Viewing

Fall 2023
11/2/2023
Kyoung Shin Park
Computer Engineering
Dankook University

Camera in Unity

- Camera
- A Unity scene represents GameObjects in a three-dimensional space. Since the viewer's screen is two-dimensional, Unity needs to capture a view and "flatten" it for display. It does this using cameras.
- In Unity, you create a camera by adding a Camera component to a GameObject.

Camera Components

Camera Components

Property: Function:

Clear Flags

Background

Culling Mask
Projection
Perspective
Orthographic

Determines which parts of the screen will be cleared. This is handy when using multiple Cameras to draw different game elements. Skybox is the default setting. The color applied to the remaining screen after all elements in view have been d rawn and there is no skybox.
Includes or omits layers of objects to be rendered by the Camera. Assigns layers to your objects in the Inspector.
Toggles the camera's capability to simulate perspective.
Camera will render objects with perspective intact.
Camera will render objects uniformly, with no sense of perspective. NOTE: Deferr ed rendering is not supported in Orthographic mode. Forward rendering is alw ays used.
Size (when Orthographic i The viewport size of the Camera when set to Orthographic. s selected)
FOV Axis (when Perspectiv Field of view axis.
e is selected)
Horizontal The Camera uses a horizontal field of view axis.
Vertical The Camera uses a vertical field of view axis.
Field of view (when Persp The Camera's view angle, measured in degrees along the axis specified in the FO ective is selected) V Axis drop-down.

UI Camera Setting in Unity

- Capsule(Player) contains Main Camera \& UI Camera
- Main Camera - uncheck U/ in CullMask, set Depth to 0
- UI Camera - select Depth only in Clear Flags, check only UI in Cull Mask, set Depth to 1

UI Camera Setting in Unity

- Canvas - set Layer to Ul, set Render Mode to Screen Space - Camera, set Render Camera to UlCamera
- Then, Main Camera renders a scene
- while UI Camera renders UI only.

Viewer's Perspective

- Before rendering the environment on the screen we consider the camera input such as (field of view, Projection mode [Orthographic or Perspective]).

Perspective camera

Orthographic camera

Field of View

ㅁ A wide field of view shows more of the scene.

https://gamedevbeginner.com/how-to-zoom-a-camera-in-unity-3-methods-with-examples/

Field of View

- A narrow field of view shows less of the camera image, zooming it in scene.

https://gamedevbeginner.com/how-to-zoom-a-camera-in-unity-3-methods-with-examples/

Camera Components

Property:	Function:
Clipping Planes	Distances from the camera to start and stop rendering.
Near	The closest point relative to the camera that drawing will occur.
Far	The furthest point relative to the camera that drawing will occur.
Viewport Rect	Four values that indicate where on the screen this camera view will be drawn. Measured in Viewport Coordinates (values 0-1).
X	The beginning horizontal position that the camera view will be drawn.
Y	The beginning vertical position that the camera view will be drawn.
W (Width)	Width of the camera output on the screen.
H (Height)	Height of the camera output on the screen.
Depth	The camera's position in the draw order. Cameras with a larger value will be d rawn on top of cameras with a smaller value.
Rendering Path	Options for defining what rendering methods will be used by the camera.
Forward	Forward is the traditional rendering path.
Deferred Lighting	Deferred Shading is the rendering path with the most lighting and shadow fidelity, and is best suited if you have many realtime lights. It requires a certain level of hardware support.
Legacy Vertex Lit	Legacy Vertex Lit is the rendering path with the lowest lighting fidelity and no support for realtime shadows. It is a subset of Forward rendering path. Legacy Deferred (light prepass) is similar to Deferred Shading, just using a
Legacy Deferred	Legferent technique with different trade-offs. diff

Viewport

- Viewport
- The space set inside the window. Drawing is restricted to inside the viewport.

Camera1 Viewport Rect Camera2 Viewport Rect X:0 Y: 0 W:0.5 H:1 X:0.5 Y: 0 W:0.5 H:1

Camera Components

Property:	Function:
Target Texture	Reference to a Render Texture that will contain the output of the Camera view - Setting this reference will disable this Camera's capability to render to the sc reen.
Occlusion Culling	Enables Occlusion Culling for this camera. Occlusion Culling means that objec ts that are hidden behind other objects are not rendered, for example if they are behind walls.
Allow HDR	Enables High Dynamic Range rendering for this camera.
Allow MSAA	Enables multi sample antialiasing for this camera.
Allow Dynamic Resoluti on	Enables Dynamic Resolution rendering for this camera.
Target Display	Defines which external device to render to. Between 1 and 8.

Occlusion Culling

- Occlusion Culling is a feature that disables rendering of objects when they are not currently seen by the camera because they are obscured (occluded) by other objects.
- This does not happen automatically in 3D computer graphics since most of the time objects farthest away from the camera are drawn first and closer objects are drawn over the top of them (this is called "overdraw").
- Occlusion Culling is different from Frustum Culling.
- Frustum Culling only disables the renderers for objects that are outside the camera's viewing area but does not disable anything hidden from view by overdraw.
- Note that when you use Occlusion Culling you will still benefit from Frustum Culling.

Occlusion Culling

- A maze-like indoor level. This normal scene view shows all visible Game Objects.

https://docs.unity.com/Manual/OcclusionCulling.html

Occlusion Culling

- Regular frustum culling renders all Renderers within the Camera's view.

https://docs.unity.com/Manual/OcclusionCulling.html

Occlusion Culling

- Occlusion culling removes Renderers that are entirely obscured by nearer Renderer.

https://docs.unity.com/Manual/OcclusionCulling.html

Hidden Surface

- Hidden surfaces provides the occlusion depth cue.
- In computer graphics, the term occlusion refers to objects that are close to the viewer to occlude objects that are far from the viewer.
- In the graphics pipeline, hidden surface removal is performed before shading and rasterization with occlusion culling.

Hidden Surface Removal

- Hidden Surface Removal Algorithm
- Object space technique - compare objects or parts of objects to determine which side and line are not visible as a whole.
- Depth-sorting algorithm - After aligning each side of the polygon according to the depth, it is drawn from the far one to front one. Also known as Painter's algorithm.
- Binary Space Partitioning (BSP) tree - Using BSP tree, the space is continuously partitioned by separating front and back according to the viewer direction.
- Image space technique - act as part of the projection, and visibility is determined in units of points at the location of object pixels on each projection line.
- Z-buffer (depth buffer) - This is the most commonly used image space technique. By examining the visibility of an object in pixels, it draws the value of the plane with the smallest z (depth) value. We need a depth buffer (z-buffer) to store the z-value.
- Ray-casting - It projects light (ray) through each pixel on the projection surface at the viewpoint, selects the object that first meets this light and draws the pixel. It is an effective hidden surface removal algorithm for curved surface.

Z-buffer

$$
z=10
$$

$$
z=2
$$

Color buffer

						-99999					
		10	10	10	10						
	2	10	10	10	10						
	2	10	10	10	10						
	2	10	10	10	10						
	2	2	2	2							

Z-buffer
(depth buffer)

Z-buffer

- Polygon rendering means eventually being filled with pixels.
- The color buffer contains RGB color per pixel to be drawn.
- The depth buffer (Z-buffer) has depth information per pixel to be drawn.

Color buffer

Depth buffer

Z-buffer Algorithm

- Whenever a new pixel is drawn, the Z-buffer algorithm compares the new depth information with the previous depth information in the z-buffer.
- Polygons can be drawn in any direction and can intersect.

Color buffer

Depth buffer

Depth Fighting

- The depth value of the Z-buffer has a limited resolution.
- The overlap of polygons with a depth value that is very close to the depth buffer creates "depth-fighting".
- This is a phenomenon that occurs due to "floating point round-off errors" when polygons are drawn, where random parts of polygons flight for rendering each other.

Depth Fighting

- There is very high precision at the near plane, but very little precision at the far plane.
- If the range $[-n,-f]$ is getting larger, it causes a depth precision problem (z-fighting); a small change of z_{e} around the far plane does not affect on z_{n} value.
- The distance between n and f should be short as possible to minimize the depth buffer precision problem.

Depth Fighting

- Z-fighting can be reduced through the use of a higher resolution depth buffer, by z-buffering in some scenarios, or by simply moving the polygons further apart.
- Z-fighting that is caused by insufficient precision in the depth buffer can be resolved by simply reducing the visible distance in the world. This reduces the distance between the near and far planes and solves the precision issue.
- Another technique that is utilized to reduce or completely eliminate \mathbf{Z}-fighting is switching to a logarithmic Z-buffer, reversing Z. Due to the way they are encoded, floating-point numbers have much more precision when closer to 0 . Here, reversing Z leads to more precision when storing the depth of very distant objects, hence greatly reducing Z-fighting.

Planar Shadow [J. Blinn, 88]

$$
\begin{aligned}
& {\left[\begin{array}{c}
\frac{l_{y}-p_{y}}{p_{x}-l_{x}}=\frac{l_{y}-0}{\mathbf{s}_{x}-l_{x}} \\
S_{x} \\
0 \\
1
\end{array}\right]=>\frac{\mathbf{s}_{x}-l_{x}}{p_{x}-l_{x}}=\frac{l_{y}-0}{l_{y}-p_{y}}} \\
& t=\frac{l_{y}}{l_{y}-p_{y}} \\
& \mathbf{s}_{x}=\frac{l_{y}\left(p_{x}-l_{x}\right)}{l_{y}-p_{y}}+l_{x} \\
& 0
\end{aligned}
$$

Planar Shadow [J. Blinn, 88]

$$
\begin{aligned}
& \mathbf{s}=l+\frac{l_{y}}{l_{y}-p_{y}}(p-l) \quad s_{x}=l_{x}+\frac{l_{y}}{l_{y}-p_{y}}\left(p_{x}-l_{x}\right) \quad s_{z}=l_{z}+\frac{l_{y}}{l_{y}-p_{y}}\left(p_{z}-l_{z}\right) \\
& s_{x}=l_{x}+\frac{l_{y}}{l_{y}-p_{y}}\left(p_{x}-l_{x}\right) \\
& s_{y}=0 \\
& s_{z}=l_{z}+\frac{l_{y}}{l_{y}-p_{y}}\left(p_{z}-l_{z}\right) \\
& =\frac{l_{x}\left(l_{y}-p_{y}\right)+l_{y}\left(p_{x}-l_{x}\right)}{l_{y}-p_{y}}=\frac{l_{z}\left(l_{y}-p_{y}\right)+l_{y}\left(p_{z}-l_{z}\right)}{l_{y}-p_{y}} \\
& =\frac{l_{y} p_{x}-l_{x} p_{y}}{l_{y}-p_{y}} \\
& =\frac{-l_{z} p_{y}+l_{y} p_{z}}{l_{y}-p_{y}} \\
& {\left[\begin{array}{c}
s_{x} \\
0 \\
s_{z} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
l_{y} & -l_{x} & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & -l_{z} & l_{y} & 0 \\
0 & -1 & 0 & l_{y}
\end{array}\right]\left[\begin{array}{c}
p_{x} \\
p_{y} \\
p_{z} \\
1
\end{array}\right]} \\
& s_{x}=I_{y} p_{x}-I_{x} p_{y}+0 p_{z} \\
& s_{y}=0 \\
& s_{z}=0 p_{x}-l_{z} p_{y}+l_{y} p_{z} \\
& w=0 p_{x}-p_{y}+0 p_{z}+l_{y}
\end{aligned}
$$

Projection Shadow

$$
\begin{aligned}
& {\left[\begin{array}{c}
s_{x} \\
s_{y} \\
s_{z} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
n \cdot l+d-l_{x} n_{x} & -l_{x} n_{y} & -l_{x} n_{z} & -l_{x} d \\
-l_{y} n_{x} & n \cdot l+d-l_{y} n_{y} & -l_{y} n_{z} & -l_{y} d \\
-l_{z} n_{x} & -l_{z} n_{y} & n \cdot l+d-l_{z} n_{z} & -l_{z} d \\
-n_{x} & -n_{y} & -n_{z} & n \cdot l
\end{array}\right]\left[\begin{array}{c}
p_{x} \\
p_{y} \\
p_{z} \\
1
\end{array}\right]} \\
& \mathbf{s}=l+t(p-l) \\
& \mathbf{n} \cdot \mathbf{s}+d=0 \\
& \mathbf{n} \cdot(l+t(p-l))+d=0 \\
& t(\mathbf{n} \cdot p-\mathbf{n} \cdot l)=-d-\mathbf{n} \cdot l \\
& t=\frac{-d-\mathbf{n} \cdot l}{\mathbf{n} \cdot p-\mathbf{n} \cdot l} \quad \therefore \mathbf{s}=l+\left[\frac{\mathbf{n} \cdot l+d}{\mathbf{n} \cdot l-\mathbf{n} \cdot p}\right](\mathbf{p}-l)
\end{aligned}
$$

Projection Shadow

$$
\begin{aligned}
& \mathbf{s}=l+\frac{n \cdot l+d}{n \cdot l-n \cdot p}(p-l) \quad s_{x}=l_{x}+\frac{n \cdot l+d}{n \cdot l-n \cdot p}\left(p_{x}-l_{x}\right) \\
& s_{x}=l_{x}+\frac{n \cdot l+d}{n \cdot l-n \cdot p}\left(p_{x}-l_{x}\right)=\frac{l_{x}(n \cdot l-n \cdot p)+(n \cdot l+d) p_{x}-(n \cdot l+d) l_{x}}{n \cdot l-n \cdot p} \\
& s_{y}=l_{y}+\frac{n \cdot l+d}{n \cdot l-n \cdot p}\left(p_{y}-l_{y}\right)=\frac{l_{x} n \cdot l-l_{x} n_{x} p_{x}-l_{x} n_{y} p_{y}-l_{x} n_{z} p_{z}+(n \cdot l+d) p_{x}-l_{x} n \cdot l-l_{x} d}{-n_{x} p_{x}-n_{y} p_{y}-n_{z} p_{z}+n \cdot l} \\
& s_{z}=l_{z}+\frac{n \cdot l+d}{n \cdot l-n \cdot p}\left(p_{z}-l_{z}\right)=\frac{\left(n \cdot l+d-l_{x} n_{x}\right) p_{x}-l_{x} n_{y} p_{y}-l_{x} n_{z} p_{z}-l_{x} d}{-n_{x} p_{x}-n_{y} p_{y}-n_{z} p_{z}+n \cdot l} \\
& {\left[\begin{array}{c}
s_{x} \\
s_{y} \\
s_{z} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
n \cdot l+d-l_{x} n_{x} & -l_{x} n_{y} & -l_{x} n_{z} & -l_{x} d \\
-l_{y} n_{x} & n \cdot l+d-l_{y} n_{y} & -l_{y} n_{z} & -l_{y} d \\
-l_{z} n_{x} & -l_{z} n_{y} & n \cdot l+d-l_{z} n_{z} & -l_{z} d \\
-n_{x} & -n_{y} & -n_{z} & n \cdot l
\end{array}\right]\left[\begin{array}{c}
p_{x} \\
p_{y} \\
p_{z} \\
1
\end{array}\right]}
\end{aligned}
$$

Projection Shadow Matrix

$\left[\begin{array}{c}s_{x} \\ s_{y} \\ s_{z} \\ 1\end{array}\right]=\left[\begin{array}{cccc}n \cdot l-l_{x} n_{x} & -l_{x} n_{y} & -l_{x} n_{z} & -l_{x} n_{w} \\ -l_{y} n_{x} & n \cdot l-l_{y} n_{y} & -l_{y} n_{z} & -l_{y} n_{w} \\ -l_{z} n_{x} & -l_{z} n_{y} & n \cdot l-l_{z} n_{z} & -l_{z} n_{w} \\ -l_{w} n_{x} & -l_{w} n_{y} & -l_{w} n_{z} & n \cdot l-l_{w} n_{w}\end{array}\right]\left[\begin{array}{c}p_{x} \\ p_{y} \\ p_{z} \\ 1\end{array}\right]$
투영평면 $n=\left[n_{x}, n_{y}, n_{z}, n_{w}\right]$
광원 $l=\left[l_{x}, l_{y}, l_{z}, l_{w}\right]$ where $l=$ 평행광원이면 $l_{w}=0, l=$ 점광원이면 $l_{w}=1$

Shadow

Render without shadow

Render with shadow

Reflection

http://www.gamasutra.com/features/19990723/opengl_texture_objects_02.htm

Planar Reflection

- How to calculate the reflection point, $q^{\prime}=\left(x_{0}{ }^{\prime}, y_{0}{ }^{\prime}, z_{0}{ }^{\prime}\right)$ of the point, $q=\left(x_{0}, y_{0}, z_{0}\right)$ for the mirror plane (n, d)

$$
\begin{aligned}
q^{\prime} & =q-2 k \mathrm{n} \\
& =q-2 \frac{a x_{0}+b y_{0}+c z_{0}+d}{\sqrt{a^{2}+b^{2}+c^{2}}} \mathrm{n} \\
& =q-2(n \cdot q+d) \mathrm{n} \text { when } \mathrm{n} \text { is unit vector } \\
q^{\prime} & =R q \\
\mathbf{R} & =\left[\begin{array}{cccc}
1-2 a^{2} & -2 a b & -2 a c & -2 a d \\
-2 a b & 1-2 b^{2} & -2 b c & -2 b d \\
-2 a c & -2 b c & 1-2 c^{2} & -2 c d \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

The signed shortest distance from point q to plane is $k=\mathrm{n} \bullet \mathrm{q}+\mathrm{d}$ (if n is a unit vector)

Planar Reflection

$$
\left[\begin{array}{l}
x_{0}^{\prime} \\
y_{0}^{\prime} \\
z_{0}^{\prime}
\end{array}\right]=\left[\begin{array}{l}
x_{0} \\
y_{0} \\
z_{0}
\end{array}\right]-2\left(a x_{0}+b y_{0}+c z_{0}+d\right)\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] \text { when } n \text { is unit vector }\left(a^{2}+b^{2}+c^{2}=1\right)
$$

$$
\begin{aligned}
x_{0} & =x_{0}-2\left(a x_{0}+b y_{0}+c z_{0}+d\right) a \\
& =\left(1-2 a^{2}\right) x_{0}-2 a b y_{0}-2 a c z_{0}-2 a d \\
y_{0} & =y_{0}-2\left(a x_{0}+b y_{0}+c z_{0}+d\right) b \\
& =2 a b x_{0}+\left(1-2 b^{2}\right) y_{0}-2 b c z_{0}-2 b d \\
z_{0} & =z_{0}-2\left(a x_{0}+b y_{0}+c z_{0}+d\right) c \\
& =-2 a c x_{0}-2 b c y_{0}+\left(1-2 c^{2}\right) z_{0}-2 c d
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{l}
x_{0}^{\prime} \\
y_{0}^{\prime} \\
z_{0}^{\prime}
\end{array}\right]=R\left[\begin{array}{l}
x_{0} \\
y_{0} \\
z_{0}
\end{array}\right]} \\
& \mathbf{R}=\left[\begin{array}{cccc}
1-2 a^{2} & -2 a b & -2 a c & -2 a d \\
-2 a b & 1-2 b^{2} & -2 b c & -2 b d \\
-2 a c & -2 b c & 1-2 c^{2} & -2 c d \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Planar Reflection

- Reflection transformation matrix for the plane ($y z-, x z$-, xy-plane)

$$
\begin{aligned}
& \text { yz-plane Plane }(1,0,0,0) \\
& \mathbf{R}_{y z}=\left[\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad \mathbf{R}_{x z}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad \mathbf{R}_{x y}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

