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Spaces

 Vector space
 The vector space has scalars and vectors.

 Scalars: , , 

 Vectors: u, v, w

 Affine space
 The affine space has point in addition to the vector space.

 Points: P, Q, R

 Euclidean space
 In Euclidean space, the concept of distance is added.



Scalars, Points, Vectors

 3 basic types needed to describe the geometric objects 
and their relations

 Scalars: , , 

 Points: P, Q, R

 Vectors: u, v, w

 Vector space
 scalars & vectors

 Affine space
 Extension of the vector space that includes a point



Scalars

 Commutative, associative, and distribution laws are 
established for addition and multiplication
  +  =  + 

  ·  =  · 

  + ( + ) = ( + ) + 

  · ( · ) = ( · ) · 

  ·  ( + ) = ( · ) + ( · )

 Addition identity is 0 and multiplication identity is 1.
  + 0 = 0 +  = 

  · 1 = 1 ·  = 

 Inverse of addition and inverse of multiplication
  + (- ) = 0

  ·  -1 = 1



Vectors

 Vectors have magnitude (or length) and direction.

 Physical quantities, such as velocity or force, are 
vectors.

 Directed line segments used in computer graphics are 
vectors.

 Vectors do not have a fixed position in space.



Points

 Points have a position in space.

 Operations with points and vectors:
 Point-point subtraction creates a vector.

 Point-vector addition creates points.

P

Q

v

v = P – Q

P = Q + v



Specifying Vectors

 2D Vector: (x, y)

 3D Vector: (x, y, z)

+x

+y

2D Vector

3D Vector
Vector from the origin O(0, 0, 0) 
to the point P(1, -3, -4)

+x

+y

(1, -3, -4)
(0, 0, 0)

+z



Examples of 2D vectors

+X  -X  

Point (2, -5)

Vector [2, 1]

-Y

+Y  

Vector [-1, -4]

Vector [-2, 3]

Vector [2, -5]

Vector [3, 0]

Vector [0, -4]

Vector [3, 0]

Vector [2, -3]



 zero vector

 vector negation

 vector/scalar multiply

 add & subtract two vectors

 vector magnitude (length)

 normalized vector

 distance formula

 vector product
 dot product

 cross product

Vector Operations



The Zero Vector

 The three-dimensional zero vector is 
(0, 0, 0).

 The zero vector has zero magnitude. 

 The zero vector has no direction. 



Negating a Vector

 Every vector v has a negative vector –v: v + (-v) = 0

 Negative vector
-(a1, a2, a3, … , an) = (-a1, -a2, -a3, …, -an)

 2D, 3D, 4D vector negation
-(x, y) = (-x, -y)

-(x, y, z) = (-x, -y, -z)

-(x, y, z, w) = (-x, -y, -z, -w)

(2, 2)

(-2, -2)

(0, 3)

(0, -3)

(3, 5, -1)

(-3, -5, 1)



Vector-Scalar Multiplication

 Vector scalar multiplication
 * (x, y, z) = (x, y, z)

 Vector scale division
1/ * (x, y, z) = (x/, y/, z/)

 Example:
2 * (4, 5, 6) = (8, 10, 12)

½ * (4, 5, 6) = (2, 2.5, 3)

-3 * (-5, 0, 0.4) = (15, 0, -1.2)

3u + v = (3u) + v

v 2v 0.5v



Vector Addition and Subtraction

 Vector Addition
 Defined as a head-to-tail axiom

(x1, y1, z1) + (x2, y2, z2) = (x1+x2, y1+y2, z1+z2)

u + v = v + u

 Vector Subtraction

(x1, y1, z1) – (x2, y2, z2) = (x1-x2, y1-y2, z1-z2)

u - v = -(v – u)
u+v v

u
v

u

v+u

u v

v-u
u-v

u v

a

b

c
d

a+b+c+d



 The displacement vector from the point P to the point Q
is calculated as q – p.

Vector Addition and Subtraction

+x  -x  

-y   

+y  

q - pp

q

p + q

P

Q



 Vector magnitude (or length):

Examples:

Vector Magnitude (Length)



Vector Magnitude

V

xv
+x-x  

Vector [3, 3]

-y   

+y  

y
v



Normalized Vectors

 There is case where you only need 
the direction of the vector, 
regardless of the vector length.

 The unit vector has a magnitude of 
1.

 The unit vector is also called as 
normalized vectors or normal.

 “Normalizing” a vector: 1



Distance

 The distance between two 
points P and Q is calculated as 
follows.
 Vector p

 Vector q

 Displacement vector d = q - p

 Find the length of the vector d.

 distance(P, Q) =║d║=║q - p║

P

Q

q

p
d = q - p



Vector Dot Product

 Dot product between two vectors: u • v
(u1, u2, u3, … , un)· (v1, v2, v3, …, vn) =

u1v1+ u2v2+ … + un-1vn-1+unvn

or

 Example:
(4, 6) . (-3, 7) = 4*-3 + 6*7 = 30
(3, -2, 7) . (0, 4, -1) = 3*0 + -2*4 + 7*-1 = -15



Vector Dot Product

 The dot product of the two vectors is the cosine of the 
angle between two vectors (assuming they are 
normalized).

θ

v

u



Dot Product as Measurement of Angle

a



b1

b0

b2

 The following is the characteristics of the dot product. 



Projecting One Vector onto Another

 Given two vectors, w and v, one vector w can be divided 
into parallel and orthogonal to the other vector v.  

w = wpar + wper

w = v + u

u must be orthogonal to v, u • v = 0

w• v = (v + u) • v = v • v + u • v = v • v w = v + u

v

u

v




Projecting One Vector onto Another

If v is a unit vector, 
then

v

u

v


|w| cos

W =  v + u



 Cross product: u x v

(x1, y1, z1) x (x2, y2, z2) = ( y1z2 - z1y2, 

z1x2 - x1z2,  

x1y2 - y1x2 )

 Example: 

(1, 3, -4) x (2, -5, 8) = ( 3*8 – (-4)*(-5),                                       
(-4)*2 – 1*8,
1*(-5) – 3*2 )

= (4, -16, -11)

Vector Cross Product

θ

u

v

u x v



Vector Cross Product

 The magnitude of the cross product between two 
vectors, |(u x v)|, is the product of the magnitude of 
each other and the sine of the angle between the two 
vectors.

 The area of the parallogram is calculated as bh.
v

θ

u

u x v

a

b

θ

h



Vector Cross Product

 In the left-handed coordinate system, when the vectors
u and v move in a clockwise turn, u x v points in the 
direction toward us, and when moving in a counter-
clockwise turn, u x v points in the direction away from us.

 In the right-handed coordinate system, when the vectors
u and v move in a counter-clockwise turn, u x v points in 
the direction toward us, and when moving in a clockwise 
turn, u x v points in the direction away from us.

ba
ab

Left-handed Coordinates

Clockwise turn

Counterclockwise turn

Right-handed Coordinates



Linear Algebra Identities



Linear Algebra Identities



Geometric Objects

 Line
 2 points

 Plane
 3 points

 3D objects
 Defined by a set of triangles

 Simple convex flat polygons

 hollow



Lines

 Line is point-vector addition (or subtraction of two 
points). 

 Line parametric form: P() = P0 + v
 P0 is arbitrary point, and v is arbitrary vector

 Points are created on a straight line by changing the parameter.

 v = R – Q

P = Q + v = Q + (R – Q) = R + (1 - )Q 

 P = 1R + 2Q where 1 + 2 = 1

Q

v

P() = Q  +  v
= Q + (R – Q) =  R + (1 - )QR

 = 0

 = 1



Lines, Rays, Line Segments

 The line is infinitely long in both directions.

 A line segment is a piece of line between two 
endpoints. 0 <=  <= 1

 A ray has one end point and continues infinitely in 
one direction.  >= 0

 Line:

p() = p0 + d (parametric)

y = mx + b (explicit) 

ax + by = d (implicit)

p•n = d

=0

=1

p0

d

b
d: distance

n: normal



Convexity

 An object is convex if only if for any two points in the 
object all points on the line segment between these 
points are also in the object.

P

Q Q

P

convex not convex



Convex Hull

 Smallest convex object containing P1,P2,…..Pn

 Formed by “shrink wrapping” points



Affine Sums

 The affine sum of the points defined by P1,P2,…..Pn is 

P=1P1+ 2P2+…..+ nPn 

Can show by induction that this sum makes sense iff

1+ 2+….. n=1

 If, in addition, i>=0, i=1,2, ..,n, we have the convex 
hull of P1,P2,…..Pn.

 Convex hull {P1,P2,…..Pn}, you can see that it includes all 
the line segments connecting the pairs of points.



Linear/Affine Combination of Vectors

 Linear combination of m vectors
 Vector v1, v2, .. vm

 w = 1v1 + 2v2 + … mvm where 1, 2, .. m are scalars

 If the sum of the scalar values, 1, 2, .. m is 1, it 
becomes an affine combination. 
 1 + 2 + .. + m = 1



Convex Combination

 If, in addition, i>=0, i=1,2, ..,n, we have the convex 
hull of P1,P2,…..Pn.

 Therefore, the linear combination of vectors satisfying 
the following condition is a convex.

1 + 2 + .. + m = 1

and

i ≥ 0 for i=1,2, .. m

i is between 0 and 1

 Convexity
 Convex hull



Plane

 A plane can be defined by a point and two vectors or 
by three points.

 Suppose 3 points, P, Q, R

 Line segment PQ
 S() = P + (1 - )Q

 Line segment SR
 T() = S + (1 - )R

 Plane defined by P, Q, R
 T(, ) = (P + (1 - )Q) + (1 - )R

= P + (1 - )(Q - P) + (1 - )(R - P)

 For 0≤ , ≤1, we get all points in triangle, T(, ).

R

QP
S()

T(, )



Plane

 Plane equation defined by a point P0 and two non 
parallel vectors, u, v
 T(, ) = P0 + u + v

 P - P0 = u + v (P is a point on the plane)

 Using n (the cross product of u, v), the plane equation 
is as follows
 n •(P - P0) = 0 (where n = u x v and n is a normal vector)



n [a,b,c]

P

P0

Plane

 The plane is represented by a normal vector n and a 
point P0 on the plane. 
 Plane (n, d) where n (a, b, c)

 ax + by + cz + d = 0

 n•p + d = 0

d = -n•p

 For point p on the plane, n•(p - p0) =0

 If the plane normal n is a unit vector, then n•p + d 
gives the shortest signed distance from the plane to 
point p: d = -n•p



Relationship between Point and Plane

 Relationship between point p and plane (n, d)
 If n•p + d = 0, then p is in the plane.

 If n•p + d > 0, then p is outside the plane.

 If n•p + d < 0, then p is inside the plane.

n [a,b,c]

P

P0



Plane Normalization 

 Plane normalization
 Normalize the plane normal vector

 Since the length of the normal vector affects the constant d, 
d is also normalized.



Computing a Normal from 3 Points in 
Plane

 Find the normal from the polygon’s vertices.
 The polygon’s normal computes two non-collinear edges. 

(assuming that no two adjacent edges will be collinear)

 Then, normalize it after the cross product.

void computeNormal(vector P1, vector P2, vector P3) {
vector u, v, n, y(0, 1, 0);
u = P1 – P2;
v = P3 – P2;
n = cross(u, v);
if (n.length()==0)

return y;
else

return n.normalize();
}

u

v

n P1

P2

P3



Computing a Distance from Point to 
Plane

 Find the closest distance to a plane (n, d) in space and 
a point Q out of the plane.
 The plane’s normal is n, and D is the distance between a point 

P and a point Q on the plane.

n [a,b,c]

P (x,y,z)

Q (x0,y0,z0)

w



Closest Point on the Plane

 Find a point P on the plane (n, d) closest to one point
Q in space.
 p = q – kn (k is the shortest signed distance from point Q to 

the plane)

 If n is a unit vector, 

k = n•q + d

p = q – (n•q + d)n

n[a,b,c]

P (x, y, z)

Q (x0,y0,z0)

q = p + knk



Intersection of Ray and Plane

 Ray p(t) = p0 + tu & plane p•n + d = 0

 Ray/Plane intersection:

 If the ray is parallel to the plane, the denominator 
u•n=0. Thus, the ray does not intersect the plane.

 If the value of t is not in the range [0, ∞), the ray does 
not intersect the plane.



n[a,b,c] u

p0

p(x,y,z)

t



 Matrix M (r x c matrix)
 Row of horizontally arranged matrix elements

 Column of vertically arranged matrix elements 

 Mij is the element in row i and column j

Matrix

c(2) columns

r(2) rows



Matrix

4 0 12

-5 4 3

12 ⅜ -1

1/2 18 0

4x3 
matrix

2 -4 7 ⅞ 8

-3 4 ⅜ 0 1

2x5 
matrix

Mij is the element in row i and column j

m12= -4

m42= 18



Square Matrix

 The n x n matrix is called an n-th square matrix. e.g. 
2x2, 3x3, 4x4

 Diagonal elements vs. Non-diagonal elements

m11 m12 m13

M = m21 m22 m23

m31 m33 m33

Diagonal 
elements

Nondiagonal 
elements



Identity Matrix

 The identity matrix is expressed as I.

 All of the diagonals are 1, the remaining elements are 
0 in n x n square matrix.

 M I = I M = M

1 0 0

I = 0 1 0

0 0 1



Vectors as Matrices

 The n-dimension vector is expressed as a 1xn matrix 
or an nx1 matrix.
 1xn matrix is a row vector (also called a row matrix)

 nx1 matrix is a column vector (also called a column matrix)

a11

A = a21

a31

A = a11 a12 a13



Transpose Matrix

 Transpose of M (rxc matrix) is denoted by MT and is 
converted to cxr matrix.
 MT

ij
= Mji

 (MT)T = M

 DT = D for any diagonal matrix D.

a m c a d g

d e f = m e h

g h i c f i

T



Transposing Matrix

1 4 7 10

2 5 8 11

3 6 9 12

1 2 3

4 5 6

7 8 9

10 11 12

x

y

z

T

=

x y z=

T



Matrix Scalar Multiplication

 Multiplying a matrix M with a scalar  =  M

m11 m12 m13

M = m21 m22 m23

m31 m33 m33



= m11 m12 m13

m21 m22 m23

m31 m33 m33



Two Matrices Addition

 Matrix C is the addition of A (r x c matrix) and B (r x c 
matrix), which is a r x c matrix.

 Each element cij is the sum of the ijth element of A 
and the ijth element of B. 



1 3 6 3 7 1 4 10 7

10 0 -5 + 6 4 9 = 16 4 4

4 7 2 8 -9 4 12 -2 6

r x c r x c r x c

ijijij bac  1+3



Two Matrices Multiplication

 Matrix C(rxc matrix) is the product of A (rxn matrix)
and B (nxc matrix). 

 Each element cij is the vector dot product of the ith

row of A and the jth column of B. 



1 3 6 3 7 1 69 -35 52

10 0 -5 * 6 4 9 = -10 115 -10

4 7 2 8 -9 4 70 38 75

r x n n x c r x c
must match columns in result

rows in result





n

k

kjikij bac
1

3+18+48



Multiplying Two Matrices

c11 c12 c13 c14 c15

c21 c22 c23 c24 c25

c31 c32 c33 c34 c35

c41 c42 c43 c44 c45

m11 m12 m13 m14 m15

m21 m22 m23 m24 m25

a11 a12

a21 a22

a31 a32

a41 a42

=

c24 = a21m14 + a22m24



Matrix Operation

 MI = IM = M (I is identity matrix)

 A + B = B + A : matrix addition commutative law

 A + (B + C) = (A + B) + C : matrix addition associative 
law

 AB ≠BA : Not hold matrix product commutative law

 (AB)C = A(BC) : matrix product associative law 

 ABCDEF = ((((AB)C)D)E)F = A((((BC)D)E)F) = (AB)(CD)(EF)

 (AB) = (A)B = A(B) : Scalar-matrix product

 (A) = ()A

 (vA)B = v (AB)

 (AB)T = BT AT

 (M1M2M3 … Mn-1Mn)
T = Mn

TMn-1
T … M3

TM2
TM1

T



Matrix Determinant

 The determinant of a square matrix M is denoted by 
|M| or “det M”.

 The determinant of non-square matrix is not defined.

|M| = m11 m12 = m11 m22 - m12 m21

m21 m22

|M| = m11 m12 m13 = m11 (m22 m33 - m23 m32)+

m21 m22 m23 m12 (m23 m31 - m21 m33)+

m31 m32 m33 m13 (m21 m32 - m22 m31)



Inverse Matrix

 Inverse of M (square matrix) is denoted by M-1.



 (M-1)-1 =M

 M(M-1) = M-1M = I

 The determinant of a non-singular matrix (i.e, invertible) 
is nonzero.

 The adjoint of M, denoted “adj M” is the transpose of 
the matrix of cofactors.

adjM = c11 c12 c13

c21 c22 c23

c31 c32 c33

T

M

adjM
M 1



Cofactor of a Square Matrix 
& Computing Determinant using Cofactor

 Cofactor of a square matrix M at a given row and 
column is the signed determinant of the corresponding 
Minor of M.

 Cij = (-1)ij | M{ij} |

 Calculation of n x n determinant using cofactor: 









n

j

ijji

ij

n

j

ijij MmcmM
1

}{

1

)1(

|M| = m11 m12 m13 m14 = m11 m22 m23 m24

m21 m22 m23 m24 m32 m33 m34

m31 m32 m33 m34 m42 m43 m44

m41 m42 m43 m44 - m12
|M{12}|

+m13
|M{13}|

- m14
|M{14}|



Minor of a Matrix

 The submatrix M{ij} is known as a minor of M, obtained 
by deleting row i and column j from M.

M = -4 -3 3 M{12} = 0 -2

0 2 -2 1 -1

1 4 -1



Determinant, Cofactor, Inverse Matrix



Determinant, Cofactor, Inverse Matrix



Multiplying a Vector and a Matrix

x y z

xpx +yqx+zrx xpy +yqy+zry xpz +yqz+zrz=

=  xp + yq + zr

px py pz

qx qy qz

rx ry rz

 A coordinate space transformation can be expressed 
using a vector-matrix product. 

uM = v // matrix M converts vector u to vector v



v  =  M * u

Multiplying a Vector and a Matrix

m11 m12 m13

m21 m22 m23

m31 m32 m33

x

y

z

xm11 +y m12+z m13

x m21 +y m22+z m23

x m31 +y m32+z m33

=

 Vector-matrix multiplication in Unity (Column-Major 
Order)

v = M * u // matrix M converts vector u to vector v



Mathf Class

 Mathf
 Unity’s Mathf class provides a collection of common math 

functions, including trigonometric, logarithmic, etc.

 Trigonometric (work in radians)

 Sin, Cos, Tan, Asin, Acos, Atan, Atan2

 Powers and Square Roots

 Pow, Sqrt, Exp, ClosestPowerOfTwo, NextPowerOfTwo, 
IsPowerOfTwo

 Interpolation

 Lerp, LerpAngle, LerpUnclamped, InverseLerp, MoveTowards, 
MoveTowardsAngle, SmoothDamp, SmoothDampAngle, 
SmoothStep

 Limiting and repeating values

 Max, Min, Repeat, PingPong, Clamp, Clamp01, Ceil, Floor

 Logarithmic

 Log



Vector3 Struct

 Vector3
 Representation of 3D vectors and points.

 This structure is used throughout Unity to pass 3D positions 
and directions around. It also contains functions for doing 
common vector operations.

 The Quaternion and the Matrix4x4 classes are useful for 
rotating or transforming vectors and points.

C# struct is the value type (allocated on the stack)



Matrix4x4 Struct

 Matrix4x4
 A standard 4x4 transformation matrix. Matrix4x4 is struct

 A transformation matrix can perform arbitrary linear 3D 
transformations (i.e. translation, rotation, scale, shear etc.) and 
perspective transformations using homogenous coordinates. 

 You rarely use matrices in scripts; most often using Vector3, 
Quaternions, and functionality of Transform class is more 
straightforward. 

 In Unity, Matrix4x4 is used by several Transform, Camera, 
Material and GL functions.

 Matrices in unity are column major. 

C# struct is the value type (allocated on the stack)



Plane Struct

 Plane
 Representation of a plane in 3D space.

 A plane can also be defined by the three corner points of a 
triangle that lies within the plane. In this case, the normal 
vector points toward you if the corner points go around 
clockwise as you look at the triangle face-on.

C# struct is the value type (allocated on the stack)



Quaternion Struct

 Quaternion
 Quaternions are used to represent rotations.

 The Quaternion functions that you use 99% of the time are: 

 Quaternion.LookRotation

 Quaternion.Angle

 Quaternion.Euler

 Quaternion.Slerp

 Quaternion.FromToRotation

 Quaternion.identity

C# struct is the value type (allocated on the stack)


