Geometric Objects Spaces and Matrix

Fall 2021
9/28/2021
Kyoung Shin Park
Computer Engineering
Dankook University

Spaces

- Vector space
- The vector space has scalars and vectors.
- Scalars: α, β, δ
- Vectors: u, v, w
- Affine space
- The affine space has point in addition to the vector space.
- Points: P, Q, R
- Euclidean space
- In Euclidean space, the concept of distance is added.

Scalars, Points, Vectors

- 3 basic types needed to describe the geometric objects and their relations
- Scalars: α, β, δ
- Points: P, Q, R
- Vectors: u, v, w
- Vector space
- scalars \& vectors
- Affine space
- Extension of the vector space that includes a point

Scalars

- Commutative, associative, and distribution laws are established for addition and multiplication
- $\alpha+\beta=\beta+\alpha$
- $\alpha \cdot \beta=\beta \cdot \alpha$
- $\alpha+(\beta+\gamma)=(\alpha+\beta)+\gamma$
- $\alpha \cdot(\beta \cdot \gamma)=(\alpha \cdot \beta) \cdot \gamma$
- $\alpha \cdot(\beta+\gamma)=(\alpha \cdot \beta)+(\alpha \cdot \gamma)$
\square Addition identity is 0 and multiplication identity is 1 .
- $\alpha+0=0+\alpha=\alpha$
- $\alpha \cdot 1=1 \cdot \alpha=\alpha$
- Inverse of addition and inverse of multiplication
- $\alpha+(-\alpha)=0$
- $\alpha \cdot \alpha^{-1}=1$

Vectors

- Vectors have magnitude (or length) and direction.
- Physical quantities, such as velocity or force, are vectors.
- Directed line segments used in computer graphics are vectors.
- Vectors do not have a fixed position in space.

Points

- Points have a position in space.
- Operations with points and vectors:
- Point-point subtraction creates a vector.
- Point-vector addition creates points.

$$
\begin{aligned}
& v=P-Q \\
& P=Q+v
\end{aligned}
$$

Specifying Vectors

- 2D Vector: (x, y)
- 3D Vector: (x, y, z)

2D Vector

3D Vector
Vector from the origin $\mathrm{O}(0,0,0)$
to the point $P(1,-3,-4)$

Examples of 2D vectors

Vector Operations

- zero vector
- vector negation
- vector/scalar multiply
- add \& subtract two vectors
- vector magnitude (length)
- normalized vector
- distance formula
- vector product
- dot product
- cross product

The Zero Vector

- The three-dimensional zero vector is ($0,0,0$).
- The zero vector has zero magnitude.
- The zero vector has no direction.

Negating a Vector

\square Every vector \mathbf{v} has a negative vector $-\mathbf{v}$: $\mathbf{v}+(-\mathbf{v})=\mathbf{0}$

- Negative vector

$$
-\left(a_{1}, a_{2}, a_{3}, \ldots, a_{n}\right)=\left(-a_{1},-a_{2},-a_{3}, \ldots,-a_{n}\right)
$$

- 2D, 3D, 4D vector negation
$-(x, y)=(-x,-y)$
$-(x, y, z)=(-x,-y,-z)$
$-(x, y, z, w)=(-x,-y,-z,-w)$

Vector-Scalar Multiplication

- Vector scalar multiplication

$$
\alpha^{*}(x, y, z)=(\alpha x, \alpha y, \alpha z)
$$

- Vector scale division

$$
1 / \alpha^{*}(x, y, z)=(x / \alpha, y / \alpha, z / \alpha)
$$

- Example:

$$
\begin{aligned}
& 2 \text { * }(4,5,6)=(8,10,12) \\
& 1 / 2 \text { * }(4,5,6)=(2,2.5,3) \\
& -3 \text { * }(-5,0,0.4)=(15,0,-1.2) \\
& 3 \mathbf{u}+\mathbf{v}=(3 \mathbf{u})+\mathbf{v}
\end{aligned}
$$

Vector Addition and Subtraction

- Vector Addition
- Defined as a head-to-tail axiom

$$
\begin{aligned}
& \left(x_{1}, y_{1}, z_{1}\right)+\left(x_{2}, y_{2}, z_{2}\right)=\left(x_{1}+x_{2}, y_{1}+y_{2}, z_{1}+z_{2}\right) \\
& \mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}
\end{aligned}
$$

- Vector Subtraction

Vector Addition and Subtraction

- The displacement vector from the point P to the point Q is calculated as $q-p$.

Vector Magnitude (Length)

- Vector magnitude (or length):

Examples: $\|v\|=\sqrt{v_{1}^{2}+v_{2}^{2}+\ldots+v_{n-1}^{2}+v_{n}^{2}}$

$$
\begin{aligned}
\|(5,-4,7)\| & =\sqrt{5^{2}+(-4)^{2}+7^{2}} \\
= & \sqrt{25+16+49} \\
= & \sqrt{90} \\
= & 3 \sqrt{10} \\
\approx & 9.4868
\end{aligned}
$$

Vector Magnitude

Normalized Vectors

- There is case where you only need the direction of the vector, regardless of the vector length.
- The unit vector has a magnitude of 1.
- The unit vector is also called as normalized vectors or normal.
- "Normalizing" a vector:

$$
V_{n o r m}=\frac{v}{\|v\|}, v \neq 0
$$

Distance

- The distance between two points P and Q is calculated as follows.
- Vector p
- Vector q
- Displacement vector $d=q-p$
- Find the length of the vector d .
- distance $(\mathrm{P}, \mathrm{Q})=\|d\|=\|q-p\|$

Vector Dot Product

- Dot product between two vectors: u • v $\left(u_{1}, u_{2}, u_{3}, \ldots, u_{n}\right) \cdot\left(v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right)=$

$$
u_{1} v_{1}+u_{2} v_{2}+\ldots+u_{n-1} v_{n-1}+u_{n} v_{n}
$$

or

$$
\begin{aligned}
& u \cdot v=\sum_{i=1}^{n} u_{i} v_{i} \\
& u \cdot u=\|u\|^{2}
\end{aligned}
$$

- Example:

$$
\begin{aligned}
& (4,6) \cdot(-3,7)=4^{\star}-3+6^{\star} 7=30 \\
& (3,-2,7) \cdot(0,4,-1)=3^{\star} 0+-2^{\star} 4+7^{\star}-1=-15
\end{aligned}
$$

Vector Dot Product

- The dot product of the two vectors is the cosine of the angle between two vectors (assuming they are normalized).
$u \cdot v=\|u\|\|v\| \cos \theta$
$\theta=\operatorname{acos}\left(\frac{u \cdot v}{\|u\|\|v\|}\right)$

$\theta=\operatorname{acos}(u \cdot v)$, where u, v are unit vectors

Dot Product as Measurement of Angle

- The following is the characteristics of the dot product.

$$
\begin{aligned}
& b_{1} a \cdot b_{1}=0 \text { when } \theta=90^{\circ} \\
& b_{b_{2}} \quad a \cdot b_{2}<0 \text { when } 0^{\circ} \leq \theta<90^{\circ} \\
& \text { when } 90^{\circ}<\theta \leq 180^{\circ}
\end{aligned}
$$

Projecting One Vector onto Another

- Given two vectors, w and v, one vector w can be divided into parallel and orthogonal to the other vector v.

$$
\begin{aligned}
& \mathrm{W}=\mathrm{W}_{\mathrm{par}}+\mathrm{W}_{\mathrm{per}} \\
& \mathrm{~W}=\alpha \mathrm{V}+\mathrm{u}
\end{aligned}
$$

u must be orthogonal to $\mathrm{v}, \mathrm{u} \cdot \mathrm{v}=0$

$$
\begin{aligned}
& \mathrm{w} \cdot \mathrm{v}=(\alpha \mathrm{v}+\mathrm{u}) \cdot \mathrm{v}=\alpha \mathrm{v} \cdot \mathrm{v}+\mathrm{u} \cdot \mathrm{v}=\alpha \mathrm{v} \cdot \mathrm{v} \\
& \alpha=\frac{w \cdot v}{v \cdot v} \\
& u=w-\alpha v=w-\frac{w \cdot v}{v \cdot v} v=\frac{\mathrm{v}+\mathrm{u}}{\|v\|^{2}} v \\
& \alpha v=w-u=w-w+\frac{w \cdot v}{v \cdot v} v=\frac{w \cdot v}{v \cdot v} v=\frac{w \cdot v}{\|v\|^{2}} v
\end{aligned}
$$

Projecting One Vector onto Another

If v is a unit vector, then $\|v\|=1$

$$
\begin{gathered}
w_{p e r}=u=w-(w \cdot v) v \\
w_{p a r}=a v=(w \cdot v) v
\end{gathered}
$$

$$
\begin{aligned}
& \cos \theta=\frac{\|\alpha v\|}{\|w\|} \Rightarrow\|\alpha v\|=\|w\| \cos \theta \\
& \sin \theta=\frac{\|u\|}{\|w\|} \Rightarrow\|u\|=\|w\| \sin \theta
\end{aligned}
$$

Vector Cross Product

- Cross product: $\mathbf{u} \mathbf{x} \mathbf{v}$

$$
\begin{aligned}
\left(x_{1}, y_{1}, z_{1}\right) \times\left(x_{2}, y_{2}, z_{2}\right)= & \left(y_{1} z_{2}-z_{1} y_{2}\right. \\
& z_{1} x_{2}-x_{1} z_{2} \\
& \left.x_{1} y_{2}-y_{1} x_{2}\right)
\end{aligned}
$$

- Example:
$(1,3,-4) \times(2,-5,8)=(3 * 8-(-4) *(-5)$,

$$
\begin{aligned}
& (-4)^{*} 2-1 * 8 \\
& 1 *(-5)-3 * 2)
\end{aligned}
$$

$$
=(4,-16,-11)
$$

Vector Cross Product

- The magnitude of the cross product between two vectors, $|(\mathbf{u} \times \mathbf{v})|$, is the product of the magnitude of each other and the sine of the angle between the two vectors.

$$
\|u \times v\|=\|u\|\|v\| \sin \theta
$$

- The area of the parallogram is calculated as $\stackrel{\text { u }}{b}$.

Vector Cross Product

- In the left-handed coordinate system, when the vectors u and v move in a clockwise turn, $u x v$ points in the direction toward us, and when moving in a counterclockwise turn, u x v points in the direction away from us.
- In the right-handed coordinate system, when the vectors u and v move in a counter-clockwise turn, $u \times v$ points in the direction toward us, and when moving in a clockwise turn, $u \times v$ points in the direction away from us.

Clockwise turn

Left-handed Coordinates

Right-handed Coordinates

Linear Algebra Identities

Identity	Comments						
$u+v=v+u$	Vector addition commutative law						
$u-v=u+(-v)$	Vector subtraction						
$(u+v)+w=u+(v+w)$	Vector addition associative law						
$\alpha(\beta u)=(\alpha \beta) u$	Scalar-Vector multiplication association						
$\alpha(u+v)=\alpha u+\alpha v$ $(\alpha+\beta) u=\alpha u+\beta u$	Scalar-Vector distribution law						
$\\|\alpha v\\|=\mid \alpha\\|v\\|$	Scalar product						
$\\|v\\| \geq 0$	The magnitude of vector is nonnegative						
$\\|u\\|^{2}+\\|v\\|^{2}=\\|u+v\\|^{2}$	Pythagorean theorem						
$\\|u\\|+\\|v\\| \geq\\|u+v\\|$	Vector addition triangle rule						
$u \cdot v=v \cdot u$	Dot product commutative law						
$\\|v\\|=\sqrt{v \cdot v}$	Vector magnitude using dot product						

Linear Algebra Identities

Identity	Comments
$\alpha(u \cdot v)=(\alpha u) \cdot v=u \cdot(\alpha v)$	Vector dot product and scalar product associative law
$u \cdot(v+w)=u \cdot v+u \cdot w$	Vector addition and dot product distribution law
$u \mathbf{x} u=0$	Cross product of the vector itself is 0.
$u \mathbf{x} v=-(v \mathbf{x} u)$	Cross product is anti-commutative.
$u \mathbf{x} v=(-u) \mathbf{x}(-v)$	Cross product of a vector is equal to the cross product of inverse of each vector.
$\alpha(u \mathbf{x} v)=(\alpha u) \mathbf{x} v=u \mathbf{x}(\alpha v)$	Scalar and cross product multiplication associative law
$u \mathbf{x}(v+w)=(u \mathbf{x v})+(u \mathbf{x w})$	Cross product of vector and the addition of two vector establish the distribution law
$u \cdot(u \mathbf{x} v)=0$	Dot product of any vector with cross product of that vector \& another vector is 0

Geometric Objects

- Line
- 2 points
- Plane
- 3 points
- 3D objects
- Defined by a set of triangles
- Simple convex flat polygons
- hollow

Lines

- Line is point-vector addition (or subtraction of two points).
- Line parametric form: $P(\alpha)=P_{0}+\alpha v$
- P_{0} is arbitrary point, and v is arbitrary vector
- Points are created on a straight line by changing the parameter.

口 $v=R-Q$
$\mathrm{P}=\mathrm{Q}+\alpha \mathrm{v}=\mathrm{Q}+\alpha(\mathrm{R}-\mathrm{Q})=\alpha \mathrm{R}+(1-\alpha) \mathrm{Q}$
口 $P=\alpha_{1} R+\alpha_{2} Q$ where $\alpha_{1}+\alpha_{2}=1$

Lines, Rays, Line Segments

- The line is infinitely long in both directions.
- A line segment is a piece of line between two endpoints. $0<=\alpha<=1$
\square A ray has one end point and continues infinitely in one direction. $\alpha>=0$
- Line:

$$
p(\alpha)=p_{0}+\alpha d \text { (parametric) }
$$

$$
y=m x+b \text { (explicit) }
$$

$$
a x+b y=d \text { (implicit) }
$$

$$
\begin{aligned}
& a x+b y \\
& p \cdot n=d
\end{aligned}
$$

Convexity

- An object is convex if only if for any two points in the object all points on the line segment between these points are also in the object.

convex

Convex Hull

- Smallest convex object containing $\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots . . \mathrm{P}_{\mathrm{n}}$
- Formed by "shrink wrapping" points

Affine Sums

- The affine sum of the points defined by $P_{1}, P_{2}, \ldots . . P_{n}$ is

$$
P=\alpha_{1} P_{1}+\alpha_{2} P_{2}+\ldots . .+\alpha_{n} P_{n}
$$

Can show by induction that this sum makes sense iff

$$
\alpha_{1}+\alpha_{2}+\ldots . . \alpha_{n}=1
$$

- If, in addition, $\alpha_{i}>=0, \mathrm{i}=1,2, \ldots, \mathrm{n}$, we have the convex hull of $P_{1}, P_{2}, \ldots . . P_{n}$.
- Convex hull $\left\{P_{1}, P_{2}, \ldots . . P_{n}\right\}$, you can see that it includes all the line segments connecting the pairs of points.

Linear/Affine Combination of Vectors

- Linear combination of m vectors
- Vector $\mathrm{v}_{1}, \mathrm{v}_{2}, . . \mathrm{v}_{\mathrm{m}}$
- $\mathrm{w}=\alpha_{1} \mathrm{v}_{1}+\alpha_{2} \mathrm{v}_{2}+\ldots \alpha_{\mathrm{m}} \mathrm{v}_{\mathrm{m}}$ where $\alpha_{1}, \alpha_{2}, . . \alpha_{\mathrm{m}}$ are scalars
- If the sum of the scalar values, $\alpha_{1}, \alpha_{2}, . . \alpha_{m}$ is 1 , it becomes an affine combination.
- $\alpha_{1}+\alpha_{2}+. .+\alpha_{m}=1$

Convex Combination

- If, in addition, $\alpha_{i}>=0, i=1,2, \ldots, n$, we have the convex hull of $P_{1}, P_{2}, \ldots . . P_{n}$.
- Therefore, the linear combination of vectors satisfying the following condition is a convex.

$$
\begin{aligned}
& \alpha_{1}+\alpha_{2}+. .+\alpha_{m}=1 \\
& \text { and } \\
& \alpha_{i} \geq 0 \text { for } i=1,2, . . m \\
& \alpha_{i} \text { is between } 0 \text { and } 1
\end{aligned}
$$

- Convexity
- Convex hull

Plane

- A plane can be defined by a point and two vectors or by three points.
- Suppose 3 points, P, Q, R
- Line segment PQ
- $S(\alpha)=\alpha P+(1-\alpha) Q$
- Line segment $S R$
- $T(\beta)=\beta S+(1-\beta) R$
- Plane defined by P, Q, R

- $T(\alpha, \beta)=\beta(\alpha P+(1-\alpha) Q)+(1-\beta) R$

$$
=P+\beta(1-\alpha)(Q-P)+(1-\beta)(R-P)
$$

- For $0 \leq \alpha, \beta \leq 1$, we get all points in triangle, $T(\alpha, \beta)$.

Plane

- Plane equation defined by a point P_{0} and two non parallel vectors, u, v
- $T(\alpha, \beta)=P_{0}+\alpha u+\beta v$
- $P-P_{0}=\alpha u+\beta v$ (P is a point on the plane)
- Using n (the cross product of u, v), the plane equation is as follows
- $\mathrm{n} \bullet\left(\mathrm{P}-\mathrm{P}_{0}\right)=0$ (where $\mathrm{n}=\mathrm{u} \times \mathrm{v}$ and n is a normal vector)

Plane

- The plane is represented by a normal vector n and a point P_{0} on the plane.
- Plane (n, d) where $\mathrm{n}(\mathrm{a}, \mathrm{b}, \mathrm{c})$
- $a x+b y+c z+d=0$
- $n \cdot p+d=0$
$d=-n \cdot p$
- For point p on the plane, $n \cdot\left(p-p_{0}\right)=0$

- If the plane normal n is a unit vector, then $n \cdot p+d$ gives the shortest signed distance from the plane to point p: $d=-n \cdot p$

Relationship between Point and Plane

- Relationship between point p and plane (n, d)
- If $n \cdot p+d=0$, then p is in the plane.
- If $n \cdot p+d>0$, then p is outside the plane.
- If $n \cdot p+d<0$, then p is inside the plane.
-

Plane Normalization

- Plane normalization
- Normalize the plane normal vector
- Since the length of the normal vector affects the constant d, d is also normalized.

$$
\frac{1}{\|\mathrm{n}\|}(\mathrm{n}, \mathrm{~d})=\left(\frac{n}{\|n\|}, \frac{d}{\|n\|}\right)
$$

Computing a Normal from 3 Points in Plane

- Find the normal from the polygon's vertices.
- The polygon's normal computes two non-collinear edges. (assuming that no two adjacent edges will be collinear)
- Then, normalize it after the cross product.
void computeNormal(vector P1, vector P2, vector P3) \{ vector $u, v, n, y(0,1,0)$;
$u=P 3-P 2$;
$\mathrm{v}=\mathrm{P} 1-\mathrm{P} 2 ;$
$\mathrm{n}=\operatorname{cross}(\mathrm{u}, \mathrm{v})$;
if (n .length ()$==0$)
return y ;
else
return n.normalize();
\}

Computing a Distance from Point to Plane

- Find the closest distance to a plane (n, d) in space and a point Q out of the plane.
- The plane's normal is n, and D is the distance between a point P and a point Q on the plane.

$$
\begin{aligned}
w & =Q-P=\left[x_{0}-x, y_{0}-y, z_{0}-z\right] \\
D & =\frac{|n \bullet w|}{\|n\|} \\
& =\frac{\left|a\left(x_{0}-x\right)+b\left(y_{0}-y\right)+c\left(z_{0}-z\right)\right|}{\sqrt{a^{2}+b^{2}+c^{2}}} \\
& =\frac{a x_{0}+b y_{0}+c z_{0}+d}{\sqrt{a^{2}+b^{2}+c^{2}}}
\end{aligned}
$$

$$
\text { Projecting } w \text { onto } n: w_{\|}=n \frac{w \cdot n}{\|n\|^{2}} \&\left\|w_{\|}\right\|=\frac{|w \cdot n|}{\|n\|}
$$

Closest Point on the Plane

- Find a point P on the plane (n, d) closest to one point Q in space.
- $\mathrm{p}=\mathrm{q}-k n$ (k is the shortest signed distance from point Q to the plane)
- If n is a unit vector,

$$
\begin{aligned}
& k=n \cdot q+d \\
& p=q-(n \cdot q+d) n
\end{aligned}
$$

Distance $(\mathbf{q}$, plane $)=\frac{a x_{0}+b y_{0}+c z_{0}+d}{\sqrt{a^{2}+b^{2}+c^{2}}}$
where $q\left(x_{0}, y_{0}, z_{0}\right)$ and Plane $a x+b y+c z+d=0$
Distance $(\mathbf{q}$, plane $)=n \cdot q+d$ (n is a unit vector)

Intersection of Ray and Plane

\square Ray $\mathbf{p}(t)=\mathbf{p}_{0}+t \mathbf{u} \&$ plane $p \cdot n+d=0$
\square Ray/Plane intersection:

$$
\begin{aligned}
\left(\mathrm{p}_{0}+t \mathrm{u}\right) \cdot \mathrm{n}+d & =0 \\
t \mathrm{u} \cdot \mathrm{n} & =-d-\mathrm{p}_{0} \cdot \mathrm{n} \\
t & =\frac{-\left(\mathrm{p}_{0} \cdot \mathrm{n}+d\right)}{\mathrm{u} \cdot \mathrm{n}}
\end{aligned}
$$

- If the ray is parallel to the plane, the denominator $\mathbf{u} \cdot \mathbf{n}=0$. Thus, the ray does not intersect the plane.
- If the value of t is not in the range $[0, \infty)$, the ray does not intersect the plane.
$\square \quad \mathrm{p}\left(\frac{-\left(\mathrm{p}_{0} \cdot \mathrm{n}+\mathrm{d}\right)}{\mathrm{u} \cdot \mathrm{n}}\right)=\mathrm{p}_{0}+\frac{-\left(\mathrm{p}_{0} \cdot \mathrm{n}+\mathrm{d}\right)}{\mathrm{u} \cdot \mathrm{n}} \mathrm{u}$

Matrix

- Matrix M (r \times c matrix)
- Row of horizontally arranged matrix elements
- Column of vertically arranged matrix elements
- Mij is the element in row i and column j

(2) columns

Matrix

Square Matrix

- The $\mathrm{n} \times \mathrm{n}$ matrix is called an n -th square matrix. e.g. $2 \times 2,3 \times 3,4 \times 4$
- Diagonal elements vs. Non-diagonal elements

Identity Matrix

$$
I=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

- The identity matrix is expressed as I.
\square All of the diagonals are 1, the remaining elements are 0 in $\boldsymbol{n} \times \boldsymbol{n}$ square matrix.
$\square \mathrm{M}|=| M=M$

Vectors as Matrices

- The n -dimension vector is expressed as a $1 \mathrm{x} \boldsymbol{n}$ matrix or an $n \times 1$ matrix.
- 1xn matrix is a row vector (also called a row matrix)
- nx1 matrix is a column vector (also called a column matrix)

$$
\mathbf{A}=\left(\begin{array}{l}
a_{11} \\
a_{21} \\
a_{31}
\end{array}\right) \quad \mathbf{A}=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13}
\end{array}\right]
$$

Transpose Matrix

- Transpose of M (rxc matrix) is denoted by M^{T} and is converted to cxr matrix.
- $M^{T_{i j}}=M_{j i}$
- $\left(M^{\top}\right)^{\top}=M$
- $D^{\top}=D$ for any diagonal matrix D.

$$
\left(\begin{array}{lll}
\mathrm{a} & \mathrm{~m} & \mathrm{c} \\
\mathrm{~d} & \mathrm{e} & \mathrm{f} \\
\mathrm{~g} & \mathrm{~h} & \mathrm{i}
\end{array}\right)^{\boldsymbol{T}}=\left(\begin{array}{lll}
\mathrm{a} & \mathrm{~d} & \mathrm{~g} \\
\mathrm{~m} & \mathrm{e} & \mathrm{~h} \\
\mathrm{c} & \mathrm{f} & \mathrm{i}
\end{array}\right)
$$

Transposing Matrix

$\left(\begin{array}{llll}1 & 4 & 7 & 10 \\ 2 & 5 & 8 & 11 \\ 3 & 6 & 9 & 12\end{array}\right)^{\boldsymbol{T}}=\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ 10 & 11 & 12\end{array}\right)$
$\left(\begin{array}{l}\mathrm{x} \\ \mathrm{y} \\ \mathrm{z}\end{array}\right)^{\boldsymbol{T}}=\left[\begin{array}{lll}\mathrm{x} & \mathrm{y} & \mathrm{z}\end{array}\right]$

Matrix Scalar Multiplication

- Multiplying a matrix \mathbf{M} with a scalar $\alpha=\alpha \mathbf{M}$

$$
\alpha \mathbf{M}=\alpha\left(\begin{array}{lll}
m_{11} & m_{12} & m_{13} \\
m_{21} & m_{22} & m_{23} \\
m_{31} & m_{33} & m_{33}
\end{array}\right)=\left(\begin{array}{ccc}
\alpha m_{11} & \alpha m_{12} & \alpha m_{13} \\
\alpha m_{21} & \alpha m_{22} & \alpha m_{23} \\
\alpha m_{31} & \alpha m_{33} & \alpha m_{33}
\end{array}\right)
$$

Two Matrices Addition

- Matrix C is the addition of $A(r \times c$ matrix $)$ and $B(r \times c$ matrix), which is a $r \times c$ matrix.
- Each element c_{ij} is the sum of the ij th element of A and the $i^{\text {th }}$ element of B.
ㅁ $c_{i j}=a_{i j}+b_{i j}$

1	3	6		3	7	1		4	10	7
10	0	-5	+	6	4	9	=	16	4	4
4	7	2		8	-9	4		12	-2	6
	x								x	

Two Matrices Multiplication

- Matrix C (rxc matrix) is the product of A (rxn matrix) and B (nxc matrix).
- Each element \mathbf{c}_{ij} is the vector dot product of the $\mathrm{i}^{\text {th }}$ row of A and the $j^{\text {th }}$ column of B.
${ }^{\square} c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}$
$\left(\begin{array}{lll}\left.\begin{array}{lll}1 & 3 & 6 \\ 10 & 0 & -5 \\ 4 & 7 & 2\end{array}\right)\end{array}\right.$

$3+18+48$
${ }_{4}^{r \times n}$ must match $n \times c$ r rxC columns in result
rows in result

Multiplying Two Matrices

$$
\begin{aligned}
& \left(\begin{array}{lllll}
c_{11} & c_{12} & c_{13} & c_{14} & c_{15} \\
c_{21} & c_{22} & c_{23} & c_{24} & c_{25} \\
c_{31} & c_{32} & c_{33} & c_{34} & c_{35} \\
c_{41} & c_{42} & c_{42} & c_{44} & c_{45}
\end{array}\right)=\left(\begin{array}{llll}
a_{11} & a_{12} \\
\left.\begin{array}{lll}
a_{21} & a_{22} \\
a_{31} & a_{32} \\
a_{41} & a_{42}
\end{array}\right)\left(\begin{array}{llll}
m_{11} & m_{12} & m_{13} & m_{14} \\
m_{21} & m_{22} & m_{23} & m_{24} \\
m_{25}
\end{array}\right) \\
c_{24}=a_{21} m_{14}+a_{22} m_{24}
\end{array}\right. \\
&
\end{aligned}
$$

Matrix Operation

$\square \mathrm{MI}=\mathrm{IM}=\mathrm{M}$ (I is identity matrix)
$\square A+B=B+A$: matrix addition commutative law
口 $A+(B+C)=(A+B)+C$: matrix addition associative law

- $A B \neq B A$: Not hold matrix product commutative law
$\square(A B) C=A(B C)$: matrix product associative law
- ABCDEF $=((((A B) C) D) E) F=A(((B C) D) E) F)=(A B)(C D)(E F)$
- $\alpha(A B)=(\alpha A) B=A(\alpha B)$: Scalar-matrix product
$\square \alpha(\beta A)=(\alpha \beta) A$
$\square(\mathrm{vA}) \mathrm{B}=\mathrm{v}(\mathrm{AB})$
- $(A B)^{\top}=B^{\top} A^{\top}$

ㅁ $\left(M_{1} M_{2} M_{3} \ldots M_{n-1} M_{n}\right)^{\top}=M_{n}^{\top} M_{n-1}^{\top} \ldots M_{3}^{\top} M_{2}^{\top} M_{1}^{\top}$

Matrix Determinant

- The determinant of a square matrix M is denoted by |M| or "det M".
- The determinant of non-square matrix is not defined.

$$
\begin{aligned}
& |\mathrm{M}|=\left|\begin{array}{ll}
\mathrm{m}_{11} & \mathrm{~m}_{12} \\
\mathrm{~m}_{21} & \mathrm{~m}_{22}
\end{array}\right|=\mathrm{m}_{11} \mathrm{~m}_{22}-\mathrm{m}_{12} \mathrm{~m}_{21}
\end{aligned}
$$

Inverse Matrix

- Inverse of M (square matrix) is denoted by M^{-1}.
- $M^{-1}=\frac{\operatorname{adj} M}{|M|}$
- $\left(M^{-1}\right)^{-1}=M$
- $M\left(M^{-1}\right)=M^{-1} M=1$
- The determinant of a non-singular matrix (i.e, invertible) is nonzero.
- The adjoint of M , denoted "adj M " is the transpose of the matrix of cofactors.

$$
\operatorname{adjM}=\left(\begin{array}{lll}
c_{11} & c_{12} & c_{13} \\
c_{21} & c_{22} & c_{23} \\
c_{31} & c_{32} & c_{33}
\end{array}\right)^{\top}
$$

Cofactor of a Square Matrix \& Computing Determinant using Cofactor

- Cofactor of a square matrix M at a given row and column is the signed determinant of the corresponding Minor of M .
- $C_{i j}=(-1)^{i j}\left|M^{\{j\}}\right|$
- Calculation of $\mathrm{n} \times \mathrm{n}$ determinant using cofactor:

$$
\begin{aligned}
& |M|=\sum_{j=1}^{n} m_{i j} c_{i j}=\sum_{j=1}^{n} m_{i j}(-1)^{i+j}\left|M^{\{i j\}}\right| \\
& |\mathrm{M}|=\left(\begin{array}{llll}
j=1 \\
\mathrm{~m}_{11} & \mathrm{~m}_{12} & \mathrm{~m}_{13} & \mathrm{~m}_{14} \\
\mathrm{~m}_{21} & \mathrm{~m}_{22} & \mathrm{~m}_{23} & \mathrm{~m}_{24} \\
\mathrm{~m}_{31} & \mathrm{~m}_{32} & \mathrm{~m}_{33} & \mathrm{~m}_{34}
\end{array}\right)=\mathrm{m}_{11}\left(\begin{array}{lll}
\mathrm{m}_{22} & \mathrm{~m}_{23} & \mathrm{~m}_{24} \\
\mathrm{~m}_{32} & \mathrm{~m}_{33} & \mathrm{~m}_{34} \\
\mathrm{~m}_{42} & \mathrm{~m}_{43} & \mathrm{~m}_{44}
\end{array}\right) \\
& \begin{array}{llll}
\mathrm{m}_{41} & \mathrm{~m}_{42} & \mathrm{~m}_{43} & \mathrm{~m}_{44}
\end{array} \quad-\mathrm{m}_{12} \quad\left|\mathrm{M}^{\{12\}}\right| \\
& +\mathrm{m}_{13}\left|\mathrm{M}^{\{13\}}\right| \\
& -\mathrm{m}_{14}\left|\mathrm{M}^{\{14\}}\right|
\end{aligned}
$$

Minor of a Matrix

- The submatrix $\mathrm{M}^{\{j\}}$ is known as a minor of M , obtained by deleting row i and column j from M .

$$
M=\left(\begin{array}{lll}
-4 & -3 & 3 \\
0 & 2 & -2 \\
1 & 4 & -1
\end{array}\right) \mathrm{M}^{\{12\}}=\left(\begin{array}{ll}
0 & -2 \\
1 & -1
\end{array}\right)
$$

Determinant, Cofactor, Inverse Matrix

$$
M=\left(\begin{array}{ll}
m_{11} & m_{12} \\
m_{21} & m_{22}
\end{array}\right)
$$

$\operatorname{det} M=m_{11} m_{22}-m_{12} m_{21}$
$C=\left(\begin{array}{cc}m_{22} & -m_{21} \\ -m_{12} & m_{11}\end{array}\right)$
$\operatorname{adj} M=\left(\begin{array}{cc}m_{22} & -m_{12} \\ -m_{21} & m_{11}\end{array}\right)$
$M^{-1}=\frac{1}{\operatorname{det} M}\left(\begin{array}{cc}m_{22} & -m_{12} \\ -m_{21} & m_{11}\end{array}\right)$

Determinant, Cofactor, Inverse Matrix

$$
\begin{aligned}
M= & \left(\begin{array}{lll}
m_{11} & m_{12} & m_{13} \\
m_{21} & m_{22} & m_{23} \\
m_{31} & m_{32} & m_{33}
\end{array}\right) \\
\operatorname{det} M= & m_{11}\left(m_{22} m_{33}-m_{23} m_{32}\right) \\
& -m_{12}\left(m_{21} m_{33}-m_{23} m_{31}\right) \\
& +m_{13}\left(m_{21} m_{32}-m_{22} m_{31}\right) \\
C= & \left(\begin{array}{ccc}
\left(m_{22} m_{33}-m_{23} m_{32}\right) & -\left(m_{21} m_{33}-m_{23} m_{31}\right) & \left(m_{21} m_{32}-m_{22} m_{31}\right) \\
-\left(m_{12} m_{33}-m_{13} m_{32}\right) & \left(m_{11} m_{33}-m_{13} m_{31}\right) & -\left(m_{11} m_{32}-m_{21} m_{31}\right) \\
\left(m_{12} m_{23}-m_{22} m_{13}\right) & -\left(m_{11} m_{23}-m_{13} m_{21}\right) & \left(m_{11} m_{22}-m_{12} m_{21}\right)
\end{array}\right) \\
\operatorname{adjM}= & \left(\begin{array}{ccc}
\left(m_{22} m_{33}-m_{23} m_{32}\right) & -\left(m_{12} m_{33}-m_{13} m_{32}\right) & \left(m_{12} m_{23}-m_{22} m_{13}\right) \\
-\left(m_{21} m_{33}-m_{23} m_{31}\right) & \left(m_{11} m_{33}-m_{13} m_{31}\right) & -\left(m_{11} m_{23}-m_{13} m_{21}\right) \\
\left(m_{21} m_{32}-m_{22} m_{31}\right) & -\left(m_{11} m_{32}-m_{21} m_{31}\right) & \left(m_{11} m_{22}-m_{12} m_{21}\right)
\end{array}\right) \\
M^{-1}= & \frac{\operatorname{adjM}}{\operatorname{det} M}
\end{aligned}
$$

Multiplying a Vector and a Matrix

$$
\begin{aligned}
&\left(\begin{array}{lll}
x & y & z
\end{array}\right)\left(\begin{array}{ccc}
\mathrm{p}_{x} & p_{y} & p_{z} \\
q_{x} & q_{y} & q_{z} \\
r_{x} & r_{y} & r_{z}
\end{array}\right) \\
&=\left(\begin{array}{lll}
x \mathbf{p}_{x}+y \mathbf{q}_{x}+z \mathbf{r}_{x} & x \mathbf{p}_{y}+y \mathbf{q}_{y}+z \mathbf{r}_{y} & x \mathbf{p}_{z}+y \mathbf{q}_{z}+z \mathbf{r}_{z}
\end{array}\right) \\
&=x \mathbf{p}+y \mathbf{q}+z \mathbf{r}
\end{aligned}
$$

- A coordinate space transformation can be expressed using a vector-matrix product.
$\mathbf{u M}=\mathbf{v} / /$ matrix M converts vector \mathbf{u} to vector v

Multiplying a Vector and a Matrix

- Vector-matrix multiplication in OpenGL (Column-Major Order)

$$
\mathbf{v}=\mathbf{M} \text { * } \mathbf{u} / / \text { matrix } \mathrm{M} \text { converts vector } \mathbf{u} \text { to vector } \mathrm{v}
$$

\mathbf{V}	$=\mathbf{M} * \mathbf{u}$
$\left(\begin{array}{l}x m_{11}+y m_{12}+z m_{13} \\ x m_{21}+y m_{22}+z m_{23} \\ x m_{31}+y m_{32}+z m_{33}\end{array}\right)$	$\left.\left.=\left(\begin{array}{lll}m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33}\end{array}\right) \right\rvert\, \begin{array}{l}x \\ y \\ z\end{array}\right)$

