
Geometric Objects
and Transformation

Fall 2021
10/5/2021

Kyoung Shin Park
Computer Engineering

Dankook University

3D Transformations

 In general, three-dimensional transformation can be
thought of as an extension of two-dimensional
transformation.

 The basic principles of three-dimensional translation,
scaling, shearing are the same as those of two-
dimensional.

 However, three-dimensional rotation is a bit more
complicated.

3D Translation

01

'

'

'

'

1

'
dz

dy

dx

d
z

y

x

p
z

y

x

pdpp

3D Scale

11000

000

000

000

1

'

'

'

z

y

x

sz

sy

sx

z

y

x

3D Shear

x’ = x + y cot θ
y’ = y
z’ = z

Shear along x axis

y

xx

xx

y

'

'
 cottan

3D Rotation

 3D rotation in Z-axis

x’ = x cos – y sin

y’ = x sin + y cos

z’ = z

)()(

)()(

1

1

TRR

RR

3D Rotation

 3D rotation in X-axis

y’ = y cos – z sin

z’ = y sin + z cos

x’ = x

3D Rotation

 3D rotation in Y-axis

x’ = x cos + z sin

z’ = -x sin + z cos

y’ = y

3D Rotation about the Origin

 A rotation by q about an arbitrary axis can be
decomposed into the concatenation of rotations
about the x, y, and z axes.

R() = RZ(Z)RY(Y)RX(X)

X, Y, Z are called the Euler angles.

q

x

z

y
v

Rotation About a Pivot other than the
Origin

 Move fixed point to origin, rotate, and then move fixed
point back.

 M = T(pf) RZ () T(-pf)

3D Rotation about an Arbitrary Axis

 Move P0 to the origin.

 Rotate twice to align the
arbitrary axis u with the Z-
axis.

 Rotate by θ in Z-axis.

 Undo two rotations (undo
alignment).

 Move back to P0.

3D Rotation about an Arbitrary Axis

 The translation matrix, T(-P0)

3D Rotation about an Arbitrary Axis

 The rotation-axis vector
u = P2 – P1

= (x2 – x1, y2 – y1, z2 – z1)
 Normalize u:

 Rotate along x-axis until v hits xz-plane

 Rotate along y-axis until v hits z-axis

3D Rotation about an Arbitrary Axis

 Find x and y

v = (x, y, z)

x
2 + y

2 + z
2 =1

 Direction cosines:

3D Rotation about an Arbitrary Axis

d

d

y

x

z
x

sin

cos

 Compute x-rotation x

3D Rotation about an Arbitrary Axis

 Compute y-rotation y

주의: y-축에 대하여 시계방향

xy

y d

sin

cos

),0,(dx

3D Rotation about an Arbitrary Axis

 Rotation about the z axis

 Undo alignment, Rx(-x)Ry (-y)

 Undo translation, T(P0)

1000

0100

00cossin

00sincos

)(

 zzR

)()()()()()()(00 PTRRRRRPTM xxyyzyyxx

3D Rotation about an Arbitrary Axis
Using Rotation Vectors

 3D rotation can be expressed as 4 numbers of one
angle of rotation about an arbitrary axis (ax, ay, az).

 It consists of a unit vector a (x, y, z) representing an
arbitrary axis of rotation and a value of (0~360
degrees) representing the rotation angle around the
unit vector.

 3D rotation vector

+x

+y

+z

a R(, a)

3D Rotation about an Arbitrary Axis

 From axis/angle, we make the following rotation matrix.

3D Rotation as Vector Components

 3D rotation by around the arbitrary axis a =[ax, ay, az]

 w

3D Rotation as Vector Components

Symmetric Skew

3D Rotation as Vector Components

 The vector a specifies the axis of rotation. This axis
vector must be normalized.

 The rotation angle is given by .

 The basic idea is that any rotation can be decomposed
into weighted contributions from three different
vectors.

3D Rotation as Vector Components

 The symmetric matrix of a vector generates a vector in
the direction of the axis.

 The symmetric matrix is composed of the outer
product of a row vector and an column vector of the
same value.

3D Rotation as Vector Components

 Skew symmetric matrix of a vector generates a vector
that is perpendicular to both the axis and it's input
vector.

3D Rotation as Vector Components

 First, consider a rotation by 0. :

 For instance, a rotation about the x-axis:

3D Rotation as Vector Components

 For instance, a rotation about the y-axis:

 For instance, a rotation about the z-axis:

Quaternion

 Quaternion is a 4D complex space vector. It is a
mathematical concept used in place of a matrix when
expressing 3D rotation in computer graphics.

 It is actually the most effective way to express rotation.

 Quaternion has four components.

Quaternions (Imaginary Space)

 Quaternions are actually an extension to complex
numbers.

 Of the 4 components, one is a ‘real’ scalar number,
and the other 3 form a vector in imaginary ijk space!

Quaternion (Scalar/Vector)

 The quaternion is also expressed as a scalar value s
and a vector value v.

Identity Quaternion

 Unlike vectors, there are two identity quaternions.

 The multiplication identity quaternion is

 The addition identity quaternion (which we do not use)
is

Unit Quaternion

 For convenience, we will use only unit length
quaternions, as they will make things a little easier

 These correspond to the set of vectors that form the
‘surface’ of a 4D hyper-sphere of radius 1

 The ‘surface’ is actually a 3D volume in 4D space, but
it can sometimes be visualized as an extension to the
concept of a 2D surface on a 3D sphere

 Quaternion normalization:

Quaternion as Rotations

 A quaternion can represent a rotation by an angle q
around a unit axis a (ax, ay, az) :

 If a has unit length, then q will also has unit length

Quaternion as Rotations

Quaternion to Rotation Matrix

 Equivalent rotation matrix representing a quaternion is:

 Using unit quaternion that x2+y2+z2+w2=1, we can
reduce the matrix to:

Quaternion to Axis/Angle

 To convert a quaternions to a rotation axis, a (ax, ay, az)
and an angle :

Quaternion Dot Product

 The dot product of two quaternions works in the same
way as the dot product of two vectors:

 The angle between two quaternions in 4D space is half
the angle one would need to rotate from one
orientation to the other in 3D space.

Quaternion Multiplication

 If q represents a rotation and q’ represents a rotation,
then qq’ represents q rotated by q’

 This follows very similar rules as matrix multiplication
(I.e., non-commutative) qq’ ≠ q’q

Quaternion Operations

 Negation of quaternion, -q
 -[v s] = [-v –s] = [-x, –y, –z, –w]

 Addition of two quaternion, p + q
 p + q = [pv, ps] + [qv, qs] = [pv + qv, ps + qs]

 Magnitude of quaternion, |q|

 Conjugate of quaternion, q* (켤레 사원수)
 q* = [v s]* = [–v s] = [–x, –y, –z , w]

 Multiplicative inverse of quaternion, q-1 (역수)
 q-1 = q*/|q|

 Exponential of quaternion
 exp(v q) = v sin q + cos q

 Logarithm of quaternion
 log(q) = log(v sin q + cos q) = log(exp(v q)) = v q

q q-1 = q-1 q = 1

Quaternion Interpolation

 One of the key benefits of using a quaternion
representation is the ability to interpolate between key
frames.

alpha = fraction value in between frame0 and frame1

q1 = Euler2Quaternion(frame0)

q2 = Euler2Quaternion(frame1)

qr = QuaternionInterpolation(q1, q2, alpha)

qr.Quaternion2Euler()

 Quaternion Interpolation
 Linear Interpolation (LERP)

 Spherical Linear Interpolation (SLERP)

 Spherical Cubic Interpolation (SQUAD)

Linear Interpolation (LERP)

 If we want to do a direct interpolation between two
quaternions p and q by alpha:

Lerp(p, q, t) = (1-t)p + (t)q

where 0 ≤ t ≤ 1

 Note that the Lerp operation can be thought of as a
weighted average (convex)

 We could also write it in it’s additive blend form:

Lerp(q1, q2, t) = q1 + t(q2 – q1)

q1

q2

0 ≤ t ≤ 1

Spherical Linear Interpolation (SLERP)

i

j

k

1q

2q

21
sin

sin

sin

)1(sin
)(q

t
q

t
tq

)(cos 21

1 qq

 If we want to interpolate between two points on a
sphere (or hypersphere), we will travel across the
surface of the sphere by following a ‘great arc.’

Spherical Cubic Interpolation (SQUAD)

 To achieve C2 continuity between curve segments, a
cubic interpolation must be done.

 Squad does a cubic interpolation between four
quaternions by t

 ai, ai+1 are inner quadrangle quaternions between q1 and q2.
And you have to choose carefully so that continuity is
guaranteed across segments.

