
Input and Interaction

Fall 2021
9/21/2021

Kyoung Shin Park
Computer Engineering

Dankook University

 Introduce the basic input devices
 Physical input devices

 Mouse, Keyboard, Trackball

 Logical input devices
 String, Locator, Pick, Choice, Valuators, Stroke device

 Input modes
 Request mode
 Sample mode
 Event mode

 GLUT Devices & Event-driven programming
 mouse, keyboard, menu, joystick, tablet, ..

Overview

Interaction

 One of the major advances in computer technology is
that users can interact using computer screens.

 Interaction
 The user takes action through an interactive device such as a

mouse.
 The computer detects user input.
 The program changes it state in response to this input.
 The program displays this new status.
 The users sees the changed display.
 The processes in which the user reacts to this change are

repeated.

Graphical Input

 Input devices can be described either by
 Physical properties

 Mouse, Keyboard, Trackball

 Logical properties
 Characterized by upper interface with application program, not by

physical characteristics

 Input modes
 The way an input device provides an input to an application

program can be described as a measurement process and
device trigger.
 Request mode
 Sample mode
 Event mode

Physical Input Devices

mouse trackball light pen

data tablet joy stick space ball

Physical Input Devices

 Physical input devices
 Pointing devices

 Allows the user to point to a location on the screen
 In most cases, the user has more than one button to send a

signal or interrupt to the computer.
 Mouse, trackball, tablet, lightpen, joystick, spaceball

 Keyboard devices
 A device that returns a character code to a program
 Keyboard

 Devices such as the data tablet return a position
directly to the operating system

 Devices such as the mouse, trackball, and joy stick
return incremental inputs (or velocities) to the
operating system
 Must integrate these inputs to obtain an absolute position

 Rotation of cylinders in mouse
 Roll of trackball
 Difficult to obtain absolute position
 Can get variable sensitivity

Relative Positioning Device Logical Input Devices

 String device - keyboard
 Provide ASCII strings of characters to the program

 Locator device – mouse, trackball
 Provide real world coordinate position to the program

 Pick device – mouse button, gun
 Return the object’s identifier(ID) to the program

 Choice device – widgets, function keys, mouse button
 Let the user choose one of the options (menu)

 Valuators – slide bars, joystick, dial
 Provide analog input (range of value) to the program

 Stroke – mouse drag
 Return array of positions

Input Modes

 Input devices contain a trigger which can be used to
send a signal to the operating system
 Button on mouse
 Pressing or releasing a key

 When triggered, input devices return information (their
measure) to the system
 Mouse returns position information
 Keyboard returns ASCII code

Request Mode

 In request mode, input measurement are not returned
to the program until the user triggers the device.

 Standard for typical non-GUI program requiring
character input
 For example, when the C program’s scanf function is used, the

program stops while waiting for the terminal to type a
character. Then, you can type and edit until you hit the enter-
key(trigger).

Sample Mode

 Sample mode provides immediate input measures. As
soon as the program encounters a function call, the
measurement is returned. Therefore, no trigger is
required.

 Example: getc function in C program

Event Mode

 Most systems have more than one input device, each
of which can be triggered at an arbitrary time by a
user.

 Each trigger generates an event whose measure is put
in an event queue which can be examined by the user
program.

 Use the callback function for a specific event.

Event Types

 Window – window resize, expose, iconify
 Keyboard – press and release a key
 Mouse – click one or more mouse button
 Motion – move mouse
 Idle – no event (define what should be done if no

other event is in queue)

Programming Event-Driven Input

 Programming interface for event-driven input
 Define a callback function for each type of event the

graphics system recognizes
 This user-supplied function is executed when the event

occurs
 GLUT example, the callback function for mouse event

is specified through glutMouseFunc(mouse) in the
main function.

void mouse(int button, int state, int x, int y)

GLUT Devices

 Keyboard
 “normal” keys
 “special” keys

 Mouse
 Position
 buttons

 Joystick
 Tablet
 Dial/button box
 Spaceball

GLUT Keyboard Functions

 glutKeyboardFunc(func)
 Called when the ACII ‘character’ key is pressed

 glutSpecialFunc(func)
 Called when the ‘special’ key is pressed

 glutKeyboardUpFunc(func)
 Called when the ACII ‘character’ key is released

 glutSpecialUpFunc(func)
 Called when the ‘special’ key is released

 glutGetModifiers()
 Indicate the Shift, Control, Alt keys status when an event occurs

 glutIgnoreKeyRepeat(val)
 Tell GLUT to ignore automatic keyboard repeat

GLUT Keyboard Event Callback

 void keyboard(unsigned char key, int x, int y)
 Specify the handling of keyboard
 The key argument is the designated as ACII character code
 The x, y arguments are the position of the mouse when the

key is pressed

void keyboard(unsigned char key, int x, int y) {
switch (key): /* q-key exits the program */
{

case ‘q’:
exit(0);

}
}

GLUT Special Key

 GLUT special key
 GLUT_KEY_{F1,F2..,F12}
 GLUT_KEY_{UP,DOWN,LEFT,RIGHT} – arrow key
 GLUT_KEY_{PAGE_UP,PAGE_DOWN,HOME,END,INSERT}

void specialkey(int key, int x, int y) {
switch(key) {

case GLUT_KEY_F1:
red = 1.0; green = 0.0; blue = 0.0; break;

case GLUT_KEY_F2:
…

}

GLUT Modifier Key

 int glutGetModifiers(void) to check if the CTRL, ALT,
SHIFT modifier keys are pressed.
 GLUT_ACTIVE_SHIFT – SHIFT key (or Caps Locked)
 GLUT_ACTIVE_CTRL
 GLUT_ACTIVE_ALT

void keyboard(unsigned char key, int x, int y) {
if (key == 27) /* ESC-key exits the program */

exit(0);
else if (key ==‘r’) {

int mod = glutGetModifier();
if (mod == GLUT_ACTIVE_CTRL)

red = 0.0;
else

red = 1.0;
}

}

GLUT Mouse Functions

 glutMouseFunc(void(*func)(int button, int state, int x, int y))
 Called when the mouse button is pressed

 glutMotionFunc(void(*func)(int x, int y))
 Called when the mouse moves while the button is pressed

 glutPassiveMotionFunc(void (*func)(int x, int y))
 Called when the mouse button is moved without being pressed

GLUT Mouse Event Callback

 void mouse(int button, int state, int x, int y)
 The button argument is GLUT_LEFT_BUTTON,

GLUT_MIDDLE_BUTTON, GLUT_RIGHT_BUTTON
 The state argument is GLUT_DOWN (when mouse button is

pressed) or GLUT_UP (when mouse button is released)
 The x, y arguments are the position of the mouse when the

mouse button is pressed or released (in GLUT window
coordinates)

void mouse(int button, int state, int x, int y) {
…

}

GLUT Motion Event Callback

 void motion(int x, int y)
 The x, y arguments are the latest mouse position (in GLUT

window coordinates)

void motion(int x, int y) {
…

}

 The GLUT screen coordinate increase the origin to the
top-left corner, x+ to the right and y+ to the bottom
by 1 pixel.

 In OpenGL, the 2D drawing coordinate has the origin
at the bottom-left corner, x+ is increasing to the right,
y+ is increasing upwards.

Mouse Positioning

(0,0) h

w

(0,0)

5

-5 5

-5

Drawing geo at cursor location
void mouse(int button, int state, int x, int y) {

if(button==GLUT_RIGHT_BUTTON && state==GLUT_DOWN)
exit(0);

if(button==GLUT_LEFT_BUTTON && state==GLUT_DOWN)
g_mousemove = true;

else if(button==GLUT_LEFT_BUTTON && state==GLUT_UP)
g_mousemove = false;

}
void motion(int mx, int my) {

int w = glutGet(GLUT_WINDOW_WIDTH);
int h = glutGet(GLUT_WINDOW_HEIGHT);
float x = (float) 10 * (mx - w*0.5) / w; // 0~600(x+right) => -5~5(x+

right)
float y = (float) 10 * (h*0.5 - my) / h; // 0~600(y+down) => x -5~5(y+ up)
if (g_mousemove) {

geo->setPosition(glm::vec3(x, y, 0));
}
glutPostRedisplay();

}

If both a mouse button and ALT key are
pressed
void mouse(int button, int state, int x, int y)
{

specialKey = glutGetModifiers();
if((state==GLUT_DOWN)&&(specialKey == GLUT_ACTIVE_ALT))

{
if (button == GLUT_LEFT_BUTTON) {

red = 1.0; green = 0.0, blue = 0.0;
}
else if (button = GLUT_MIDDLE_BUTTON){

red = 0.0; green = 1.0, blue = 0.0;
}
…

}

Idle Callback

 glutIdleFunc(void (*func)(void)) callback is executed when
there is no event.

 Idle is used for animation, e.g. rotating square
void idle() {
/* change something */

t += dt
glutPostRedisplay();

}

void display() {
glClear();

/* draw something that depends on t */
glutSwapBuffers();

}

 Idle’s default callback function is NULL.

The display callback

 The display callback is executed whenever GLUT
determines that the window should be refreshed,
for example
 When the window is first opened
 When the window is reshaped
 When a window is exposed
 When the user program decides it wants to change the

display
 Every GLUT program must have glutDisplayFunc(display).

glutPostRedisplay

 Many events may invoke the display callback
function
 Can lead to multiple executions of the display callback on

a single pass through the event loop

 We can avoid this problem by instead using
glutPostRedisplay() which sets a flag.

 GLUT checks to see if the flag is set at the end of
the event loop

 If set then the display callback function is
executed

Animating a Display

 When we redraw the display through the display
callback, we usually start by clearing the window
 glClear()

Then, draw the altered display
 Problem

 The drawing of information in the frame buffer is
decoupled from the display of its contents

 Hence we can see partially drawn display

Double Buffering

 Instead of one color buffer, we use two
 Front Buffer: one that is displayed but not written to
 Back Buffer: one that is written to but not displayed

 Program then requests a double buffering
 Double buffering initialization

 glutInitDisplayMode(GLUT_DOUBLE| GLUT_RGB)
 Clear the buffer at the beginning of the display callback

 glClear(GL_COLOR_BUFFER_BIT | …)
 Swap the buffer at the end of the display callback

 glutSwapBuffers()

The Reshape callback

 glutReshapeFunc(reshape) callback reconfigure the
window shape.

 void reshape(int w, int h)
 Return the window width and height.
 This callback automatically calls redisplay.

 Reshape callback is a good place to put the viewing
functions since it is called the first time the window is
opened.

Example Reshape

void reshape(int w, int h) {
g_aspectRatio = (float) (w/h);
g_Projection = glm::perspective(g_fovy, g_aspect, g_near, g_far);

glViewport(0, 0, w, h);
glutPostRedisplay();

}

