
Lighting

Fall 2021
11/9/2021

Kyoung Shin Park
Computer Engineering

Dankook University

OpenGL Lighting

 OpenGL Lighting
 Light source
 Materials
 Surface normals

OpenGL Lighting OpenGL Lighting

 OpenGL light source
 Ambient lights
 Point lights
 Directional lights
 Spot lights

Point light Directional light

Spot light

OpenGL Light Sources

 Light sources has a position and color
(ambient/diffuse/specular).

 The intensity of the light source is determined by the
intensity of the color.

struct lightSource {
vec4 position;
vec4 diffuse;
vec4 specular;
float constantAttenuation, linearAttenuation,
quadraticAttenuation;

float spotCutoff, spotExponent;
vec3 spotDirection;

};

OpenGL Light Source Position

 Directional light(or infinite light) and Point light (or local
light)
 Directional light source has lights with the same direction.
 Point light source is a light coming from a specific point in

space.
 If the 4th value of the position of the light source is 0, it is the

directional light, and if it’s 1, it is point light.

 GLSL 예제:
if (light0.position.w == 0.0) { // directional light

attenuation = 1.0; // no attenuation
lightDirection = normalize(vec3(light0.position));

}
else { // point or spot light (or other kind of light)

…
}

OpenGL Light Source Position

 The position of the light source is affected by the world
transformation.

 It is recommended to specify the light source after the
camera transformation, so that it can be defined in the
world coordinate system.

 Light is also be moved by world transformation matrix,
like objects.

OpenGL Light Sources

 Light intensity attenuation according to distance
 Physical attenuation:

 OpenGL attenuation:
 Default a = 1, b = 0, c = 0

vec3 vertexToLightSource = vec3(light0.position - worldPosition);
float distance = length(vertexToLightSource);
lightDirection = normalize(vertexToLightSource);
attenuation = 1.0 / (light0.constantAttenuation

+ light0.linearAttenuation * distance

+ light0.quadraticAttenuation * distance * distance);

2
0

0)()(
PP

PIPI




2
0)()(

cdbda
PIPI




OpenGL Light Sources

 Spot light source
 Spot light direction
 Spot light cutoff
 Using a higher spot light exponent will result in more spot lights.

// continue from light attenuation..
if (light0.spotCutoff <= 90.0) { // spotlight
float clampedCosine

= max(0.0, dot(lightDirection, normalize(light0.spotDirection)));
if (clampedCosine < cos(radians(light0.spotCutoff))) // outside of spotlight

cone {
attenuation = 0.0;

} else {
attenuation = attenuation * pow(clampedCosine,light0.spotExponent);

}

GL_SPOT_DIRECTION

GL_SPOT_CUTOFF
OpenGL Multiple Lights

 In OpenGL, multiple light sources can be activated
simultaneously by specifying GL_LIGHT0, GL_LIGHT1, ...

 Using too many lights can increase the amount of
lighting computation and thus slow down rendering.

OpenGL Materials

 Material properties indicate how the surface reflects
light.

 Material basically refers to the color of the surface.

struct material
{

vec4 ambient;
vec4 diffuse;
vec4 specular;
float shininess;

};

Example

 Teapot materials

OpenGL Light Color

 The light sources have color and intensity, and the default
is white.

 The object color we see is determined by the interaction
of light color and material color.
 Light color refers to how much RGB light shines on an object.
 Material color refers to how much RGB light is reflected off an

object.
 White light * red material = red
 Red light * white material = red
 Red light * blue material = black
 Yellow light * cyan material = green

OpenGL Ambient/Diffuse/Specular Light

 The OpenGL lighting model considers three types of
reflected light.

 Ambient light: Light that is reflected off other surfaces.
Brightens the overall scene.

 Diffuse light: Light that is reflected equally in all
directions on the surface. It is independent of the
viewer’s position.

 Specular light: Light that is strongly reflected in one
direction on the surface. It is used for shiny surfaces.

OpenGL Ambient Light

 Ambient light simulates indirect incoming light.
 It is assumed that light of constant brightness is

spread evenly all over the place, regardless of the
direction of the surface.

 The ambient light is specified by the ambient light
color of the light source and the ambient light color of
the material.

vec3 ambientLighting
= vec3(scene_ambient) * vec3(mymaterial.ambient);

OpenGL Diffuse Light

 Diffuse light simulates light reflected equally in all
directions on the surface.

 It is most common form and it is not dependent on
the viewer’s position.

vec3 diffuseReflection
= attenuation * vec3(light0.diffuse) * vec3(mymaterial.diffuse)
* max(0.0, dot(normalDirection, lightDirection));

OpenGL Specular Light

 Specular light creates shiny highlights on the surface.
 Three properties of specular light:

 Specular color of the material
 Specular color of the light source
 Shininess of the material – a high shininess creates a small area

of highlight.

specularReflection
= attenuation * vec3(light0.specular) * vec3(mymaterial.specular)
* pow(max(0.0, dot(reflect(-lightDirection, normalDirection),
viewDirection)), mymaterial.shininess);

Surface Orientation

 To calculate how much light is reflected off a surface
in lighting, we needs to know in which direction the
surface is facing.

 The surface orientation and light direction determine
the brightness of the diffuse light.

 The surface orientation, light direction, and direction
to the viewer determine the brightness of the specular
light.

Surface Normal

 The surface orientation is defined by a normal vector
perpendicular to the surface.

 The plane’s normal vector must be a unit vector (the
length of the unit vector is 1).

n ꞏ(p - p0) = 0
n = (p2 - p0) ×(p1 - p0)
normalize n  n/ |n|

p0

p1

p2

n

p

Vertex Normal

 Vertex normal
 Average the value of the normal vectors of the adjacent faces

that share the vertex.

Normal to Sphere

 Implicit function of Sphere:
 f(x,y.z)=0

 Unit Sphere:
 f(p)=p·p-1 = 0

 Sphere normal vector:
 n = [∂f/∂x, ∂f/∂y, ∂f/∂z]T= p

OpenGL Normal

 OpenGL’s lighting calculation uses the normal vector of
each vertex.

 Example:
// Vertice Positions
squareVertices.push_back(glm::vec3(-1.5f, -1.5f, 0.0f));
squareVertices.push_back(glm::vec3(1.5f, -1.5f, 0.0f));
squareVertices.push_back(glm::vec3(1.5f, 1.5f, 0.0f));
squareVertices.push_back(glm::vec3(-1.5f, 1.5f, 0.0f));
// Vertices Normals
squareNormals.push_back(glm::vec3(0.0f, 0.0f, 1.0f));
squareNormals.push_back(glm::vec3(0.0f, 0.0f, 1.0f));
squareNormals.push_back(glm::vec3(0.0f, 0.0f, 1.0f));
squareNormals.push_back(glm::vec3(0.0f, 0.0f, 1.0f));

OpenGL Normal

 To draw the Shaded Cube.

glm::vec3 frontNormal = glm::vec3(0.0f, 0.0f, 1.0f);
glm::vec3 backNormal = glm::vec3(0.0f, 0.0f, -1.0f);
glm::vec3 leftNormal = glm::vec3(-1.0f, 0.0f, 0.0f);
glm::vec3 rightNormal = glm::vec3(1.0f, 0.0f, 0.0f);
glm::vec3 bottomNormal = glm::vec3(0.0f, -1.0f, 0.0f);
glm::vec3 topNormal = glm::vec3(0.0f, 1.0f, 0.0f);

4

3 2

6

0 1

7

5
(0, 0, 1) front

OpenGL Normal
// Front face
vbo.addData(&glm::vec3(-size, -size, size), sizeof(glm::vec3));
vbo.addData(&frontNormal[0], sizeof(glm::vec3)); // vertex normal
vbo.addData(&glm::vec3(size, -size, size), sizeof(glm::vec3));
vbo.addData(&frontNormal[0], sizeof(glm::vec3)); // vertex normal
vbo.addData(&glm::vec3(size, size, size), sizeof(glm::vec3));
vbo.addData(&frontNormal[0], sizeof(glm::vec3)); // vertex normal
vbo.addData(&glm::vec3(-size, -size, size), sizeof(glm::vec3));
vbo.addData(&frontNormal[0], sizeof(glm::vec3)); // vertex normal
vbo.addData(&glm::vec3(size, size, size), sizeof(glm::vec3));
vbo.addData(&frontNormal[0], sizeof(glm::vec3)); // vertex normal
vbo.addData(&glm::vec3(-size, size, size), sizeof(glm::vec3));
vbo.addData(&frontNormal[0], sizeof(glm::vec3)); // vertex normal

4

3 2

6
0 1

7

5
(0, 0, 1) front

