
Get Started with Unity

Fall 2023
9/14/2023

Kyoung Shin Park
Computer Engineering

Dankook University



Game Engine



Origins of Computer Game Engines

 Game engines arose in the mid-1990s. 

 Doom by id provided a separation between:
 core game components (such as the rendering system, collision 

detection system, audio system)

 art assets (models, textures, animations)

 rules of play

 Quakes, Unreal, and Unreal Tournament (all FPS games) 
were designed with the separation in mind
 Sold licenses to their engine and tools

 So of you may have done modding using these tools.

 It became generic enough that it was possible to 
implement a wide variety of very different games based 
on a common core set of components, the game engine 
(Unity3D and Unreal Engine 4).



Some Current Game Engines

 Quake family
 Used to create many games

 Has lineage that extends to modern games like Medal of Honor

 Quake and Quake II engines source code are freely available

 Unreal Engine
 Now at UE4

 Very rich tool set – Kismet

 Large developers network

 Good licensing model – good for small developers



More Game Engines

 Unity
 Very feature rich

 Uses Javascript or C# for scripting

 Large community support

 Great for cross-platform development

 Source Engine
 Games like Half-life 2 and its sequels, Team Fortress 2, and Portal

 Very powerful with good graphics capabilities and a good toolset

 DICE’s Frostbite
 Used to create games like Battlefield 4

 FrostEd – asset creation tool



Even More Game Engines

 CryEngine
 Originally developed as a demo for Nvidia

 Used to develop numerous games – starting with Far Cry

 Sony PhyreEngine
 Uses to create games for the Sony platforms

 Numerous titles have been written with this engine

 Microsoft XNA and MonoGame
 Based on C# - easy to use

 Used for Xbox and PC games

 Not longer supported – replaced by MonoGame



2D Game Engines

 Designed for non-programmers to build apps for 
Android and iPhone

 Examples include
 Multimedia Fusion 2

 Game Salad Creator

 Scratch



Best Game Engines

 GameDev Academy Best Game Engines for 2023
 https://gamedevacademy.org/best-game-engines/

 Top 10 Game Engines – Ulab - SumDU
 https://ulab.sumdu.edu.ua/top-10-game-engines

 Examples include
 Unity

 Unreal

 Godot

 Phaser

 GameMaker

 CryEngine

 AppGameKit

 RPG Maker

 Amazon Lumberyard

 ..



Get Started with Unity



Unity

 Unity3D is a widely-used cross-platform game 
development system.

 It consists of a game engine and an integrated 
development environment (IDE).

 It can be used to develop games for many different 
platforms, PCs, consoles, mobile devices and 
deployment on the Web.

 Tutorials at https://learn.unity.com/



Visual Studio Code

https://code.visualstudio.com/
download



https://unity.com/download

Download Unity Hub



UnityHubSetup.exe

Install Unity Hub



Run Unity Hub



Sign in (or Create account)



Install Unity

Install 2021.3.30f1 (LTS)



Install Unity



Begin a Microgame



Begin a Microgame



Unity Interface



Unity Interface

 Project

 Scene View

 Game View

 Hierarchy

 Inspector

 Console



Project Window

 The project window 
contains all of the 
assets that are available 
for you to use.

 Typically, these are 
organized into folders, 
for example, according 
to the asset type 
(models, materials, 
audio, prefabs, scripts, 
etc.).



Scene View

 This scene window 
shows all the elements 
of the current scene. 

 Most editing of the 
scene is done through 
the scene view, because 
it provides access to 
low-level and hidden 
aspects of the objects.



Game View

 This game window 
shows the elements of 
the scene as they would 
appear to the player.



Hierarchy

 This window shows all 
the game objects that 
constitute the current 
scene.

 Game objects are stored 
hierarchically in a tree 
structure.



Inspector

 At any time there is an 
active game object 
(which the designer 
selects by clicking on 
the object or on its 
entry in the hierarchy).

 This window provides 
all the component
information associated 
with this object.



Console

 The console window displays errors, warnings, and 
other messages the Editor generates. 

 These errors and warnings help you find issues in your 
project, such as script compilation errors. 

 They also alert you to actions the Editor has taken 
automatically, such as replacing missing meta files, 
which could cause an issue somewhere else in your 
project.



Unity Basics



Scene

 Scenes 
 A scene contains a collection of game objects that constitute 

the world that the player sees at any time. 

 Below example shows a sample scene that contains only 
a Camera and a Light.



GameObjects

 GameObjects
 The game objects are all the things that constitute your scene.

 GameObjects are the fundamental objects in Unity that 
represent characters, props and scenery. They do not 
accomplish much in themselves but they act as containers 
for Components, which implement the functionality.

Four different types of GameObject: an animated character, a light, 

a tree, and an audio source



GameObjects

 GameObject
 Empty

 3D Object – Cube, Sphere,

 Light – Directional Light, 

 Audio

 Video

 Effect - Particle System

 UI

 Camera



Components

 Components
 Each GameObject is defined by a collection of associated 

elements, called Components. 

 The set of components that are associated with a game object 
depend on the nature of object. For example, a light source 
object is associated with color and intensity of the light source. 
A camera object is associated with various properties of how 
the projection is computed (wide-angle or telephoto). 

 The various components that are associated with a game object 
can be viewed and edited in the Inspector window.



Components

 Components
 Mesh

 Effects

 Physics

 Physics2D

 Navigation

 Audio

 Video

 Rendering

 Tilemap

 Layout

 Playables

 Miscellaneous

 Scripts

 UI

 Event



Prefabs

 Prefabs
 Unity’s Prefab system allows you to create, configure, and store 

a GameObject complete with all its components, property 
values, and child GameObjects as a reusable Asset. 

 The Prefab Asset acts as a template from which you can create 
new Prefab instances in the Scene.



Assets

 Assets
 An asset is any resource that will be used as part of an object's 

component. 

 Examples include meshes (for defining the shapes of objects), 
materials (for defining shapes), physics materials (for defining 
physical properties like friction), and scripts (for defining 
behaviors).



Scripts

 Scripts
 A script is a chunk of code that defines the behavior of game 

objects. Scripts are associated with game objects. 

 There are various types of scripts classes, depending on the 
type of behavior being controlled. 

 Because interactive game programming is event-driven, a 
typical script is composed as a collection of functions, each of 
which is invoked in response to a particular event. (E.g., A 
function may be invoked when this object collides with another 
object.) 

 Typically, each of these functions performs some simple action 
(e.g., moving the game object, creating/destroying game 
objects, triggering events for other game objects), and then 
returns control to the system.



IDE (Visual Studio) for Script



Packages

 Packages
 A package is an aggregation of game objects and their 

associated meta-data. 

 They are related objects (models, scripts, materials, etc.). Here 
are some examples:

 a collection of shaders for rendering water effects

 particle systems for creating explosions

 models of race cars for a racing game

 models of trees and bushes to create a woodland scene

 Unity provides a number standard packages for free, and when a 
new project is created, you can select the packages that you 
would like to have imported into your project.



Reference

 Unity Manual 
https://docs.unity3d.com/Manual/UnityOverview.html


