Buffer, Image, and
Texture Mapping

OpenGL Frame Buffer

Fall 2021
11/16/2021
Kyoung Shin Park
Computer Engineering
Dankook University

o Color buffers
= Front buffer
m Back buffer
m Auxiliary buffer
= Overlay plane
o Depth buffer
o Accumulation buffer
= High resolution buffer
o Stencil buffer
» Holds masks

stencil buffer

accumulation buffer
overlay planes
auxiliary buffers
color indices
depth buffer
m back buffer
front buffer

Writing in Buffers

o Conceptually, we consider all of memory as a large
two-dimensional array of pixels

o We read and write rectangular block of pixels
m Bit block transfer (bitblt) operations

o The frame buffer is part of this memory

memory / / |

source

frame buffer
(destination)

writing into frame buffer

Buffer Selection

o0 OpenGL can draw into or read from any of the color
buffers (front, back, auxiliary)

o Default to the back buffer
o Change with glDrawBuffer and glReadBuffer

o Note that format of the pixels in the frame buffer is
different from that of processor memory and these two
types of memory reside in different places

= Need packing and unpacking
= Drawing and reading can be slow

Pixel Maps

OpenGL Pixel Functions

o OpenGL works with rectangular arrays of pixels called
pixel maps or images
O Pixels are in one byte (8 bit) chunks
= Luminance (gray scale) images 1 byte/pixel
= RGB 3 bytes/pixel
o Three functions
= Draw pixels: processor memory to frame buffer
= Read pixels: frame buffer to processor memory
m Copy pixels: frame buffer to frame buffer

glReadPiers(x,y,width,height,format,f;pe,myimage)

~J /
start pixel in frame buffer size type of pixels
type of image pointer to processor
memory

GLubyte myimage[512][512][3];
glReadPixels(0,0, 512, 512, GL_RGB,
GL_UNSIGNED_BYTE, myimage);

glDrawPixels(width,height, format, type,myimage)
starts at raster position

OpenGL Buffer Management Functions

Images

o Buffer clear
glClear(GLbitfield mask); // clear a specified buffer

GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT |
GL_ACCUM_BUFFER_BIT | GL_STENCIL_BUFFER_BIT

glClearBuffer();
o Buffer clear value set

glClearColor(); glClearDepth(); glClearDepthf(); glClearStencil();
o Buffer mask (i.e., enabled or disabled)

glColorMask[i](GLboolean red, GLboolean green, GLbooleanblue,
GLboolean alpha); // set r,g,b,a color in frame buffer

glDepthMask(GLboolean flag); // set depth in depth buffer
glStencilMask(GLuint mask); // set bit mask in stencil buffer

o Read image data from file or create the image data

o General image format:

= JPEG, TIFF, PNG, GIF, RGB, EPS, BMP, etc
o Image format:

= Color channel: greyscale, RGB, RGBA

= Bit resolution

= Compression: lossy coding, lossless coding

COIN3D simage

o http://www.coin3d.org/lib/simage

o COIN3D simage library support following image format

= JPEG, TIFF, PNG, PIC, TGA, EPS, GIF, RGB, etc

o To COIN3D simage library, need to add additional library

and include directory in your project

m Project -> Properties(ALT+F7) -> Configuration Properties ->
C/C++ -> General ->Additional Include Directories ->
add Minclude

m Project -> Properties(ALT+F7) -> Configuration Properties ->

C/C++ -> Preprocessor -> Preprocessor Definitions
add ;SIMAGE_DLL

m Project -> Properties(ALT+F7) -> Configuration Properties -> Linker
-> General -> Additional Library Directories -> add .#lib¥#debug

m Project -> Properties(ALT+F7) -> Configuration Properties - >

Linker -> Input -> Additional Dependencies -> add simage1.lib

COIN3D simage Example

unsigned char *imgPtr;
unsigned char *imageData;
unsigned char *rescaledimageData;
int imageWidth = 0, imageHeight = 0, numComponents = 0;
imageData = simage_read_image (filename, & mageWidth,
&imageHeight, &numComponents); // read
GLsizei xdim2,ydim2; // if the image size is not the power of 2, resize it
GlLenum type;
xdim2 = 1;
while (xdim2 <= imageWidth)
xdim2 *= 2;
xdim2 /= 2;
ydim2 = 1;
while (ydim2 <= imageHeight)
ydim2 *= 2;
ydim2 /= 2;
if (imageWidth != xdim2) || (imageHeight != ydim2)) {
rescaledimageData = simage_resize(imageData, imageWidth, imageHeight,
numComponents, xdim2, ydim2);
imgPtr = rescaledlmageData;
} else
imgPtr = imageData;

Texture Mapping

AT s
Flat shading

o

" Smooth shading Texture mapping

The Limits of Geometric Modeling

o Although graphics cards can render over 10 million
polygons per second, that number is insufficient for
many phenomena
» Clouds
= Grass
= Terrain
= Skin

O Texture Mapping
= Two-dimensional image is applied directly to a surface

m In real-time graphics rendering where a limited number of
polygons must be used, texture mapping is a technique
that can significantly increase the realism with a relatively
small additional cost.

Three Types of Mapping Texture Mapping

O Texture Mapping
= Uses images to fill inside of polygons.

o Environment/Reflection mapping
m Uses a picture of environment for texture maps.
= Allows simulation of highly specular surfaces.

o Bump mapping

m Emulates altering normal vectors during the rendering process.

geometric model texture mapped

Environment Mapping Bump Mapping

Where does texture mapping take place?

O Mapping techniques are implemented at the
end of the rendering pipeline

» Very efficient because few polygons make it past the

clipper
Geometry o . . Fragment Frame
Verlicas ? processing | (SR "| processing buffer

Is it simple?

/

processing

Pxels ——

o Although the idea is simple - map an image to a
surface.

m There are 3 or 4 coordinate systems involved

2D image

3D surface

Texture Mapping

o Conceptual 2D texture mapping process

m Surface parameterization
How to apply a texture image to an object?
The coordinates of the texture image mapped to each point of the
object are required. (X, Yo, Zg) => (Xy Yo

= Geometric transformation
Geometric transformation determines the mapping relationship
between each point of an object and its position on the projection
screen. (Xo, Yor Zo) => (X Ys)

m Rasterization
The process of finding pixels on which each geometric object is
projected

m Texture color calculation
The process of painting each pixel with a texture color appropriately
How to calculate the texture color visible through each pixel?

How to blend the calculated texture color with the original color of
the object?

Coordinate Systems

o Parametric coordinates (u, v)
m May be used to model curves & surfaces
o Texture coordinates (s, t)
m Used to identify points in the image to be mapped
o Object or World Coordinates (x, y, z)
m Concepturally, where the mapping takes place
o Window Coordinates (x,, Y.)
m Where the final image is really produced

Texture Mapping

Mapping Functions

Parametric coordinates

Texture coordinates))
Window coordinates

World coordinates

o Basic problem is how to find the maps
o Consider mapping from texture coordinates to a point
a surface

o Appear to need three functions

X = X(s,1)
y = y(sit)
z = z(s,1)
o But we really want to go the other way xy,2)
=
t ,'...:4'*
"“?-ﬁ.--~
S Ny
" oy Wy N
B 1\
Ny

Backward Mapping

Two-part mapping

o We really want to go backwards
= Given a pixel, we want to know to which point on an object it
corresponds
= Given a point on an object, we want to know to which point
in the texture it corresponds
o Need a map of the form
s = s(xy,2)
t = txy2)
o Such functions are difficult to find in general &

o Two-part mapping

= One solution to the mapping problem is to first map the
texture to a simple intermediate surface

o Example: first, map to cylinder

Cylindrical Mapping

o Parametric cylinder

X =T Cos 2n u u: (0,1)
y = rsin 2n u v: (0,1)
z =v/h

O Maps rectangle in u,v space to cylinder of radius r and
height h in world coordinates
Ss=u
t=v

O Then, maps from texture space

' X = COS 2 S

y =rsin2rts
e P z = t/h

{a) b i) x

Spherical Map

o We can use a parametric sphere
X =T Cos 2nu
y = rsin 2nu cos 2nv
Z = r sin 2xu sin 2nv
o In a similar manner to the cylinder but have to decide
where to put the distortion
= Mercator projection creates the largest distortion at both poles.

o Spherical mapping is used in environmental maps.

; | 0 =1rCos2n S

[l [l =rsin 2n s cos 2n t
it | B =rsin2x s sin 2 t

. -

[

" B .
5 =T u
(a) (b) (c)

Box Mapping

O Easy to use with simple orthographic projection
O Also used in environment maps

Back

—» | Lleft |Bottom| Right [Top

5 Front

Second Mapping

o Map from intermediate object to actual object
= Normals from intermediate to actual
= Normals from actual to intermediate
= Vectors from center of intermediate

actual object intermediate object

Second Mapping

o Put the object inside the mediation surface and apply

texture to the surface of the object.

Aliasing

o Point sampling of the texture can lead to aliasing
errors
= Point sampling — point to point mapping

miss blue stripes point samples in u,v
f v (or x,y,z) space
L A
/ / X | e
® @ .‘/,_ [] ® ®
-3 -~

point samples in texture space

Area Averaging

O A better but slower option is to use area averaging
= Area Averaging — area to area mapping

preimage

m Note: the preimage of pixel is curved

Basic Strategy

O Three steps to applying a texture
1. Specify the texture
read or generate image
assign to texture
enable texturing
2. Assign texture coordinates to vertices
Proper mapping function is left to application
3. Specify texture parameters

wrapping
filtering

Texture Mapping

OpenGL Texture Example

X
geometry

— o Texture coordinates: T(s, t)
t ms=1xy 2

' — image = t=9ky 2
o Value:
B S S | = LUMINANCE, RGB, RGBA

S

o The texture (below) is a 256 x 256
image that has been mapped to a
rectangular polygon which is
viewed in perspective.

Soneen- Space view

Tedure-space view

t 256x256

Texture Mapping in the OpenGL Pipeline

Specifying a Texture Image in OpenGL

o Images and geometry flow through separate pipelines
that join at the rasterizer
= “complex” textures do not affect geometric complexity

vertices ——geometry pipeline\

/ rasterizer

'Mages ——| pixel pipeline

o Define a texture image from an array of texels (texture
elements) in CPU memory
= Glubyte imageData[512][512];
o Define as any other pixel map
= Scanned image
= Generate by application code

o Enable texture mapping
m glEnable(GL_TEXTURE_2D)
m OpenGL supports 1-4 dimensional texture maps

Define Image as a Texture

o glTeximage2D(target, level, components, width, height,
border, format, type, texels);

target: texture type, e.g., GL_TEXTURE_2D

level: mipmapping level

components: texel components, e.g., RGB

width, height: texel width and height (in pixels)

border: used for smoothing

format, type: texel format and type

texels: texels pointer

glTeximage2D(GL_TEXTURE_2D, 0, RGB, imageWidth, imageHeight,
0, GL_RGB, GL_UNSIGNED_BYTE, imageData);

Converting A Texture Image

o OpenGL requires texture dimensions to be powers of 2
= 64x64, 64x128, 512x512, ...

o If dimensions of image are not powers of 2
m gluScalelmage(format, w_in, h_in, type_in, *data_in, w_out,
h_out, type_out, *data_out);
data_in — the original image data
data_out — the resized image data

o Image interpolated and filtered during scaling

Mapping a Texture

O Based on parametric texture coordinates
O Texture coordinates must be specified for each vertex

(s, t) = (0.2, 0.8)

0,0 (1, 0)s
Texture Space Object Space

Mapping a Texture

o Define texture coordinates per vertex
// Square Vertices Positions
squareVertices.push_back(glm:vec3(-0.75f, -0.75f, 0.0f));
squareVertices.push_back(glm:vec3(0.75f, -0.75f, 0.0f));
squareVertices.push_back(glm:vec3(0.75f, 0.75f, 0.0f));
squareVertices.push_back(glm:vec3(-0.75f, 0.75f, 0.0f));
// Square Vertices Texture Coordinates
squareTextureCoords.push_back(glm:vec2(0.0f, 0.0f));
squareTextureCoords.push_back(glm:vec2(1.0f, 0.0f));
squareTextureCoords.push_back(glm:vec2(1.0f, 1.0f));
squareTextureCoords.push_back(glm::vec2(0.0f, 1.0f));

o Note: use vertex array for code efficiency

Interpolation

O OpenGL uses interpolation to find proper texels from
specified texture coordinates

o Can be distortions texture stretched

over trapezoid

good selection poor selection showing effects of
of tex coordinates of tex coordinates bilinear interpolation
AL,
Al
Aal | |
F |
o
i
e
'|£
Checkerboard texture mapping on a triangle Checkerboard texture

Mapping on a trapezoid

Texture Parameters

o OpenGL has a variety of parameters that determine
how texture is applied

= Wrapping — Wrapping parameters determine what happens if
s and t are outside the (0,1) range, e.g. CLAMP, REPEAT

= Filter modes — Filter modes allow us to use area averaging
instead of point samples

= Mipmapping — Mipmapping allows us to use textures at
multiple resolutions

m Environment parameters — Environment parameters determine
how texture mapping interacts with shading

Wrapping Mode

o Clamp: adjustment of the value within the range (0, 1)
m If s and t are greater than 1, use 1
m If s and t are less than O, use 0

O Repeat: repeat texture for values outside the range (0, 1)
m Uses %1 and t % 1
glTexParameteri(GL_TEXTURE_2D,
GL_TEXTURE_WRAP_S, GL_CLAMP)

glTexParameteri(GL_TEXTURE_2D,
GL_TEXTURE_WRAP_T, GL_REPEAT)

Ry
S

GL_REPEAT GL_CLAMP
texture wrapping wrapping

Magnification and Minification

o More than one texel can cover a pixel (minification)
o More than one pixel can cover a texel (magnification)

o Can use point sampling (nearest) or linear filtering
m linear filtering — use the weighted average of texel groups
including neighbors of texels determined by point sampling
m nearest — use the nearest texel value to the value calculated by
line interpolation

| e Ny

T

L —— 1 —HH \‘Hﬂ

L]

Texture Polygon Texture Polygon
Magnification Minification

Filter Modes

o Define min/mag filters

m glTexParameteri(target, type, mode)
m glTexParameteri(GL_TEXTURE_2D, GL_TEXURE_MAG_FILTER,
GL_NEAREST);

m glTexParameteri(GL_TEXTURE_2D, GL_TEXURE_MIN_FILTER,
GL_LINEAR);

Note that linear filtering requires a border of an extra texel for
filtering at edges (border = 1)

Mipmapped Textures

0o Mipmapping allows for prefiltered texture maps of
decreasing resolutions

O Lessens interpolation errors for smaller textured objects

o Declare mipmap level during texture definition
m glTexlmage2D(GL_TEXTURE_*D, level, ...)

o Automatically create mipmap textures
= glGenerateMipmap(GL_TEXTURE_2D)

o0 Use the following options to take advantage of optimal
mipmapping and point sampling in OpenGL
= glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
GL_NEAREST_MIPMAP_NEAREST)

m glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
GL_LINEAR_MIPMAP_LINEAR)

Aliasing Example

point linear
sampling filtering
mipmapped mipmapped
point linear
sampling filtering

Texture Environment

o Controls how texture is applied
glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, mode);
= GL_TEXTURE_ENV_MODE modes:

o GL_MODULATE: modules with computed shade
o GL_DECAL: use only texture color
o GL_BLEND: blends with an environmental color
o GL_REPLACE: use only texture color
m GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE

O Set blend color with GL_TEXTURE_ENV_COLOR

Generating Texture Coordinates

Texture Objects

o OpenGL can generate texture coordinates automatically
glTexGen{ifd}[v](GL_S/T, GL_TEXTURE_GEN_MODE, modes);
m Specify a plane — generate texture coordinates based upon
distance from the plane
= Generation modes:
GL_OBJECT_LINEAR
GL_EYE_LINEAR
GL_SPHERE_MAP (used for environmental maps)

Glfloat planes[] = {0.5, 0.0, 0.0, 0.5} // s=x/2 + Y>

Glfloat planet[] = {0.0, 0.5, 0.0, 0.5} // t=y/2 + Y2
glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, GL_OBJECT_LINEAR);
glTexGeni(GL_T, GL_TEXTURE_GEN_MODE, GL_OBJECT_LINEAR);
glTexGenfv(GL_S, GL_OBJECT_LINEAR, planes);
glTexGenfv(GL_T, GL_OBJECT_LINEAR, planet);

O Texture is part of the OpenGL state
= If we have different textures for different objects, OpenGL will
be moving large amounts data from processor memory to
texture memory

o Recent versions of OpenGL have texture objects
= One image per texture object
= Texture memory can hold multiple texture objects

Environment Mapping "

o Environment Maps
m Start with image of environment through a wide angle lens

Can be either a real scanned image or an image created in
OpenGL

m Use this texture to generate a spherical map
m Use automatic texture coordinate generation

= Spherical environment mapping — Using automatic texture
coordinate generation after creating a spherical map from an
environment image taken with a 180 degree wide angle lens

Multitexturing

o Multitexturing
= Apply a sequence of textures through cascaded texture units

o Light Mapping

m Instead of calculating the light of the object surface, the

texture and bright image are mixed and the resulting image is
directly applied to the object surface

.+ -) n

Reference

o https://www.glprogramming.com/red/chapter10.html

o https://www.khronos.org/opengl/wiki/Default_Framebuf
fer

