Event-driven programming
 mouse, keyboard, menu, joystick, tablet, ..

Overview

Interaction

 One of the major advances in computer technology is
that users can interact using computer screens.

 Interaction
 The user takes action through an interactive device such as a

mouse.
 The computer detects user input.
 The program changes it state in response to this input.
 The program displays this new status.
 The users sees the changed display.
 The processes in which the user reacts to this change are

repeated.

Graphical Input

 Input devices can be described either by
 Physical properties

 Mouse, Keyboard, Trackball

 Logical properties
 Characterized by upper interface with application program, not by

physical characteristics

 Input modes
 The way an input device provides an input to an application

program can be described as a measurement process and
device trigger.
 Request mode
 Sample mode
 Event mode

Physical Input Devices

mouse trackball light pen

data tablet joy stick space ball

Physical Input Devices

 Physical input devices
 Pointing devices

 Allows the user to point to a location on the screen
 In most cases, the user has more than one button to send a

signal or interrupt to the computer.
 Mouse, trackball, tablet, lightpen, joystick, spaceball

 Keyboard devices
 A device that returns a character code to a program
 Keyboard

 Devices such as the data tablet return a position
directly to the operating system

 Devices such as the mouse, trackball, and joy stick
return incremental inputs (or velocities) to the
operating system
 Must integrate these inputs to obtain an absolute position

 Rotation of cylinders in mouse
 Roll of trackball
 Difficult to obtain absolute position
 Can get variable sensitivity

Relative Positioning Device

Logical Input Devices

 String device - keyboard
 Provide ASCII strings of characters to the program

 Locator device – mouse, trackball
 Provide real world coordinate position to the program

 Pick device – mouse button, gun
 Return the object’s identifier(ID) to the program

 Choice device – widgets, function keys, mouse button
 Let the user choose one of the options (menu)

 Valuators – slide bars, joystick, dial
 Provide analog input (range of value) to the program

 Stroke – mouse drag
 Return array of positions

Input Modes

 Input devices contain a trigger which can be used to
send a signal to the operating system
 Button on mouse
 Pressing or releasing a key

 When triggered, input devices return information (their
measure) to the system
 Mouse returns position information
 Keyboard returns ASCII code

Request Mode

 In request mode, input measurement are not returned
to the program until the user triggers the device.

 Standard for typical non-GUI program requiring
character input
 For example, when the C program’s scanf function is used, the

program stops while waiting for the terminal to type a
character. Then, you can type and edit until you hit the enter-
key(trigger).

Sample Mode

 Sample mode provides immediate input measures. As
soon as the program encounters a function call, the
measurement is returned. Therefore, no trigger is
required.

 Example: getc function in C program

Event Mode

 Most systems have more than one input device, each
of which can be triggered at an arbitrary time by a
user.

 Each trigger generates an event whose measure is put
in an event queue which can be examined by the user
program.

 Use the callback function for a specific event.

Event Types

 Window – window resize, expose, iconify
 Keyboard – press and release a key
 Mouse – click one or more mouse button
 Motion – move mouse
 Idle – no event (define what should be done if no

other event is in queue)

Programming Event-Driven Input

 Programming interface for event-driven input
 Define a callback function for each type of event the

graphics system recognizes
 This user-supplied function is executed when the event

occurs
 GLUT example, the callback function for mouse event

is specified through glutMouseFunc(mouse) in the
main function.

void mouse(int button, int state, int x, int y)

GLUT Devices

 Keyboard
 “normal” keys
 “special” keys

 Mouse
 Position
 buttons

 Joystick
 Tablet
 Dial/button box
 Spaceball

GLUT Keyboard Functions

 glutKeyboardFunc(func)
 Called when the ACII ‘character’ key is pressed

 glutSpecialFunc(func)
 Called when the ‘special’ key is pressed

 glutKeyboardUpFunc(func)
 Called when the ACII ‘character’ key is released

 glutSpecialUpFunc(func)
 Called when the ‘special’ key is released

 glutGetModifiers()
 Indicate the Shift, Control, Alt keys status when an event occurs

 glutIgnoreKeyRepeat(val)
 Tell GLUT to ignore automatic keyboard repeat

GLUT Keyboard Event Callback

 void keyboard(unsigned char key, int x, int y)
 Specify the handling of keyboard
 The key argument is the designated as ACII character code
 The x, y arguments are the position of the mouse when the

key is pressed

void keyboard(unsigned char key, int x, int y) {
switch (key): /* q-key exits the program */
{

case ‘q’:
exit(0);

}
}

GLUT Special Key

 GLUT special key
 GLUT_KEY_{F1,F2..,F12}
 GLUT_KEY_{UP,DOWN,LEFT,RIGHT} – arrow key
 GLUT_KEY_{PAGE_UP,PAGE_DOWN,HOME,END,INSERT}

void specialkey(int key, int x, int y) {
switch(key) {

case GLUT_KEY_F1:
red = 1.0; green = 0.0; blue = 0.0; break;

case GLUT_KEY_F2:
…

}

GLUT Modifier Key

 int glutGetModifiers(void) to check if the CTRL, ALT,
SHIFT modifier keys are pressed.
 GLUT_ACTIVE_SHIFT – SHIFT key (or Caps Locked)
 GLUT_ACTIVE_CTRL
 GLUT_ACTIVE_ALT

void keyboard(unsigned char key, int x, int y) {
if (key == 27) /* ESC-key exits the program */

exit(0);
else if (key ==‘r’) {

int mod = glutGetModifier();
if (mod == GLUT_ACTIVE_CTRL)

red = 0.0;
else

red = 1.0;
}

}

GLUT Mouse Functions

 glutMouseFunc(void(*func)(int button, int state, int x, int y))
 Called when the mouse button is pressed

 glutMotionFunc(void(*func)(int x, int y))
 Called when the mouse moves while the button is pressed

 glutPassiveMotionFunc(void (*func)(int x, int y))
 Called when the mouse button is moved without being pressed

GLUT Mouse Event Callback

 void mouse(int button, int state, int x, int y)
 The button argument is GLUT_LEFT_BUTTON,

GLUT_MIDDLE_BUTTON, GLUT_RIGHT_BUTTON
 The state argument is GLUT_DOWN (when mouse button is

pressed) or GLUT_UP (when mouse button is released)
 The x, y arguments are the position of the mouse when the

mouse button is pressed or released (in GLUT window
coordinates)

void mouse(int button, int state, int x, int y) {
…

}

GLUT Motion Event Callback

 void motion(int x, int y)
 The x, y arguments are the latest mouse position (in GLUT

window coordinates)

void motion(int x, int y) {
…

}

 The GLUT screen coordinate increase the origin to the
top-left corner, x+ to the right and y+ to the bottom
by 1 pixel.

 In OpenGL, the 2D drawing coordinate has the origin
at the bottom-left corner, x+ is increasing to the right,
y+ is increasing upwards.

Mouse Positioning

(0,0) h

w

(0,0)

5

-5 5

-5

Drawing geo at cursor location
void mouse(int button, int state, int x, int y) {

if(button==GLUT_RIGHT_BUTTON && state==GLUT_DOWN)
exit(0);

if(button==GLUT_LEFT_BUTTON && state==GLUT_DOWN)
g_mousemove = true;

else if(button==GLUT_LEFT_BUTTON && state==GLUT_UP)
g_mousemove = false;

}
void motion(int mx, int my) {

int w = glutGet(GLUT_WINDOW_WIDTH);
int h = glutGet(GLUT_WINDOW_HEIGHT);
float x = (float) 10 * (mx - w*0.5) / w; // 0~600(x+right) => -5~5(x+

right)
float y = (float) 10 * (h*0.5 - my) / h; // 0~600(y+down) => x -5~5(y+ up)
if (g_mousemove) {

geo->setPosition(glm::vec3(x, y, 0));
}
glutPostRedisplay();

}

If both a mouse button and ALT key are
pressed
void mouse(int button, int state, int x, int y)
{

specialKey = glutGetModifiers();
if((state==GLUT_DOWN)&&(specialKey == GLUT_ACTIVE_ALT))

{
if (button == GLUT_LEFT_BUTTON) {

red = 1.0; green = 0.0, blue = 0.0;
}
else if (button = GLUT_MIDDLE_BUTTON){

red = 0.0; green = 1.0, blue = 0.0;
}
…

}

Idle Callback

 glutIdleFunc(void (*func)(void)) callback is executed when
there is no event.

 Idle is used for animation, e.g. rotating square
void idle() {
/* change something */

t += dt
glutPostRedisplay();

}

void display() {
glClear();

/* draw something that depends on t */
glutSwapBuffers();

}

 Idle’s default callback function is NULL.

The display callback

 The display callback is executed whenever GLUT
determines that the window should be refreshed,
for example
 When the window is first opened
 When the window is reshaped
 When a window is exposed
 When the user program decides it wants to change the

display
 Every GLUT program must have glutDisplayFunc(display).

glutPostRedisplay

 Many events may invoke the display callback
function
 Can lead to multiple executions of the display callback on

a single pass through the event loop

 We can avoid this problem by instead using
glutPostRedisplay() which sets a flag.

 GLUT checks to see if the flag is set at the end of
the event loop

 If set then the display callback function is
executed

Animating a Display

 When we redraw the display through the display
callback, we usually start by clearing the window
 glClear()

Then, draw the altered display
 Problem

 The drawing of information in the frame buffer is
decoupled from the display of its contents

 Hence we can see partially drawn display

Double Buffering

 Instead of one color buffer, we use two
 Front Buffer: one that is displayed but not written to
 Back Buffer: one that is written to but not displayed

 Program then requests a double buffering
 Double buffering initialization

 glutInitDisplayMode(GLUT_DOUBLE| GLUT_RGB)
 Clear the buffer at the beginning of the display callback

 glClear(GL_COLOR_BUFFER_BIT | …)
 Swap the buffer at the end of the display callback

 glutSwapBuffers()

The Reshape callback

 glutReshapeFunc(reshape) callback reconfigure the
window shape.

 void reshape(int w, int h)
 Return the window width and height.
 This callback automatically calls redisplay.

 Reshape callback is a good place to put the viewing
functions since it is called the first time the window is
opened.

Example Reshape

void reshape(int w, int h) {
g_aspectRatio = (float) (w/h);
g_Projection = glm::perspective(g_fovy, g_aspect, g_near, g_far);

glViewport(0, 0, w, h);
glutPostRedisplay();

}

