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3D Transformations

0O In general, three-dimensional transformation can be
thought of as an extension of two-dimensional
transformation.

0 The basic principles of three-dimensional translation,
scaling, shearing are the same as those of two-
dimensional.

0 However, three-dimensional rotation is a bit more
complicated.



3D Translation




3D Scale
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3D Shear
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R'(0) = R(-6)

3D Rotation R (6)=R"(6)
0 3D rotation In Z-axis
X' = X CcosO —y sind
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3D Rotation

o 3D rotation in X-axis
y' =y cosO — z sinf
Z' =y sinG + z cosH
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3D Rotation

O 3D rotation in Y-axis
X' = x cosO + z sin®
Z' = -x sin® + z cosO
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3D Rotation about the Origin

O A rotation by 6 about an arbitrary axis can be
decomposed into the concatenation of rotations
about the x, y, and z axes.

R(6) = R,(6,)Ry(6y)Ry(6y)
0y, 6y, 0, are called the Euler angles. @/
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Rotation About a Pivot other than the

0 Move fixed point to origin, rotate, and then move fixed

Origin
point back.
oM =T(py) Rz (0) T(-py)
(cos® —sm 0
sm 0 cos 0
M =
0 0
0 0

Y

’
- f
[ ]
”
#
’
,
,
’
s
s
s
/
r
’
3
e

_b.ﬁ“r."!

X

/

4

Y

0

0
1
0

L
)7

X, —x,c080+y, sin0|
Yy,=X,smb0-y, cost
0

z




3D Rotation about an Arbitrary Axis

o Move P, to the origin. y
0 Rotate twice to align the A
arbitrary axis u with the Z-
axis.

0 Rotate by O in Z-axis.

o Undo two rotations (undo
alignment).

0 Move back to P,,.

Z

.........
9

.

*
L4 .
.........



3D Rotation about an Arbitrary Axis

O The translation matrix, T(-Py)
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3D Rotation about an Arbitrary Axis

O The rotation-axis vector y
U= P2 — P1
= (X = X4, Yo — Y1, 2o — Z4)
O Normalize u:
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0 Rotate along x-axis until v hits xzz-,o/ane

0 Rotate along y-axis until v hits z-axis



3D Rotation about an Arbitrary Axis

o Find 0, and 0,

vV = (a,, aLy, o) >"
o’ + o’ + a’ =1
X y z
o Direction cosines: a,a, a)
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3D Rotation about an Arbitrary Axis

0 Compute x-rotation 6, y
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3D Rotation about an Arbitrary Axis

o Compute y-rotation 9, y
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3D Rotation about an Arbitrary Axis

O Rotation about the z axis

cos§ —sm@ 0 0O
n @ 0 0O O
0 0 0 1

o Undo alignment, R, (-0,)R, (-0,)
0 Undo translation, T(Py)

0 M =T(F)R.(-0,)R,(—0,)R_(O)R,(0,)R (0,)T (-F))



3D Rotation about an Arbitrary Axis
Using Rotation Vectors

0 3D rotation can be expressed as 4 numbers of one
angle of rotation about an arbitrary axis (ax, ay, az).

O It consists of a unit vector a (x, y, z) representing an
arbitrary axis of rotation and a value of 6 (0~360
degrees) representing the rotation angle around the
unit vector.

0o 3D rotation vector

+Z



3D Rotation about an Arbitrary Axis

0 From axis/angle, we make the following rotation matrix.

R =1cos@+Symmetric (1-cosf)+Skew sn &

1 0 0] a, aa, aa, 0 -a, a,
=10 1 Ofcos@+|aa, a, aa,|l-cosd)+| a, 0 ~—a |snb
0 0 1] aa, aa, a —a, a, 0
i a’ +cosO(1-a’) aa (l1-cosf)-a,smn6 a.a,(l-cosf)+a, smd
=|a.a,(1-cos@)+a,sm§  a, +cosO(l-a;)  a,a,(1-cosd)—a,snb

a,a,(1-cosf)—a,snd aa,(l-cosd)+a,sind a’ +cosf(1-a’)




3D Rotation as Vector Components

0 3D rotation by 6 around the arbitrary axis a =[a,, a,, a]
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3D Rotation as Vector Components

X a, a, &
¥ |=| Symmetric| | a, | (1-cos0)+SKkew| | a, | |sinB+IcosB | v
| z' | | a, | | a, | | Z |

0 The vector g specifies the axis of rotation. This axis
vector must be normalized.

O The rotation angle is given by q.

O The basic idea is that any rotation can be decomposed
into weighted contributions from three different
vectors.



3D Rotation as Vector Components

O 7he symmetric matrix of a vector generates a vector in
the direction of the axis.

0 The symmetric matrix is composed of the outer
product of a row vector and an column vector of the
same value.
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3D Rotation as Vector Components

O Skew symmetric matrix of a vector generates a vector
that is perpendicular to both the axis and it's input
vector.
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3D Rotation as Vector Components

O First, consider a rotation by 0. :
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O For instance, a rotation about the x-axis:
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3D Rotation as Vector Components

O For instance, a rotation about the y-axis:
(0] ) [0 0 O] (0 0 1] (1 0 0]
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O For instance, a rotation about the z-axis:
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