
Graphics Programming

Fall 2023
9/21/2023

Kyoung Shin Park
Computer Engineering

Dankook University

Coordinate Systems

 2D Cartesian Coordination Systems

 3D Cartesian Coordination Systems

2D Cartesian Coordinate Systems

 Cartesian Coordination Systems

+x

+y

-x

-y

x-axis

y-axis
The origin is located in the
center of the coordinate system
and its value is (0, 0).

Two axes: x-axis and y-axis,
two straight lines
perpendicular to each other,
both pass through origin
and extends infinitely in two
opposite directions

3D Cartesian Coordinate Systems

 In left-handed coordinate
system, x+ is right, y+ is
up, z+ is inside the screen.

 In right-handed coordinate
system, x+ is left, y+ is up,
z+ is inside the screen.

y

z

x

y

x

z

Screen Space

+y

+x(0, 0)

 In Unity, the
screen coordinates
are defined in
pixels. The origin
is located at the
lower left corner
of the screen and
the value is (0, 0).
x+ is right. y+ is
up. The upper
right corner is the
(Screen.width,
Screen.height).

(Screen.width, Screen.height)

GUI Space

+y

+x

(0, 0)
 In Unity, when

drawing GUI on
the screen, it uses
a new coordinate
system. The origin
is located at the
upper left corner
of the screen (0, 0).
x+ is right. y+ is
down. The lower
right corner is the
(Screen.width,
Screen.height).

(Screen.width, Screen.height)

World Space – 3D Coordinate Systems

 OpenGL use a
right-handed
coordinate system

 x+ is right, y+ is
up, z+ is out of
the screen.

y

x

z

World Space – 3D Coordinate Systems

 Direct3D
coordinate system
is left-handed

 x+ to the right

 y+ up

 z+ forward

y

x

z

World Space – 3D Coordinate Systems

 Unity3D
coordinate system
is left-handed

 x+ to the right

 y+ up

 z+ forward
(inside the screen)y

x

z

3D Coordinate Systems

A Guide to Unity’s Coordinate System (With Practical Examples)

https://www.techarthub.com/a-guide-to-unitys-coordinate-system-with-practical-

examples/

3D Coordinate Systems

World Coordinate Systems in 3ds Max, Unity and Unreal Engine

http://www.aclockworkberry.com/world-coordinate-systems-in-3ds-max-unity-and-

unreal-engine/

3D Coordinate Systems

World Coordinate Systems in 3ds Max, Unity and Unreal Engine

http://www.aclockworkberry.com/world-coordinate-systems-in-3ds-max-unity-and-

unreal-engine/

RHS LHS
y

z

x

x

z
y

World vs Local Space

https://www.techarthub.com/a-guide-to-unitys-coordinate-system-with-practical-

examples/

 World space is
the coordinate
system for the
scene itself.

 Local space is a
coordinate system
that is relative to
the rotation of a
specific object.

Viewport Space

 Viewport
 The space set inside the window. Drawing is restricted to

inside the viewport.

 The viewport coordinates are relative to the camera. The lower
left corner of the camera is the (0, 0) point, and the upper
right corner is the (1, 1) point.

(0, 0)

(1, 1)

(0.5, 0.4) =0.4

=0.4

Rendering Pipeline

 The rendering pipeline performs a series of operations
that take objects in the scene, and displays them on a
screen.
 Culling – frustum culling & occlusion culling

 Rendering – drawing objects, with lighting, into pixel buffers

 Post-processing – applying post-processing effects

Geometry Mesh

 Creating 3d and 2d models using the mesh data.

 A model is represented as a triangle mesh approximation

 Geometry mesh data are collected (Vertices Array,
Normals Array, Triangle Array and UV Array).

 Circle approximation

{ v0, v1, v2, // triangle 0

v0, v2, v3, // triangle 1

v0, v3, v4, // triangle 2

v0, v4, v5, // triangle 3

v0, v5, v6, // triangle 4

v0, v6, v7, // triangle 5

v0, v7, v8, // triangle 6

v0, v8, v1}; // triangle 7

Vertex Buffer

v1

v2

v3

v4

v5

v6

v7

v8

v0

Clock-wise Winding (CW)

Index Buffer

 Circle approximation

vertexList = {v0, v1, v2, v3, v4, v5, v6, v7, v8};

IndexList = { 0, 1, 2, // triangle 0

0, 2, 3, // triangle 1

…

0, 7, 8, // triangle 6

0, 8, 1}; // triangle 7

v1

v2

v3

v4

v5

v6

v7

v8

v0

 In Unity, every object in a Scene has a Transform. It's
used to store and manipulate the position, rotation
and scale of the object.

Transformations

Geometry Lighting

 In the illumination stage we add lighting effects to the
scene

Textures

 Using different inputs(textures, normal maps … , etc.) we
color objects in the scene.

Camera

 In Unity, the camera is located at (0, 0, -10) world
coordinate system and is point at the z+ direction.

 By default, a perspective projection viewing frustum
is used.

Viewport

 Viewport
 The space set inside the window. Drawing is restricted to

inside the viewport.

Viewport Rect Four values that indicate where on the screen this camera view will be
drawn. Measured in Viewport Coordinates (values 0–1).

X The beginning horizontal position that the camera view will be drawn.

Y The beginning vertical position that the camera view will be drawn.

W (Width) Width of the camera output on the screen.

H (Height) Height of the camera output on the screen.

Viewer’s Perspective (Camera Input)

 Before rendering the environment on the screen we
consider the camera input such as (field of view,
Projection Mode [Orthographic or Perspective]).

Orthographic vs Perspective Viewing

 Orthographic parallel projection
 Points are projected onto the z=0 plane towards the z- axis.

 Perspective projection
 it uses the y-direction viewing angle (FOV) and the aspect ratio

(the value of the width of the nearest clipping plane divided by
the height)

Backface culling

 Backface culling
 A polygon has the front face and the back face.

 Backface culling can quickly discard about half of the scene’s
dataset from further processing – an excellent speed up.

 Determine which polygons are front facing or back
facing
 By default, triangles with clockwise winding order are front facing

 Visibility test: planeNormal • viewVector > 0

 Set culling
 RasterizerState.CullMode = CullMode.None;

 Value

 NONE: disable backface culling

 CW: triangles with a clockwise winding are culled

 CCW: triangles with a counterclockwise winding are culled (default)

Backface culling

Backface culling

eye

After backface culling

eye

Backface culling

No Culling (All faces are seen) Backface Culling

Clipping

 Objects projected outside the window are clipped
without appearing as an image by placing a pyramid
like clipping volume in front of the camera.

Clipping

 Clipping
 Clipping culls the geometry that is outside the viewing volume

 3 possible locations of triangle in the frustum:

 Completely inside: it is kept

 Completely outside: it is culled

 Partially inside: then, the triangle is split into two parts. The part
inside the frustum is kept, while the part outside is culled.

eye

Completely
inside

Completely
outside Partially inside

and outside

Projection

 Projection determines which point on the 2D screen is
a point in the 3D space that constitutes an object when
the observer composes the composition.

Rasterization

 Since our screens are 2D, rasterization is how the
Geometry (3D & 2D) will be drawn on our 2D screen.

 Rasterization is where we process the scene several
times through different filters then output the result on
the screen.

Post-Processing

 Post-processing effects we add to the 2D image just
before displaying the final output on the screen.

Depth of field is a post-processing effect applied to the 2D final image

Unity GL Class

 Low-level graphics library.

 Use this class to manipulate active transformation
matrices, issue rendering commands similar to OpenGL's
immediate mode and do other low-level graphics tasks.

 GL immediate drawing functions use whatever is the
"current material" set up right now.

 The usual place to call GL drawing is most often
in OnPostRender() from a script attached to a camera,
or inside an image effect function (OnRenderImage)

Unity GL Geometry Primitives

 In real-time graphics, linear primitives are mainly used,
which is the simplest form of graphics expression.
 Point, vertex

 Line segments

 Polygon

 Polyhedron

Unity GL Geometry Primitives

 GL.Begin(mode)
 LINES, LINE_STRIP, TRIANGLES, TRIANGLE_STRIP, QUADS

v0

v7

v6

v5

v4

v3

v2

v1

v0

v7

v6

v5

v4

v3

v2

v1

v0

v7

v6

v5

v4

v3

v2

v1

v0

v7

v6

v4

v4

v3

v2

v1

v0

v7

v6

v5

v4

v3

v2

v1

Unity Color

 GL.Color(color)
 RGB (Red, Green, Blue) or RGBA(Red, Green, Blue, Alpha)

 RGB colors are separated and stored in the framebuffer.

Color Triangle

public class DrawFilledTriangle : MonoBehaviour {

public Material mat = null;

public Vector3 vertex1 = new Vector3(-1, -1, 0);

public Vector3 vertex2 = new Vector3(1, -1, 0);

public Vector3 vertex3 = new Vector3(1, 1, 0);
// will be called after all regular rendering is done

public void OnPostRender() {

CreateMaterial(); // 중간 생략

mat.SetPass(0);
GL.PushMatrix();

GL.MultMatrix(transform.localToWorldMatrix);
GL.Begin(GL.TRIANGLES); // LHS CW winding order

GL.Color(Color.red);

GL.Vertex(vertex1);
GL.Color(Color.blue);

GL.Vertex(vertex3);
GL.Color(Color.green);

GL.Vertex(vertex2);
GL.End();

GL.PopMatrix();

}

}

