Geometric Objects and Transformation

Fall 2021
10/5/2021
Kyoung Shin Park
Computer Engineering
Dankook University

3D Transformations

- In general, three-dimensional transformation can be thought of as an extension of two-dimensional transformation.
- The basic principles of three-dimensional translation, scaling, shearing are the same as those of twodimensional.
- However, three-dimensional rotation is a bit more complicated.

3D Translation

$$
p^{\prime}=p+d \quad p=\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right] \quad p^{\prime}=\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right] \quad d=\left[\begin{array}{c}
d x \\
d y \\
d z \\
0
\end{array}\right]
$$

$$
p^{\prime}=T p \quad T=\left[\begin{array}{cccc}
1 & 0 & 0 & d x \\
0 & 1 & 0 & d y \\
0 & 0 & 1 & d z \\
0 & 0 & 0 & 1
\end{array}\right] \quad T^{-1}=\left[\begin{array}{cccc}
1 & 0 & 0 & -d x \\
0 & 1 & 0 & -d y \\
0 & 0 & 1 & -d z \\
0 & 0 & 0 & 1
\end{array}\right]
$$

3D Scale

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
s x & 0 & 0 & 0 \\
0 & s y & 0 & 0 \\
0 & 0 & s z & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]
$$

$$
p^{\prime}=S p \quad S=\left[\begin{array}{cccc}
s x & 0 & 0 & 0 \\
0 & s y & 0 & 0 \\
0 & 0 & s z & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad S^{-1}=\left[\begin{array}{cccc}
\frac{1}{s x} & 0 & 0 & 0 \\
0 & \frac{1}{s y} & 0 & 0 \\
0 & 0 & \frac{1}{s z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

3D Shear

$x^{\prime}=x+y \cot \theta$

$$
y^{\prime}=y
$$

$$
z^{\prime}=z
$$

$$
\tan \theta=\frac{y}{x^{\prime}-x} \Rightarrow \cot \theta=\frac{x^{\prime}-x}{y}
$$

3D Rotation

- 3D rotation in Z-axis
$x^{\prime}=x \cos \theta-y \sin \theta$
$y^{\prime}=x \sin \theta+y \cos \theta$
$z^{\prime}=z$

3D Rotation

- 3D rotation in X-axis

$$
\begin{aligned}
y^{\prime} & =y \cos \theta-z \sin \theta \\
z^{\prime} & =y \sin \theta+z \cos \theta \\
x^{\prime} & =x
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \theta & -\sin \theta & 0 \\
0 & \sin \theta & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]} \\
& P^{\prime}=R_{X}(\theta) \cdot P
\end{aligned}
$$

3D Rotation

- 3D rotation in Y-axis

$$
\begin{aligned}
& x^{\prime}=x \cos \theta+z \sin \theta \\
& z^{\prime}=-x \sin \theta+z \cos \theta
\end{aligned}
$$

$y^{\prime}=y$

	$\left[\begin{array}{l}x^{\prime} \\ y^{\prime} \\ z^{\prime} \\ 1\end{array}\right]=\left[\begin{array}{cccc}\cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z \\ 1\end{array}\right]$
	$P^{\prime}=R_{Y}(\theta) \cdot P$

3D Rotation about the Origin

- A rotation by q about an arbitrary axis can be decomposed into the concatenation of rotations about the x, y, and z axes.

$$
R(\theta)=R_{Z}\left(\theta_{Z}\right) R_{Y}\left(\theta_{Y}\right) R_{X}\left(\theta_{X}\right)
$$

$\theta_{X}, \theta_{Y}, \theta_{Z}$ are called the Euler angles.

Rotation About a Pivot other than the Origin

- Move fixed point to origin, rotate, and then move fixed point back.
- $\mathbf{M}=\mathbf{T}\left(p_{f}\right) \mathbf{R}_{\mathbf{z}}(\theta) \mathbf{T}\left(-p_{f}\right)$

$$
M=\left[\begin{array}{cccc}
\cos \theta & -\sin \theta & 0 & x_{f}-x_{f} \cos \theta+y_{f} \sin \theta \\
\sin \theta & \cos \theta & 0 & y_{f}-x_{f} \sin \theta-y_{f} \cos \theta \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

3D Rotation about an Arbitrary Axis

- Move P_{0} to the origin.
- Rotate twice to align the arbitrary axis u with the Zaxis.
- Rotate by θ in Z-axis.
- Undo two rotations (undo alignment).
- Move back to P_{0}.

$M=T P_{0} R_{x}\left(-\theta_{x}\right) R_{y}\left(-\theta_{y} R_{z}\left(\theta_{)} R_{y}\left(\theta_{y}\right) R_{x}\left(\theta_{x}\right) T\left(-P_{0}\right)\right.\right.$

3D Rotation about an Arbitrary Axis

- The translation matrix, $\mathrm{T}\left(-\mathrm{P}_{0}\right)$

$$
T=\left[\begin{array}{cccc}
1 & 0 & 0 & -x_{0} \\
0 & 1 & 0 & -y_{0} \\
0 & 0 & 1 & -z_{0} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

3D Rotation about an Arbitrary Axis

- The rotation-axis vector

$$
\begin{aligned}
u & =P_{2}-P_{1} \\
& =\left(x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}\right)
\end{aligned}
$$

- Normalize u:

$$
v=\frac{u}{\|u\|}=\left[\begin{array}{l}
\alpha_{x} \\
\alpha_{y} \\
\alpha_{z}
\end{array}\right]
$$

- Rotate along x-axis until v hits $x z$-plane
- Rotate along y-axis until v hits z-axis

3D Rotation about an Arbitrary Axis

- Find θ_{x} and θ_{y}

$$
\begin{aligned}
& v=\left(\alpha_{x^{\prime}} \alpha_{y^{\prime}} \alpha_{z}\right) \\
& \alpha_{x}^{2}+\alpha_{y}^{2}+\alpha_{z}^{2}=1
\end{aligned}
$$

- Direction cosines:

$$
\begin{aligned}
& \cos \phi_{x}=\alpha_{x} \\
& \cos \phi_{y}=\alpha_{y} \\
& \cos \phi_{z}=\alpha_{z} \\
& \cos ^{2} \phi_{x}+\cos ^{2} \phi_{y}+\cos ^{2} \phi_{z}=1
\end{aligned}
$$

3D Rotation about an Arbitrary Axis

- Compute x-rotation θ_{x}

$$
\begin{aligned}
& R_{x}\left(\theta_{x}\right)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \frac{\alpha_{z}}{d} & -\frac{\alpha_{y}}{d} \\
0 & \frac{\alpha_{y}}{d} & \frac{\alpha_{z}}{d} \\
0 & 0 & 0
\end{array}\right. \\
& d=\sqrt{\alpha_{y}^{2}+\alpha_{z}^{2}}
\end{aligned}
$$

$\cos \theta_{x}=\frac{\alpha_{z}}{d}$
$\sin \theta_{x}=\frac{\alpha_{y}}{d}$

3D Rotation about an Arbitrary Axis

- Compute y-rotation θ_{y}

$$
\begin{aligned}
& R_{y}\left(\theta_{y}\right)=\left[\begin{array}{cccc}
d & 0 & -\alpha_{x} & 0 \\
0 & 1 & 0 & 0 \\
\alpha_{x} & 0 & d & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& d=\sqrt{\alpha_{y}^{2}+\alpha_{z}^{2}}
\end{aligned}
$$

$\cos \theta_{y}=d$
$\sin \theta_{y}=\alpha_{x}$

3D Rotation about an Arbitrary Axis

- Rotation about the z axis

$$
R_{z}\left(\theta_{z}\right)=\left[\begin{array}{cccc}
\cos \theta & -\sin \theta & 0 & 0 \\
\sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- Undo alignment, $R_{x}\left(-\theta_{x}\right) R_{y}\left(-\theta_{y}\right)$
- Undo translation, $\mathrm{T}\left(\mathrm{P}_{0}\right)$
$\square M=I\left(P_{0}\right) R_{f}\left(-\theta_{s}\right) R_{f}\left(-\theta_{j}\right) R_{i}(\theta) R_{j}\left(\theta_{j}\right) R_{f}\left(\theta_{f}\right) T\left(-P_{0}\right)$

3D Rotation about an Arbitrary Axis Using Rotation Vectors

- 3D rotation can be expressed as 4 numbers of one angle of rotation about an arbitrary axis ($a x, a y, a z$).
- It consists of a unit vector a (x, y, z) representing an arbitrary axis of rotation and a value of $\theta(0 \sim 360$ degrees) representing the rotation angle around the unit vector.
- 3D rotation vector

3D Rotation about an Arbitrary Axis

- From axis/angle, we make the following rotation matrix.
$R=I \cos \theta+$ Symmetric $(1-\cos \theta)+$ Skew $\sin \theta$
$=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] \cos \theta+\left[\begin{array}{ccc}a_{x}^{2} & a_{x} a_{y} & a_{x} a_{z} \\ a_{x} a_{y} & a_{y}^{2} & a_{y} a_{z} \\ a_{x} a_{z} & a_{y} a_{z} & a_{z}^{2}\end{array}\right](1-\cos \theta)+\left[\begin{array}{ccc}0 & -a_{z} & a_{y} \\ a_{z} & 0 & -a_{x} \\ -a_{y} & a_{x} & 0\end{array}\right] \sin \theta$
$=\left[\begin{array}{ccc}a_{x}^{2}+\cos \theta\left(1-a_{x}^{2}\right) & a_{x} a_{y}(1-\cos \theta)-a_{z} \sin \theta & a_{x} a_{z}(1-\cos \theta)+a_{y} \sin \theta \\ a_{x} a_{y}(1-\cos \theta)+a_{z} \sin \theta & a_{y}^{2}+\cos \theta\left(1-a_{y}^{2}\right) & a_{y} a_{z}(1-\cos \theta)-a_{x} \sin \theta \\ a_{x} a_{z}(1-\cos \theta)-a_{y} \sin \theta & a_{y} a_{z}(1-\cos \theta)+a_{x} \sin \theta & a_{z}^{2}+\cos \theta\left(1-a_{z}^{2}\right)\end{array}\right]$

3D Rotation as Vector Components

- 3 D rotation by θ around the arbitrary axis $\mathrm{a}=\left[\mathrm{a}_{\mathrm{x}^{\prime}} \mathrm{a}_{\mathrm{y}^{\prime}} \mathrm{a}_{\mathrm{z}}\right]$

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right]=\left(\text { Symmetric }\left(\left[\begin{array}{l}
a_{x} \\
a_{y} \\
a_{z}
\end{array}\right]\right)(1-\cos \theta)+\text { Skew }\left(\left[\begin{array}{l}
a_{x} \\
a_{y} \\
a_{z}
\end{array}\right]\right) \sin \theta+\mathbf{I} \cos \theta\right)\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

3D Rotation as Vector Components

$$
\begin{aligned}
\vec{w} & =\vec{a} \times \vec{x}_{\perp} \\
& =\vec{a} \times\left(\vec{x}-\vec{x}_{\|}\right) \\
& =(\vec{a} \times \vec{x})-\left(\vec{a} \times \vec{x}_{\|}\right) \\
& =\vec{a} \times \vec{x}
\end{aligned}
$$

$$
R\left(\vec{x}_{\perp}\right)=\cos \theta \vec{x}_{\perp}+\sin \theta \vec{w}
$$

$$
\begin{aligned}
& \vec{x}_{\|}=(\vec{a} \cdot \vec{x}) \vec{a} \\
& \vec{x}_{\perp}=\vec{x}-\vec{x}_{\|}=\vec{x}-(\vec{a} \cdot \vec{x}) \vec{a}
\end{aligned}
$$

$$
R(\vec{x})=R\left(\vec{x}_{\|}\right)+R\left(\vec{x}_{\perp}\right)
$$

$$
=R\left(\vec{x}_{\|}\right)+\cos \theta \vec{x}_{+}+\sin \theta \vec{w}
$$

$=(\vec{a} \cdot \vec{x}) \vec{a}+\cos \theta(\vec{x}-(\vec{a} \cdot \vec{x}) \vec{a})+\sin \theta \vec{w}$
$=\cos \theta \vec{x}+(1-\cos \theta)(\vec{a} \cdot \vec{x}) \vec{a}+\sin \theta(\vec{a} \times \vec{x})$

3D Rotation as Vector Components

$\left[\begin{array}{l}x^{\prime} \\ y^{\prime} \\ z^{\prime}\end{array}\right]=\left(\operatorname{Symmetric}\left(\left[\begin{array}{l}a_{x} \\ a_{y} \\ a_{z}\end{array}\right]\right)(1-\cos \theta)+\right.$ Skew $\left.\left(\left[\begin{array}{l}a_{x} \\ a_{y} \\ a_{z}\end{array}\right]\right) \sin \theta+\mathbf{I} \cos \theta\right)\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$

- The vector a specifies the axis of rotation. This axis vector must be normalized.
- The rotation angle is given by θ.
- The basic idea is that any rotation can be decomposed into weighted contributions from three different vectors.

3D Rotation as Vector Components

- The symmetric matrix of a vector generates a vector in the direction of the axis.
- The symmetric matrix is composed of the outer product of a row vector and an column vector of the same value.

$$
\begin{aligned}
& \text { Symmetric }\left(\left[\begin{array}{l}
a_{x} \\
a_{y} \\
a_{z}
\end{array}\right]\right)=\left[\begin{array}{l}
a_{x} \\
a_{y} \\
a_{z}
\end{array}\right]\left[\begin{array}{lll}
a_{x} & a_{y} & a_{z}
\end{array}\right]=\left[\begin{array}{ccc}
a_{x}^{2} & a_{x} a_{y} & a_{x} a_{z} \\
a_{x} a_{y} & a_{y}^{2} & a_{y} a_{z} \\
a_{x} a_{z} & a_{y} a_{z} & a_{z}^{2}
\end{array}\right] \\
& \text { Symmetric }\left(\left[\begin{array}{l}
a_{x} \\
a_{y} \\
a_{z}
\end{array}\right]\right)\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\bar{a}(\bar{a} \cdot \bar{x})
\end{aligned}
$$

3D Rotation as Vector Components

- Skew symmetric matrix of a vector generates a vector that is perpendicular to both the axis and it's input vector.

$$
\text { Skew }\left(\left[\begin{array}{l}
a_{x} \\
a_{y} \\
a_{z}
\end{array}\right]\right)=\left[\begin{array}{ccc}
0 & -a_{z} & a_{y} \\
a_{z} & 0 & -a_{x} \\
-a_{y} & a_{x} & 0
\end{array}\right]
$$

$\operatorname{Skew}(\bar{a}) \bar{x}=\bar{a} \times \bar{x}$

3D Rotation as Vector Components

- First, consider a rotation by 0 .

$$
\text { Rotate }\left(\left[\begin{array}{l}
a_{x} \\
a_{y} \\
a_{z}
\end{array}\right], 0\right)=\left[\begin{array}{ccc}
a_{x}^{2} & a_{x} a_{y} & a_{x} a_{z} \\
a_{x} a_{y} & a_{y}^{2} & a_{y} a_{z} \\
a_{x} a_{z} & a_{y} a_{z} & a_{z}^{2}
\end{array}\right](1-1)+\left[\begin{array}{ccc}
0 & -a_{z} & a_{y} \\
a_{z} & 0 & -a_{x} \\
-a_{y} & a_{x} & 0
\end{array}\right]+\left[\begin{array}{lll}
1 & 0 & 0 \\
\left.0+\left[\begin{array}{lll}
1 & 0 \\
0 & 0 & 1
\end{array}\right] 1=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], ~\right]
\end{array}\right]
$$

- For instance, a rotation about the x-axis:

$$
\begin{aligned}
\text { Rotate }\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \theta\right)= & {\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right](1-\cos \theta)+\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right] \sin \theta+\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \cos \theta } \\
& \text { Rotate }\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \theta\right)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right]
\end{aligned}
$$

3D Rotation as Vector Components

- For instance, a rotation about the y-axis:

$$
\begin{aligned}
\text { Rotate }\left(\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \theta\right)= & {\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right](1-\cos \theta)+\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right] \sin \theta+\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \cos \theta } \\
& \text { Rotate }\left(\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \theta\right]=\left[\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right]
\end{aligned}
$$

\square For instance, a rotation about the z-axis:

$$
\begin{aligned}
\text { Rotate }\left(\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right], \theta\right)= & {\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right](1-\cos \theta)+\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \sin \theta+\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \cos \theta } \\
& \text { Rotate }\left(\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right], \theta\right)=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Quaternion

- Quaternion is a 4D complex space vector. It is a mathematical concept used in place of a matrix when expressing 3D rotation in computer graphics.
- It is actually the most effective way to express rotation.
\square Quaternion has four components.

$$
\mathbf{q}=\left\langle\begin{array}{llll}
x & y & z & w
\end{array}\right\rangle
$$

Quaternions (Imaginary Space)

- Quaternions are actually an extension to complex numbers.
- Of the 4 components, one is a 'real' scalar number, and the other 3 form a vector in imaginary ijk space!
$\mathbf{q}=x i+y j+z k+w$
$i^{2}=j^{2}=k^{2}=i j k=-1$
$i=j k=-k j$
$j=k i=-i k$
$k=i j=-j i$

Quaternion (Scalar/Vector)

- The quaternion is also expressed as a scalar value s and a vector value v .

$$
\begin{aligned}
& \mathbf{q}=\langle\mathbf{v}, s\rangle \\
& v=(x, y, z) \\
& s=w
\end{aligned}
$$

Identity Quaternion

- Unlike vectors, there are two identity quaternions.
- The multiplication identity quaternion is

$$
\mathbf{q}=\langle 0,0,0,1\rangle=0 i+0 j+0 k+1
$$

- The addition identity quaternion (which we do not use) is

$$
\mathbf{q}=\langle 0,0,0,0\rangle
$$

Unit Quaternion

- For convenience, we will use only unit length quaternions, as they will make things a little easier

$$
|\mathbf{q}|=\sqrt{x^{2}+y^{2}+z^{2}+w^{2}}=1
$$

- These correspond to the set of vectors that form the 'surface' of a 4D hyper-sphere of radius 1
- The 'surface' is actually a 3D volume in 4D space, but it can sometimes be visualized as an extension to the concept of a 2D surface on a 3D sphere
- Quaternion normalization:

$$
q=q /|\mathbf{q}|=q / \sqrt{x^{2}+y^{2}+z^{2}+w^{2}}
$$

Quaternion as Rotations

- A quaternion can represent a rotation by an angle \mathbf{q} around a unit axis $a\left(a_{x}, a_{y}, a_{z}\right)$:

$$
\begin{aligned}
& \mathbf{q}=\left[a_{x} \sin \frac{\theta}{2}, \quad a_{y} \sin \frac{\theta}{2}, \quad a_{z} \sin \frac{\theta}{2}, \quad \cos \frac{\theta}{2}\right] \\
& \text { or } \\
& \mathbf{q}=\left[\mathbf{a} \sin \frac{\theta}{2}, \quad \cos \frac{\theta}{2}\right]
\end{aligned}
$$

- If \mathbf{a} has unit length, then \mathbf{q} will also has unit length

Quaternion as Rotations

$$
|\mathbf{q}|=\sqrt{x^{2}+y^{2}+z^{2}+w^{2}}
$$

$=\sqrt{a_{x}^{2} \sin ^{2} \frac{\theta}{2}+a_{y}^{2} \sin ^{2} \frac{\theta}{2}+a_{z}^{2} \sin ^{2} \frac{\theta}{2}+\cos ^{2} \frac{\theta}{2}}$
$=\sqrt{\sin ^{2} \frac{\theta}{2}\left(a_{x}^{2}+a_{y}^{2}+a_{z}^{2}\right)+\cos ^{2} \frac{\theta}{2}}$
$=\sqrt{\sin ^{2} \frac{\theta}{2}|\mathbf{a}|^{2}+\cos ^{2} \frac{\theta}{2}}=\sqrt{\sin ^{2} \frac{\theta}{2}+\cos ^{2} \frac{\theta}{2}}$
$=\sqrt{1}=1$

Quaternion to Rotation Matrix

- Equivalent rotation matrix representing a quaternion is:

$$
\left[\begin{array}{ccc}
x^{2}-y^{2}-z^{2}+w^{2} & 2 x y-2 w z & 2 x z+2 w y \\
2 x y+2 w z & -x^{2}+y^{2}-z^{2}+w^{2} & 2 y z-2 w x \\
2 x z-2 w y & 2 y z+2 w x & -x^{2}-y^{2}+z^{2}+w^{2}
\end{array}\right]
$$

- Using unit quaternion that $x^{2}+y^{2}+z^{2}+w^{2}=1$, we can reduce the matrix to:

$$
\left[\begin{array}{ccc}
1-2 y^{2}-2 z^{2} & 2 x y-2 w z & 2 x z+2 w y \\
2 x y+2 w z & 1-2 x^{2}-2 z^{2} & 2 y z-2 w x \\
2 x z-2 w y & 2 y z+2 w x & 1-2 x^{2}-2 y^{2}
\end{array}\right]
$$

Quaternion to Axis/Angle

- To convert a quaternions to a rotation axis, a (ax, ay, az) and an angle θ :

$$
\begin{aligned}
& \text { scale }=\sqrt{x^{2}+y^{2}+z^{2}} \quad \text { or } \sin (\operatorname{acos}(w)) \\
& a x=x / \text { scale } \\
& a y=y / \text { scale } \\
& a z=z / \text { scale } \\
& \theta=2 \operatorname{acos}(w)
\end{aligned}
$$

Quaternion Dot Product

- The dot product of two quaternions works in the same way as the dot product of two vectors:

$$
\mathbf{p} \cdot \mathbf{q}=x_{p} x_{q}+y_{p} y_{q}+z_{p} z_{q}+w_{p} w_{q}=|\mathbf{p} \| \mathbf{q}| \cos \varphi
$$

- The angle between two quaternions in 4D space is half the angle one would need to rotate from one orientation to the other in 3D space.

Quaternion Multiplication

- If \mathbf{q} represents a rotation and \mathbf{q}^{\prime} represents a rotation, then $\mathbf{q} \mathbf{q}^{\prime}$ represents \mathbf{q} rotated by \mathbf{q}^{\prime}
- This follows very similar rules as matrix multiplication (l.e., non-commutative) $q q^{\prime} \neq q^{\prime} q$

$$
\begin{aligned}
& \mathbf{q} \mathbf{q}^{\prime}=(x i+y j+z k+w)\left(x^{\prime} i+y^{\prime} j+z^{\prime} k+w^{\prime}\right) \\
& =\left\langle s \mathbf{v}^{\prime}+s^{\prime} \mathbf{v}+\mathbf{v}^{\prime} \times \mathbf{v}, s s^{\prime}-\mathbf{v} \cdot \mathbf{v}^{\prime}\right\rangle
\end{aligned}
$$

Quaternion Operations

- Negation of quaternion, -q
- $-[\mathrm{v} s]=[-\mathrm{v}-\mathrm{s}]=[-\mathrm{x},-\mathrm{y},-\mathrm{z},-\mathrm{w}]$
- Addition of two quaternion, $\mathrm{p}+\mathrm{q}$
- $p+q=[p v, p s]+[q v, q s]=[p v+q v, p s+q s]$
- Magnitude of quaternion, $|\mathrm{q}|$
- $|\mathbf{q}|=\sqrt{x^{2}+y^{2}+z^{2}+w^{2}}$

ㅁ Conjugate of quaternion, q^{*} (켤레 사원수)

- $q^{*}=[v s]^{*}=[-v s]=[-x,-y,-z, w]$
- Multiplicative inverse of quaternion, q^{-1} (역수) $q q^{-1}=q^{-1} q=1$
- $q^{-1}=q^{\star} /|q|$
- Exponential of quaternion
- $\exp (v q)=v \sin q+\cos q$
- Logarithm of quaternion
- $\log (q)=\log (v \sin q+\cos q)=\log (\exp (v q))=v q$

Quaternion Interpolation

- One of the key benefits of using a quaternion representation is the ability to interpolate between key frames.
alpha = fraction value in between frame0 and frame1
q1 = Euler2Quaternion(frame0)
q2 = Euler2Quaternion(frame1)
qr = QuaternionInterpolation(q1, q2, alpha)
qr.Quaternion2Euler()
- Quaternion Interpolation
- Linear Interpolation (LERP)
- Spherical Linear Interpolation (SLERP)
- Spherical Cubic Interpolation (SQUAD)

Linear Interpolation (LERP)

- If we want to do a direct interpolation between two quaternions \mathbf{p} and \mathbf{q} by alpha:

$$
\begin{aligned}
& \operatorname{Lerp}(\mathbf{p}, \mathbf{q}, \mathrm{t})=(1-\mathrm{t}) \mathbf{p}+(\mathrm{t}) \mathbf{q} \\
& \quad \text { where } 0 \leq \mathrm{t} \leq 1
\end{aligned}
$$

- Note that the Lerp operation can be thought of as a weighted average (convex)
- We could also write it in it's additive blend form:

$$
\operatorname{Lerp}\left(\mathbf{q}_{1}, \mathbf{q}_{2}, \mathrm{t}\right)=\mathbf{q}_{1}+\mathrm{t}\left(\mathbf{q}_{2}-\mathbf{q}_{1}\right)
$$

$0 \leq \mathrm{t} \leq 1$
q_{1}

Spherical Linear Interpolation (SLERP)

- If we want to interpolate between two points on a sphere (or hypersphere), we will travel across the surface of the sphere by following a 'great arc.'

Spherical Cubic Interpolation (SQUAD)

- To achieve C^{2} continuity between curve segments, a cubic interpolation must be done.
- Squad does a cubic interpolation between four quaternions by t
$\operatorname{Squad}\left(q_{i}, q_{i+1}, a_{i}, a_{i+1}, t\right)$
$=\operatorname{slerp}\left(\operatorname{slerp}\left(q_{i}, q_{i+1}, t\right), \operatorname{slerp}\left(a_{i}, a_{i+1}, t\right), 2 t(1-t)\right)$
$a_{i}=q_{i} * \exp \left(\frac{-\log \left(q_{i}^{-1} * q_{i-1}\right)+\log \left(q_{i}^{-1} * q_{i+1}\right)}{4}\right)$
$a_{i+1}=q_{i+1} * \exp \left(\frac{-\log \left(q_{i+1}^{-1} * q_{i}\right)+\log \left(q_{i+1}^{-1} * q_{i+2}\right)}{4}\right)$
- $\mathrm{a}_{\mathrm{i}}, \mathrm{a}_{\mathrm{i}+1}$ are inner quadrangle quaternions between q 1 and q 2 . And you have to choose carefully so that continuity is quaranteed across seaments.

