
Viewing

Fall 2023
11/2/2023

Kyoung Shin Park
Computer Engineering

Dankook University



Camera in Unity

 Camera

 A Unity scene represents GameObjects in a three-dimensional 

space. Since the viewer’s screen is two-dimensional, Unity 

needs to capture a view and “flatten” it for display. It does 

this using cameras. 

 In Unity, you create a camera by adding a Camera component 

to a GameObject.



Camera Components



Camera Components

Property: Function:

Clear Flags Determines which parts of the screen will be cleared. This is handy when using 
multiple Cameras to draw different game elements. Skybox is the default setting.

Background The color applied to the remaining screen after all elements in view have been d
rawn and there is no skybox.

Culling Mask Includes or omits layers of objects to be rendered by the Camera. Assigns layers 
to your objects in the Inspector.

Projection Toggles the camera’s capability to simulate perspective.

Perspective Camera will render objects with perspective intact.

Orthographic Camera will render objects uniformly, with no sense of perspective. NOTE: Deferr
ed rendering is not supported in Orthographic mode. Forward rendering is alw
ays used.

Size (when Orthographic i
s selected)

The viewport size of the Camera when set to Orthographic.

FOV Axis (when Perspectiv
e is selected)

Field of view axis.

Horizontal The Camera uses a horizontal field of view axis.

Vertical The Camera uses a vertical field of view axis.

Field of view (when Persp
ective is selected)

The Camera’s view angle, measured in degrees along the axis specified in the FO
V Axis drop-down.



UI Camera Setting in Unity

 Capsule(Player) contains Main Camera & UI Camera
 Main Camera – uncheck UI in CullMask, set Depth to 0

 UI Camera – select Depth only in Clear Flags, check only UI
in Cull Mask, set Depth to 1



UI Camera Setting in Unity

 Canvas – set Layer to UI, set Render Mode to Screen 
Space – Camera, set Render Camera to UICamera
 Then, Main Camera renders a scene

 while UI Camera renders UI only.



Viewer’s Perspective

 Before rendering the environment on the screen we 
consider the camera input such as (field of view, 
Projection mode [Orthographic or Perspective]).

Perspective camera Orthographic camera

https://docs.unity3d.com/Manual/CamerasOverview.html



Field of View

 A wide field of view shows more of the scene.

https://gamedevbeginner.com/how-to-zoom-a-camera-in-unity-3-methods-
with-examples/



Field of View

 A narrow field of view shows less of the camera image, 
zooming it in scene.

https://gamedevbeginner.com/how-to-zoom-a-camera-in-unity-3-methods-
with-examples/



Camera Components

Property: Function:

Clipping Planes Distances from the camera to start and stop rendering.

Near The closest point relative to the camera that drawing will occur.

Far The furthest point relative to the camera that drawing will occur.

Viewport Rect Four values that indicate where on the screen this camera view will be drawn. 
Measured in Viewport Coordinates (values 0–1).

X The beginning horizontal position that the camera view will be drawn.

Y The beginning vertical position that the camera view will be drawn.

W (Width) Width of the camera output on the screen.

H (Height) Height of the camera output on the screen.

Depth The camera’s position in the draw order. Cameras with a larger value will be d
rawn on top of cameras with a smaller value.

Rendering Path Options for defining what rendering methods will be used by the camera.

Forward Forward is the traditional rendering path.

Deferred Lighting Deferred Shading is the rendering path with the most lighting and shadow 
fidelity, and is best suited if you have many realtime lights. It requires a 
certain level of hardware support.

Legacy Vertex Lit Legacy Vertex Lit is the rendering path with the lowest lighting fidelity and no 
support for realtime shadows. It is a subset of Forward rendering path.

Legacy Deferred Legacy Deferred (light prepass) is similar to Deferred Shading, just using a 
different technique with different trade-offs. 



Viewport

 Viewport
 The space set inside the window. Drawing is restricted to inside 

the viewport.

Camera1 Viewport Rect
X:0 Y: 0 W:0.5 H:1

Camera2 Viewport Rect
X:0.5 Y: 0 W:0.5 H:1



Camera Components

Property: Function:

Target Texture Reference to a Render Texture that will contain the output of the Camera view
. Setting this reference will disable this Camera’s capability to render to the sc
reen.

Occlusion Culling Enables Occlusion Culling for this camera. Occlusion Culling means that objec
ts that are hidden behind other objects are not rendered, for example if they 
are behind walls. 

Allow HDR Enables High Dynamic Range rendering for this camera. 

Allow MSAA Enables multi sample antialiasing for this camera.

Allow Dynamic Resoluti
on

Enables Dynamic Resolution rendering for this camera.

Target Display Defines which external device to render to. Between 1 and 8.



Occlusion Culling

 Occlusion Culling is a feature that disables rendering 
of objects when they are not currently seen by the 
camera because they are obscured (occluded) by other 
objects. 

 This does not happen automatically in 3D computer 
graphics since most of the time objects farthest away 
from the camera are drawn first and closer objects are 
drawn over the top of them (this is called “overdraw”). 

 Occlusion Culling is different from Frustum Culling. 

 Frustum Culling only disables the renderers for objects 
that are outside the camera’s viewing area but does 
not disable anything hidden from view by overdraw. 

 Note that when you use Occlusion Culling you will still 
benefit from Frustum Culling.



Occlusion Culling

 A maze-like indoor level. This normal scene view 
shows all visible Game Objects.

https://docs.unity.com/Manual/OcclusionCulling.html



Occlusion Culling

 Regular frustum culling renders all Renderers within 
the Camera’s view.

https://docs.unity.com/Manual/OcclusionCulling.html



Occlusion Culling

 Occlusion culling removes Renderers that are entirely 
obscured by nearer Renderer.

https://docs.unity.com/Manual/OcclusionCulling.html



Hidden Surface

 Hidden surfaces provides the occlusion depth cue.

 In computer graphics, the term occlusion refers to 
objects that are close to the viewer to occlude objects 
that are far from the viewer.

 In the graphics pipeline, hidden surface removal is 
performed before shading and rasterization with 
occlusion culling.



Hidden Surface Removal

 Hidden Surface Removal Algorithm
 Object space technique – compare objects or parts of objects to 

determine which side and line are not visible as a whole.
 Depth-sorting algorithm – After aligning each side of the polygon 

according to the depth, it is drawn from the far one to front one. 
Also known as Painter’s algorithm.

 Binary Space Partitioning (BSP) tree – Using BSP tree, the space is 
continuously partitioned by separating front and back according to 
the viewer direction.

 Image space technique – act as part of the projection, and 
visibility is determined in units of points at the location of object 
pixels on each projection line.
 Z-buffer (depth buffer) – This is the most commonly used image 

space technique. By examining the visibility of an object in pixels, it 
draws the value of the plane with the smallest z (depth) value. We 
need a depth buffer (z-buffer) to store the z-value. 

 Ray-casting – It projects light (ray) through each pixel on the 
projection surface at the viewpoint, selects the object that first 
meets this light and draws the pixel. It is an effective hidden surface 
removal algorithm for curved surface.



Z-buffer



Z-buffer

 Polygon rendering means eventually being filled with 
pixels. 

 The color buffer contains RGB color per pixel to be 
drawn. 

 The depth buffer (Z-buffer) has depth information per 

pixel to be drawn.

Color buffer Depth buffer



Z-buffer Algorithm

 Whenever a new pixel is drawn, the Z-buffer algorithm 
compares the new depth information with the previous 
depth information in the z-buffer. 

 Polygons can be drawn in any direction and can 
intersect.

Color buffer Depth buffer



Depth Fighting

 The depth value of the Z-buffer has a limited resolution. 

 The overlap of polygons with a depth value that is very 
close to the depth buffer creates “depth-fighting”. 

 This is a phenomenon that occurs due to “floating point 
round-off errors” when polygons are drawn, where 
random parts of polygons flight for rendering each other. 



Depth Fighting

 There is very high precision at the near plane, but very 
little precision at the far plane.

 If the range [-n, -f] is getting larger, it causes a depth 
precision problem (z-fighting); a small change of 
ze around the far plane does not affect on zn value.

 The distance between n and f should be short as 
possible to minimize the depth buffer precision problem.



Depth Fighting

 Z-fighting can be reduced through the use of a higher 
resolution depth buffer, by z-buffering in some 
scenarios, or by simply moving the polygons further 
apart.

 Z-fighting that is caused by insufficient precision in the 
depth buffer can be resolved by simply reducing the 
visible distance in the world. This reduces the distance 
between the near and far planes and solves the 
precision issue.

 Another technique that is utilized to reduce or 
completely eliminate Z-fighting is switching to a 
logarithmic Z-buffer, reversing Z. Due to the way they 
are encoded, floating-point numbers have much more 
precision when closer to 0. Here, reversing Z leads to 
more precision when storing the depth of very distant 
objects, hence greatly reducing Z-fighting.



Planar Shadow [J. Blinn, 88]

sy = 0



Planar Shadow [J. Blinn, 88]

sx = lypx – lxpy+ 0pz

sy = 0
sz = 0px – lzpy + lypz

w = 0px – py +0pz +ly



Projection Shadow

p

n·p+d=0

L

s

Point light source (at Point L)



Projection Shadow



Projection Shadow Matrix



Shadow

Render with shadowRender without shadow



Reflection

http://www.gamasutra.com/features/19990723/opengl_texture_objects_02.htm



Planar Reflection

 How to calculate the reflection point, q’=(x0’, y0’, z0’) of 
the point, q=(x0, y0, z0) for the mirror plane (n, d)

The signed shortest distance from point q to plane

is k = n•q + d (if n is a unit vector)



Planar Reflection



Planar Reflection

 Reflection transformation matrix for the plane (yz-, xz-, 
xy-plane)

yz-plane Plane(1,0,0,0) xz-plane Plane(0,1,0,0) xy-plane Plane(0,0,1,0)


