Transformation

Fall 2023
10/12/2023
Kyoung Shin Park
Computer Engineering
Dankook University

3D Transformations

- In general, three-dimensional transformation can be thought of as an extension of two-dimensional transformation.
- The basic principles of three-dimensional translation, scaling, shearing are the same as those of twodimensional.
- However, three-dimensional rotation is a bit more complicated.

3D Translation

$$
\begin{aligned}
& p^{\prime}=p+d \\
& p=\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right] \quad p^{\prime}=\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right] \quad d=\left[\begin{array}{c}
d x \\
d y \\
d z \\
0
\end{array}\right], \\
& p^{\prime}=T p
\end{aligned} \quad T=\left[\begin{array}{llll}
1 & 0 & 0 & d x \\
0 & 1 & 0 & d y \\
0 & 0 & 1 & d z \\
0 & 0 & 0 & 1
\end{array}\right] \quad T^{-1}=\left[\begin{array}{cccc}
1 & 0 & 0 & -d x \\
0 & 1 & 0 & -d y \\
0 & 0 & 1 & -d z \\
0 & 0 & 0 & 1
\end{array}\right] .
$$

3D Scale

$$
\begin{aligned}
& {\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
s x & 0 & 0 & 0 \\
0 & s y & 0 & 0 \\
0 & 0 & s z & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]} \\
& p^{\prime}=S p \quad S=\left[\begin{array}{cccc}
s x & 0 & 0 & 0 \\
0 & s y & 0 & 0 \\
0 & 0 & s z & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad S^{-1}=\left[\begin{array}{cccc}
\frac{1}{s x} & 0 & 0 & 0 \\
0 & \frac{1}{s y} & 0 & 0 \\
0 & 0 & \frac{1}{s z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

3D Shear

$$
\begin{aligned}
& x^{\prime}=x+y \cot \theta \\
& y^{\prime}=y \\
& z^{\prime}=z
\end{aligned}
$$

$$
\mathbf{H}_{x y}(\theta)=\left[\begin{array}{cccc}
1 & \boldsymbol{\operatorname { c o t }} \theta & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$\tan \theta=\frac{y}{x^{\prime}-x} \Rightarrow \cot \theta=\frac{x^{\prime}-x}{y}$

3D Rotation

$$
\begin{aligned}
& R^{-1}(\theta)=R(-\theta) \\
& R^{-1}(\theta)=R^{T}(\theta)
\end{aligned}
$$

- 3D rotation in Z-axis

$$
\begin{aligned}
& x^{\prime}=x \cos \theta-y \sin \theta \\
& y^{\prime}=x \sin \theta+y \cos \theta \\
& z^{\prime}=z
\end{aligned}
$$

3D Rotation

- 3D rotation in X -axis

$$
\begin{aligned}
& y^{\prime}=y \cos \theta-z \sin \theta \\
& z^{\prime}=y \sin \theta+z \cos \theta \\
& x^{\prime}=x
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \theta & -\sin \theta & 0 \\
0 & \sin \theta & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]} \\
& P^{\prime}=R_{X}(\theta) \cdot P
\end{aligned}
$$

3D Rotation

- 3D rotation in Y-axis
$x^{\prime}=x \cos \theta+z \sin \theta$
$z^{\prime}=-x \sin \theta+z \cos \theta$
$y^{\prime}=y$

3D Rotation about the Origin

- A rotation by θ about an arbitrary axis can be decomposed into the concatenation of rotations about the x, y, and z axes.

$$
\mathbf{R}(\theta)=\mathbf{R}_{\mathbf{Z}}\left(\theta_{Z}\right) \mathbf{R}_{\mathbf{Y}}\left(\theta_{\mathbf{Y}}\right) \mathbf{R}_{\mathbf{X}}\left(\theta_{\mathbf{X}}\right)
$$

$\theta_{X}, \theta_{Y}, \theta_{Z}$ are called the Euler angles.

Rotation About a Pivot other than the Origin

- Move fixed point to origin, rotate, and then move fixed point back.
- $\mathbf{M}=\mathbf{T}\left(p_{f}\right) \mathbf{R}_{\mathbf{Z}}(\theta) \mathbf{T}\left(-p_{f}\right)$

3D Rotation about an Arbitrary Axis

- Move P_{0} to the origin.
- Rotate twice to align the arbitrary axis u with the Zaxis.
- Rotate by θ in Z-axis.
- Undo two rotations (undo alignment).
- Move back to P_{0}.

$$
M-T\left(P _ { 0 } R _ { x } (- \theta _ { x }) R _ { y } (- \theta _ { y }) R _ { z } (\theta) R _ { v } (\theta _ { y }) R _ { x } \left(\theta_{x} T\left(-P_{0}\right)\right.\right.
$$

3D Rotation about an Arbitrary Axis

- The translation matrix, $\mathrm{T}\left(-\mathrm{P}_{0}\right)$

$$
T=\left[\begin{array}{cccc}
1 & 0 & 0 & -x_{0} \\
0 & 1 & 0 & -y_{0} \\
0 & 0 & 1 & -z_{0} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

3D Rotation about an Arbitrary Axis

- The rotation-axis vector

$$
\begin{aligned}
u & =P_{2}-P_{1} \\
& =\left(x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}\right)
\end{aligned}
$$

- Normalize u:

$$
v=\frac{u}{\|u\|}=\left[\begin{array}{c}
\alpha_{x} \\
\alpha_{y} \\
\alpha_{z}
\end{array}\right]
$$

- Rotate along x-axis until v hits $x z-p l a n e$
- Rotate along y-axis until v hits z-axis

3D Rotation about an Arbitrary Axis

\square Find θ_{x} and θ_{y}

$$
\begin{aligned}
& v=\left(\alpha_{x^{\prime}} \alpha_{y^{\prime}} \alpha_{z}\right) \\
& \alpha_{x}^{2}+\alpha_{y}^{2}+\alpha_{z}^{2}=1
\end{aligned}
$$

- Direction cosines:

$$
\begin{aligned}
& \cos \phi_{x}=\alpha_{x} \\
& \cos \phi_{y}=\alpha_{y} \\
& \cos \phi_{z}=\alpha_{z} \\
& \cos ^{2} \phi_{x}+\cos ^{2} \phi_{y}+\cos ^{2} \phi_{z}=1
\end{aligned}
$$

3D Rotation about an Arbitrary Axis

- Compute x-rotation θ_{x}

$$
\begin{aligned}
& R_{x}\left(\theta_{x}\right)=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \frac{\alpha_{z}}{d} & -\frac{\alpha_{y}}{d} & 0 \\
0 & \frac{\alpha_{y}}{d} & \frac{\alpha_{z}}{d} & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& d=\sqrt{\alpha_{y}^{2}+\alpha_{z}^{2}}
\end{aligned}
$$

3D Rotation about an Arbitrary Axis

- Compute y-rotation θ_{y}

$$
\begin{aligned}
& R_{y}\left(\theta_{y}\right)=\left[\begin{array}{cccc}
d & 0 & -\alpha_{x} & 0 \\
0 & 1 & 0 & 0 \\
\alpha_{x} & 0 & d & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& d=\sqrt{\alpha_{y}^{2}+\alpha_{z}^{2}}
\end{aligned}
$$

3D Rotation about an Arbitrary Axis

- Rotation about the z axis

$$
R_{z}\left(\theta_{z}\right)=\left[\begin{array}{cccc}
\cos \theta & -\sin \theta & 0 & 0 \\
\sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- Undo alignment, $\mathrm{R}_{\mathrm{x}}\left(-\theta_{x}\right) \mathrm{R}_{\mathrm{y}}\left(-\theta_{y}\right)$
- Undo translation, $\mathrm{T}\left(\mathrm{P}_{0}\right)$
$\square M=T\left(P_{0}\right) R_{x}\left(-\theta_{x}\right) R_{y}\left(-\theta_{y}\right) R_{z}(\theta) R_{y}\left(\theta_{y}\right) R_{x}\left(\theta_{x}\right) T\left(-P_{0}\right)$

3D Rotation about an Arbitrary Axis Using Rotation Vectors

- 3D rotation can be expressed as 4 numbers of one angle of rotation about an arbitrary axis (ax, ay, az).
- It consists of a unit vector a (x, y, z) representing an arbitrary axis of rotation and a value of θ ($0 \sim 360$ degrees) representing the rotation angle around the unit vector.
- 3D rotation vector

3D Rotation about an Arbitrary Axis

ㅁ From axis/angle, we make the following rotation matrix.
$R=I \cos \theta+$ Symmetric $(1-\cos \theta)+$ Skew $\sin \theta$

$$
\begin{aligned}
& =\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \cos \theta+\left[\begin{array}{ccc}
a_{x}^{2} & a_{x} a_{y} & a_{x} a_{z} \\
a_{x} a_{y} & a_{y}^{2} & a_{y} a_{z} \\
a_{x} a_{z} & a_{y} a_{z} & a_{z}^{2}
\end{array}\right](1-\cos \theta)+\left[\begin{array}{ccc}
0 & -a_{z} & a_{y} \\
a_{z} & 0 & -a_{x} \\
-a_{y} & a_{x} & 0
\end{array}\right] \sin \theta \\
& =\left[\begin{array}{ccc}
a_{x}^{2}+\cos \theta\left(1-a_{x}^{2}\right) & a_{x} a_{y}(1-\cos \theta)-a_{z} \sin \theta & a_{x} a_{z}(1-\cos \theta)+a_{y} \sin \theta \\
a_{x} a_{y}(1-\cos \theta)+a_{z} \sin \theta & a_{y}^{2}+\cos \theta\left(1-a_{y}^{2}\right) & a_{y} a_{z}(1-\cos \theta)-a_{x} \sin \theta \\
a_{x} a_{z}(1-\cos \theta)-a_{y} \sin \theta & a_{y} a_{z}(1-\cos \theta)+a_{x} \sin \theta & a_{z}^{2}+\cos \theta\left(1-a_{z}^{2}\right)
\end{array}\right]
\end{aligned}
$$

3D Rotation as Vector Components

$\square 3 D$ rotation by θ around the arbitrary axis $a=\left[\begin{array}{lll}a_{x} & a_{y}, & a_{z}\end{array}\right]$

3D Rotation as Vector Components $=\cos \theta \bar{x}_{\perp}$

$$
\begin{aligned}
& \vec{w}=\vec{a} \times \vec{x}_{\perp} \\
& =\vec{a} \times\left(\vec{x}-\vec{x}_{\|}\right) \\
& =(\vec{a} \times \vec{x})-\left(\vec{a} \times \vec{x}_{\|}\right) \\
& =\vec{a} \times \vec{x} \\
& R\left(\vec{x}_{\perp}\right)=\cos \theta \vec{x}_{\perp}+\sin \theta \vec{w} \\
& R(\vec{x})=R\left(\vec{x}_{\|}+R(\vec{x} \perp)\right. \\
& =R\left(\vec{x}_{\| l}\right)+\cos \theta \vec{x}_{\perp}+\sin \theta \vec{w} \\
& =(\vec{a} \cdot \vec{x}) \vec{a}+\cos \theta(\vec{x}-(\vec{a} \cdot \vec{x}) \vec{a})+\sin \theta \ddot{\vec{w}} \\
& =\cos \theta \vec{x}+(1-\cos \theta)(\vec{a} \cdot \vec{a}) \vec{a}+\sin \theta(\vec{a} \times \vec{a}) \\
& \text { Symmetric Skew }
\end{aligned}
$$

3D Rotation as Vector Components

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right]=\left(\text { Symmetric }\left(\left[\begin{array}{l}
a_{x} \\
a_{y} \\
a_{z}
\end{array}\right]\right)(1-\cos \theta)+\text { Skew }\left(\left[\begin{array}{l}
a_{x} \\
a_{y} \\
a_{z}
\end{array}\right]\right) \sin \theta+\mathbf{I} \cos \theta\right)\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

- The vector a specifies the axis of rotation. This axis vector must be normalized.
- The rotation angle is given by q .
- The basic idea is that any rotation can be decomposed into weighted contributions from three different vectors.

3D Rotation as Vector Components

- The symmetric matrix of a vector generates a vector in the direction of the axis.
- The symmetric matrix is composed of the outer product of a row vector and an column vector of the same value.

Symmetric $\left(\left[\begin{array}{l}a_{x} \\ a_{y} \\ a_{z}\end{array}\right]\right)=\left[\begin{array}{l}a_{x} \\ a_{y} \\ a_{z}\end{array}\right]\left[\begin{array}{lll}a_{x} & a_{y} & a_{z}\end{array}\right]=\left[\begin{array}{ccc}a_{x}^{2} & a_{x} a_{y} & a_{x} a_{z} \\ a_{x} a_{y} & a_{y}^{2} & a_{y} a_{z} \\ a_{x} a_{z} & a_{y} a_{z} & a_{z}^{2}\end{array}\right]$
Symmetric $\left(\left[\begin{array}{l}a_{x} \\ a_{y} \\ a_{z}\end{array}\right]\right)\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\bar{a}(\bar{a} \cdot \bar{x})$

3D Rotation as Vector Components

- Skew symmetric matrix of a vector generates a vector that is perpendicular to both the axis and it's input vector.

$$
\begin{gathered}
\operatorname{Skew}\left(\left[\begin{array}{l}
a_{x} \\
a_{y} \\
a_{z}
\end{array}\right]\right)=\left[\begin{array}{ccc}
0 & -a_{z} & a_{y} \\
a_{z} & 0 & -a_{x} \\
-a_{y} & a_{x} & 0
\end{array}\right] \\
\operatorname{Skew}(\bar{a}) \bar{x}=\bar{a} \times \bar{x}
\end{gathered}
$$

3D Rotation as Vector Components

- First, consider a rotation by 0 . :

$$
\text { Rotate }\left(\left[\begin{array}{l}
a_{x} \\
a_{y} \\
a_{z}
\end{array}\right], 0\right)=\left[\begin{array}{ccc}
a_{x}^{2} & a_{x} a_{y} & a_{x} a_{z} \\
a_{x} a_{y} & a_{y}^{2} & a_{y} a_{z} \\
a_{x} a_{z} & a_{y} a_{z} & a_{z}^{2}
\end{array}\right](1-1)+\left[\begin{array}{ccc}
0 & -a_{z} & a_{y} \\
a_{z} & 0 & -a_{x} \\
-a_{y} & a_{x} & 0
\end{array}\right]+\left[\begin{array}{lll}
1 & 0 & 0 \\
0+ & 1 & 0 \\
0 & 0 & 1
\end{array}\right] 1=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

- For instance, a rotation about the x-axis:

$$
\begin{aligned}
& \text { Rotate }\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \theta\right)= {\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right](1-\cos \theta)+\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right] \sin \theta+\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \cos \theta } \\
& \text { Rotate }\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \theta\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right]
\end{aligned}
$$

3D Rotation as Vector Components

- For instance, a rotation about the y-axis:

$$
\begin{aligned}
\text { Rotate }\left(\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \theta\right)= & {\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right](1-\cos \theta)+\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right] \sin \theta+\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \cos \theta } \\
& \text { Rotate }\left(\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \theta\right)=\left[\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right]
\end{aligned}
$$

- For instance, a rotation about the z-axis:

$$
\begin{aligned}
\text { Rotate }\left(\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right], \theta\right)= & {\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right](1-\cos \theta)+\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \sin \theta+\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \cos \theta } \\
& \text { Rotate }\left(\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right], \theta\right)=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

