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Spaces

 Vector space
 The vector space has scalars and vectors.
 Scalars: , , 
 Vectors: u, v, w

 Affine space
 The affine space has point in addition to the vector space.
 Points: P, Q, R

 Euclidean space
 In Euclidean space, the concept of distance is added.



Scalars, Points, Vectors

 3 basic types needed to describe the geometric objects 
and their relations

 Scalars: , , 
 Points: P, Q, R
 Vectors: u, v, w
 Vector space

 scalars & vectors

 Affine space
 Extension of the vector space that includes a point



Scalars

 Commutative, associative, and distribution laws are 
established for addition and multiplication
  +  =  + 
  ·  =  · 
  + ( + ) = ( + ) + 
  · ( · ) = ( · ) · 
  ·  ( + ) = ( · ) + ( · )

 Addition identity is 0 and multiplication identity is 1.
  + 0 = 0 +  = 
  · 1 = 1 ·  = 

 Inverse of addition and inverse of multiplication
  + (- ) = 0
  ·  -1 = 1



Vectors

 Vectors have magnitude (or length) and direction.
 Physical quantities, such as velocity or force, are 

vectors.
 Directed line segments used in computer graphics are 

vectors.
 Vectors do not have a fixed position in space.



Points

 Points have a position in space.
 Operations with points and vectors:

 Point-point subtraction creates a vector.
 Point-vector addition creates points.

P

Q

v

v = P – Q

P = Q + v



Specifying Vectors

 2D Vector: (x, y)
 3D Vector: (x, y, z)

+x

+y

2D Vector

3D Vector
Vector from the origin O(0, 0, 0) 
to the point P(1, -3, -4)

+x

+y

(1, -3, -4)
(0, 0, 0)

+z



Examples of 2D vectors

+X  -X  

Point (2, -5)

Vector [2, 1]

-Y

+Y  

Vector [-1, -4]

Vector [-2, 3]

Vector [2, -5]

Vector [3, 0]

Vector [0, -4]

Vector [3, 0]

Vector [2, -3]



 zero vector
 vector negation
 vector/scalar multiply
 add & subtract two vectors
 vector magnitude (length)
 normalized vector
 distance formula
 vector product

 dot product
 cross product

Vector Operations



The Zero Vector

 The three-dimensional zero vector is 
(0, 0, 0).

 The zero vector has zero magnitude. 
 The zero vector has no direction. 



Negating a Vector

 Every vector v has a negative vector –v: v + (-v) = 0
 Negative vector

-(a1, a2, a3, … , an) = (-a1, -a2, -a3, …, -an)

 2D, 3D, 4D vector negation
-(x, y) = (-x, -y)
-(x, y, z) = (-x, -y, -z)
-(x, y, z, w) = (-x, -y, -z, -w)

(2, 2)

(-2, -2)

(0, 3)

(0, -3)

(3, 5, -1)

(-3, -5, 1)



Vector-Scalar Multiplication

 Vector scalar multiplication
 * (x, y, z) = (x, y, z)

 Vector scale division
1/ * (x, y, z) = (x/, y/, z/)

 Example:
2 * (4, 5, 6) = (8, 10, 12)
½ * (4, 5, 6) = (2, 2.5, 3)
-3 * (-5, 0, 0.4) = (15, 0, -1.2)
3u + v = (3u) + v

v 2v 0.5v



Vector Addition and Subtraction

 Vector Addition
 Defined as a head-to-tail axiom

(x1, y1, z1) + (x2, y2, z2) = (x1+x2, y1+y2, z1+z2)
u + v = v + u

 Vector Subtraction
(x1, y1, z1) – (x2, y2, z2) = (x1-x2, y1-y2, z1-z2)
u - v = -(v – u)

u+v v

u
v

u

v+u

u v

v-u
u-v

u v

a

b

c
d

a+b+c+d



 The displacement vector from the point P to the point Q
is calculated as q – p.

Vector Addition and Subtraction

+x  -x  

-y   

+y  

q - pp

q

p + q

P

Q



 Vector magnitude (or length):

Examples:

Vector Magnitude (Length)
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Vector Magnitude

V
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Vector [3, 3]
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Normalized Vectors

 There is case where you only need 
the direction of the vector, 
regardless of the vector length.

 The unit vector has a magnitude of 
1.

 The unit vector is also called as 
normalized vectors or normal.

 “Normalizing” a vector: 1

0,  v
v
vvnorm



Distance

 The distance between two 
points P and Q is calculated as 
follows.
 Vector p
 Vector q
 Displacement vector d = q - p
 Find the length of the vector d.
 distance(P, Q) =║d║=║q - p║

P

Q
q

p
d = q - p



Vector Dot Product

 Dot product between two vectors: u • v
(u1, u2, u3, … , un)· (v1, v2, v3, …, vn) =

u1v1+ u2v2+ … + un-1vn-1+unvn
or

 Example:
(4, 6) . (-3, 7) = 4*-3 + 6*7 = 30
(3, -2, 7) . (0, 4, -1) = 3*0 + -2*4 + 7*-1 = -15
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Vector Dot Product

 The dot product of the two vectors is the cosine of the 
angle between two vectors (assuming they are 
normalized).
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Dot Product as Measurement of Angle

a


b1

b0

b2

 The following is the characteristics of the dot product. 

 90000  whenba

9001  whenba

 1809002  whenba



Projecting One Vector onto Another

 Given two vectors, w and v, one vector w can be divided 
into parallel and orthogonal to the other vector v.  
w = wpar + wper

w = v + u
u must be orthogonal to v, u • v = 0
w• v = (v + u) • v = v • v + u • v = v • v 
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Projecting One Vector onto Another
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 Cross product: u x v
(x1, y1, z1) x (x2, y2, z2) = ( y1z2 - z1y2, 

z1x2 - x1z2,  
x1y2 - y1x2 )

 Example: 
(1, 3, -4) x (2, -5, 8) = ( 3*8 – (-4)*(-5),                           

(-4)*2 – 1*8,
1*(-5) – 3*2 )

= (4, -16, -11)

Vector Cross Product

θ

v

u

u x v



Vector Cross Product

 The magnitude of the cross product between two 
vectors, |(u x v)|, is the product of the magnitude of 
each other and the sine of the angle between the two 
vectors.

 The area of the parallogram is calculated as bh.
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Vector Cross Product

 In the left-handed coordinate system, when the vectors
u and v move in a clockwise turn, u x v points in the 
direction toward us, and when moving in a counter-
clockwise turn, u x v points in the direction away from us.

 In the right-handed coordinate system, when the vectors
u and v move in a counter-clockwise turn, u x v points in 
the direction toward us, and when moving in a clockwise 
turn, u x v points in the direction away from us.

ba
ab

Left-handed Coordinates

Clockwise turn

Counterclockwise turn

Right-handed Coordinates



Linear Algebra Identities

Identity Comments
u + v = v + u Vector addition commutative law

u – v = u + (-v) Vector subtraction

(u+v)+w = u+(v+w) Vector addition associative law

(u)=()u Scalar-Vector multiplication association

(u + v) = u + v
( +  )u = u + u

Scalar-Vector distribution law

Scalar product

The magnitude of vector is nonnegative

Pythagorean theorem

Vector addition triangle rule

u . v = v . u Dot product commutative law

Vector magnitude using dot product

vv  
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Linear Algebra Identities

Identity Comments
(u . v) = (u) . v = u . (v) Vector dot product and scalar product 

associative law

u . (v + w) = u . v + u . w Vector addition and dot product 
distribution law

u x u = 0 Cross product of the vector itself is 0.

u x v = -(v x u) Cross product is anti-commutative.

u x v = (-u) x (-v) Cross product of a vector is equal to the 
cross product of inverse of each vector.

(u x v) = (u) x v = u x (v) Scalar and cross product multiplication 
associative law

u x (v+w) = (uxv) + (uxw) Cross product of vector and the addition of 
two vector establish the distribution law

u . (u x v) = 0 Dot product of any vector with cross 
product of that vector & another vector is 0



Geometric Objects

 Line
 2 points

 Plane
 3 points

 3D objects
 Defined by a set of triangles
 Simple convex flat polygons
 hollow



Lines

 Line is point-vector addition (or subtraction of two 
points). 

 Line parametric form: P() = P0 + v
 P0 is arbitrary point, and v is arbitrary vector
 Points are created on a straight line by changing the parameter.

 v = R – Q
P = Q + v = Q + (R – Q) = R + (1 - )Q 

 P = 1R + 2Q where 1 + 2 = 1

Q

v

P() = Q  +  v
= Q + (R – Q) =  R + (1 - )QR

 = 0

 = 1



Lines, Rays, Line Segments

 The line is infinitely long in both directions.
 A line segment is a piece of line between two 

endpoints. 0 <=  <= 1
 A ray has one end point and continues infinitely in 

one direction.  >= 0
 Line:

p() = p0 + d (parametric)
y = mx + b (explicit) 
ax + by = d (implicit)
p•n = d

=0

=1

p0

d

b
d: distance

n: normal



Convexity

 An object is convex if only if for any two points in the 
object all points on the line segment between these 
points are also in the object.

P

Q Q

P

convex not convex



Convex Hull

 Smallest convex object containing P1P2,…..Pn
 Formed by “shrink wrapping” points



Affine Sums

 The affine sum of the points defined by P1,P2,…..Pn is 
P=1P1+ 2P2+…..+ nPn 

Can show by induction that this sum makes sense iff
1+ 2+….. n=1

 If, in addition, i>=0, i=1,2, ..,n, we have the convex 
hull of P1,P2,…..Pn.

 Convex hull {P1,P2,…..Pn}, you can see that it includes all 
the line segments connecting the pairs of points.



Linear/Affine Combination of Vectors

 Linear combination of m vectors
 Vector v1, v2, .. vm

 w = 1v1 + 2v2 + … mvm where 1, 2, .. m are scalars

 If the sum of the scalar values, 1, 2, .. m is 1, it 
becomes an affine combination. 
 1 + 2 + .. + m = 1



Convex Combination

 If, in addition, i>=0, i=1,2, ..,n, we have the convex 
hull of P1,P2,…..Pn.

 Therefore, the linear combination of vectors satisfying 
the following condition is a convex.

1 + 2 + .. + m = 1
and
i ≥ 0 for i=1,2, .. m
i is between 0 and 1

 Convexity
 Convex hull



Plane

 A plane can be defined by a point and two vectors or 
by three points.

 Suppose 3 points, P, Q, R
 Line segment PQ

 S() = P + (1 - )Q

 Line segment SR
 T() = S + (1 - )R

 Plane defined by P, Q, R
 T(, ) = (P + (1 - )Q) + (1 - )R

= P + (1 - )(Q - P) + (1 - )(R - P)
 For 0≤ , ≤1, we get all points in triangle, T(, ).

R

QP
S()

T(, )



Plane

 Plane equation defined by a point P0 and two non 
parallel vectors, u, v
 T(, ) = P0 + u + v
 P - P0 = u + v (P is a point on the plane)

 Using n (the cross product of u, v), the plane equation 
is as follows
 n •(P - P0) = 0 (where n = u x v and n is a normal vector)



n [a,b,c]

P

P0

Plane

 The plane is represented by a normal vector n and a 
point P0 on the plane. 
 Plane (n, d) where n (a, b, c)
 ax + by + cz + d = 0
 n•p + d = 0

d = -n•p

 For point p on the plane, n•(p - p0) =0
 If the plane normal n is a unit vector, then n•p + d 

gives the shortest signed distance from the plane to 
point p: d = -n•p



Relationship between Point and Plane

 Relationship between point p and plane (n, d)
 If n•p + d = 0, then p is in the plane.
 If n•p + d > 0, then p is outside the plane.
 If n•p + d < 0, then p is inside the plane.

n [a,b,c]

P

P0



Plane Normalization 

 Plane normalization
 Normalize the plane normal vector
 Since the length of the normal vector affects the constant d, 

d is also normalized.
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v

u

n P1

P2

P3

Computing a Normal from 3 Points in 
Plane

 Find the normal from the polygon’s vertices.
 The polygon’s normal computes two non-collinear edges. 

(assuming that no two adjacent edges will be collinear)
 Then, normalize it after the cross product.

void computeNormal(vector P1, vector P2, vector P3) {
vector u, v, n, y(0, 1, 0);
u = P3 – P2;
v = P1 – P2;
n = cross(u, v);
if (n.length()==0)

return y;
else

return n.normalize();
}



Computing a Distance from Point to 
Plane

 Find the closest distance to a plane (n, d) in space and 
a point Q out of the plane.
 The plane’s normal is n, and D is the distance between a point 

P and a point Q on the plane.
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Closest Point on the Plane

 Find a point P on the plane (n, d) closest to one point
Q in space.
 p = q – kn (k is the shortest signed distance from point Q to 

the plane)
 If n is a unit vector, 

k = n•q + d
p = q – (n•q + d)n

n[a,b,c]

P (x, y, z)

Q (x0,y0,z0)

q = p + knk
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Intersection of Ray and Plane

 Ray p(t) = p0 + tu & plane p•n + d = 0
 Ray/Plane intersection:

 If the ray is parallel to the plane, the denominator 
u•n=0. Thus, the ray does not intersect the plane.

 If the value of t is not in the range [0, ∞), the ray does 
not intersect the plane.


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Matrix

 Matrix M (r x c matrix)
 Row of horizontally arranged matrix elements
 Column of vertically arranged matrix elements 

 Mij is the element in row i and column j

m11 m12 m13

M = m21 m22 m23

m31 m32 m33

c(2) columns

r(2) rows



Matrix

4 0 12

-5 4 3

12 ⅜ -1

1/2 18 0

4x3 
matrix

2 -4 7 ⅞ 8

-3 4 ⅜ 0 1

2x5 
matrix

Mij is the element in row i and column j

m12= -4

m42= 18



Square Matrix

 The n x n matrix is called an n-th square matrix. e.g. 
2x2, 3x3, 4x4

 Diagonal elements vs. Non-diagonal elements

m11 m12 m13

M = m21 m22 m23

m31 m33 m33

Diagonal 
elements

Nondiagonal 
elements



Identity Matrix

 The identity matrix is expressed as I.
 All of the diagonals are 1, the remaining elements are 

0 in n x n square matrix.
 M I = I M = M

1 0 0
I = 0 1 0

0 0 1



Vectors as Matrices

 The n-dimension vector is expressed as a 1xn matrix 
or an nx1 matrix.
 1xn matrix is a row vector (also called a row matrix)
 nx1 matrix is a column vector (also called a column matrix)

a11

A = a21

a31

A = a11 a12 a13



Transpose Matrix

 Transpose of M (rxc matrix) is denoted by MT and is 
converted to cxr matrix.
 MT

ij
= Mji

 (MT)T = M
 DT = D for any diagonal matrix D.

a m c a d g
d e f = m e h
g h i c f i

T



Transposing Matrix

1 4 7 10

2 5 8 11

3 6 9 12

1 2 3

4 5 6

7 8 9

10 11 12

x

y

z

T

=

x y z=

T



Matrix Scalar Multiplication

 Multiplying a matrix M with a scalar  =  M

m11 m12 m13

M = m21 m22 m23

m31 m33 m33


= m11 m12 m13

m21 m22 m23

m31 m33 m33



Two Matrices Addition

 Matrix C is the addition of A (r x c matrix) and B (r x c 
matrix), which is a r x c matrix.

 Each element cij is the sum of the ijth element of A 
and the ijth element of B. 



1 3 6 3 7 1 4 10 7

10 0 -5 + 6 4 9 = 16 4 4

4 7 2 8 -9 4 12 -2 6

r x c r x c r x c

ijijij bac  1+3



Two Matrices Multiplication

 Matrix C(rxc matrix) is the product of A (rxn matrix)
and B (nxc matrix). 

 Each element cij is the vector dot product of the ith

row of A and the jth column of B. 


1 3 6 3 7 1 69 -35 52

10 0 -5 * 6 4 9 = -10 115 -10

4 7 2 8 -9 4 70 38 75

r x n n x c r x c
must match columns in result

rows in result


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
n

k
kjikij bac

1

3+18+48



Multiplying Two Matrices

c11 c12 c13 c14 c15

c21 c22 c23 c24 c25

c31 c32 c33 c34 c35

c41 c42 c43 c44 c45

m11 m12 m13 m14 m15

m21 m22 m23 m24 m25

a11 a12

a21 a22

a31 a32

a41 a42

=

c24 = a21m14 + a22m24



Matrix Operation

 MI = IM = M (I is identity matrix)
 A + B = B + A : matrix addition commutative law
 A + (B + C) = (A + B) + C : matrix addition associative 

law
 AB ≠BA : Not hold matrix product commutative law
 (AB)C = A(BC) : matrix product associative law 
 ABCDEF = ((((AB)C)D)E)F = A((((BC)D)E)F) = (AB)(CD)(EF)
 (AB) = (A)B = A(B) : Scalar-matrix product
 (A) = ()A
 (vA)B = v (AB)
 (AB)T = BT AT

 (M1M2M3 … Mn-1Mn)T = Mn
TMn-1

T … M3
TM2

TM1
T



Matrix Determinant

 The determinant of a square matrix M is denoted by 
|M| or “det M”.

 The determinant of non-square matrix is not defined.

|M| = m11 m12 = m11 m22 - m12 m21

m21 m22

|M| = m11 m12 m13 = m11 (m22 m33 - m23 m32)+
m21 m22 m23 m12 (m23 m31 - m21 m33)+
m31 m32 m33 m13 (m21 m32 - m22 m31)



Inverse Matrix

 Inverse of M (square matrix) is denoted by M-1.


 (M-1)-1 =M
 M(M-1) = M-1M = I
 The determinant of a non-singular matrix (i.e, invertible) 

is nonzero.
 The adjoint of M, denoted “adj M” is the transpose of 

the matrix of cofactors.

adjM = c11 c12 c13

c21 c22 c23

c31 c32 c33

T

M
adjMM 1



Cofactor of a Square Matrix 
& Computing Determinant using Cofactor

 Cofactor of a square matrix M at a given row and 
column is the signed determinant of the corresponding 
Minor of M.

 Cij = (-1)ij | M{ij} |
 Calculation of n x n determinant using cofactor: 
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|M| = m11 m12 m13 m14 = m11 m22 m23 m24

m21 m22 m23 m24 m32 m33 m34

m31 m32 m33 m34 m42 m43 m44

m41 m42 m43 m44 - m12 |M{12}|

+m13 |M{13}|

- m14 |M{14}|



Minor of a Matrix

 The submatrix M{ij} is known as a minor of M, obtained 
by deleting row i and column j from M.

M = -4 -3 3 M{12} = 0 -2
0 2 -2 1 -1
1 4 -1



Determinant, Cofactor, Inverse Matrix






















































1121

12221

1121

1222

1112

2122

21122211

2221

1211

det
1

det

mm
mm

M
M

mm
mm

adjM

mm
mm

C

mmmmM
mm
mm

M



Determinant, Cofactor, Inverse Matrix
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Multiplying a Vector and a Matrix

x y z

xpx +yqx+zrx xpy +yqy+zry xpz +yqz+zrz=

=  xp + yq + zr

px py pz

qx qy qz

rx ry rz

 A coordinate space transformation can be expressed 
using a vector-matrix product. 
uM = v // matrix M converts vector u to vector v



v  =  M * u

Multiplying a Vector and a Matrix

m11 m12 m13

m21 m22 m23

m31 m32 m33

x

y

z

xm11 +y m12+z m13

x m21 +y m22+z m23

x m31 +y m32+z m33

=

 Vector-matrix multiplication in OpenGL (Column-Major 
Order)
v = M * u // matrix M converts vector u to vector v


