
Texture Mapping

Fall 2023
11/16/2023

Kyoung Shin Park
Computer Engineering

Dankook University

Texture Mapping

Wireframe Flat shading

Smooth shading Texture mapping

The Limits of Geometric Modeling

 Although graphics cards can render over 10 million
polygons per second, that number is insufficient for
many phenomena
 Clouds

 Grass

 Terrain

 Skin

 Texture Mapping
 Two-dimensional image is applied directly to a surface

 In real-time graphics rendering where a limited number of
polygons must be used, texture mapping is a technique
that can significantly increase the realism with a relatively
small additional cost.

Three Types of Mapping

 Texture Mapping

 Uses images to fill inside of polygons.

 Environment/Reflection mapping

 Uses a picture of environment for texture maps.

 Allows simulation of highly specular surfaces.

 Bump mapping

 Emulates altering normal vectors during the rendering process.

Texture Mapping

geometric model texture mapped

Environment Mapping

Bump Mapping

 Mapping techniques are implemented at the
end of the rendering pipeline

 Very efficient because few polygons make it past the
clipper

Where does texture mapping take place?

Is it simple?

 Although the idea is simple - map an image to a
surface.
 There are 3 or 4 coordinate systems involved

2D image

3D surface

Texture Mapping

 Conceptual 2D texture mapping process
 Surface parameterization

 How to apply a texture image to an object?

 The coordinates of the texture image mapped to each point of the
object are required. (x0, y0, z0) => (xt, yt)

 Geometric transformation

 Geometric transformation determines the mapping relationship
between each point of an object and its position on the projection
screen. (x0, y0, z0) => (xs, ys)

 Rasterization

 The process of finding pixels on which each geometric object is
projected

 Texture color calculation

 The process of painting each pixel with a texture color appropriately

 How to calculate the texture color visible through each pixel?

 How to blend the calculated texture color with the original color of
the object?

Coordinate Systems

 Parametric coordinates (u, v)
 May be used to model curves & surfaces

 Texture coordinates (u, v)
 Used to identify points in the image to be mapped

 Object or World Coordinates (x, y, z)
 Concepturally, where the mapping takes place

 Window Coordinates (xs, ys)
 Where the final image is really produced

Texture Mapping

Parametric coordinates

Texture coordinates

World coordinates
Window coordinates

u

v

Mapping Functions

 Basic problem is how to find the maps

 Consider mapping from texture coordinates to a point
a surface

 Appear to need three functions
x = x(u,v)

y = y(u,v)

z = z(u,v)

 But we really want to go the other way

u

v

(x,y,z)

s

t

(x,y,z)

Backward Mapping

 We really want to go backwards
 Given a pixel, we want to know to which point on an object it

corresponds

 Given a point on an object, we want to know to which point
in the texture it corresponds

 Need a map of the form
u = u(x,y,z)

v = v(x,y,z)

 Such functions are difficult to find in general

u

v

(x,y,z)

Two-part mapping

 Two-part mapping
 One solution to the mapping problem is to first map the

texture to a simple intermediate surface

 Example: first, map to cylinder

r

h

u

v

Cylindrical Mapping

 Parametric cylinder
x = r cos 2p u

y = r sin 2p u

z = v/h

 Maps rectangle in u,v space to cylinder of radius r and
height h in world coordinates
u = u

v = v

 Then, maps from texture space

u: (0,1)
v: (0,1)

x = r cos 2p u
y = r sin 2p u
z = v/h

Spherical Map

 We can use a parametric sphere
x = r cos 2pu

y = r sin 2pu cos 2pv

z = r sin 2pu sin 2pv

 In a similar manner to the cylinder but have to decide
where to put the distortion
 Mercator projection creates the largest distortion at both poles.

 Spherical mapping is used in environmental maps.

x = r cos 2p u
y = r sin 2p u cos 2p v
z = r sin 2p u sin 2p v

Box Mapping

 Easy to use with simple orthographic projection

 Also used in environment maps

Second Mapping

 Map from intermediate object to actual object
 Normals from intermediate to actual

 Normals from actual to intermediate

 Vectors from center of intermediate

intermediate objectactual object

Second Mapping

 Put the object inside the mediation surface and apply
texture to the surface of the object.

Aliasing

 Point sampling of the texture can lead to aliasing
errors
 Point sampling – point to point mapping

point samples in u,v
(or x,y,z) space

point samples in texture space

miss blue stripes

u

v

Area Averaging

pixel

preimage

 A better but slower option is to use area averaging
 Area Averaging – area to area mapping

 Note: the preimage of pixel is curved

u

v

Texture Mapping in the Rendering
Pipeline

 Images and geometry flow through separate pipelines
that join at the rasterizer
 “complex” textures do not affect geometric complexity

geometry pipeline정점

pixel pipeline이미지

rasterizer

vertices

images

Basic Strategy

 Three steps to applying a texture
1. Specify the texture

 Read or generate image

 Assign to texture

 Enable texturing

2. Assign texture coordinates to vertices

 Proper mapping function is left to application

3. Specify texture parameters

 Wrapping

 Filtering

Texture Mapping

u

v

x

y z

image

geometry display

 Texture coordinates: T(u, v)
 u = f(x, y, z)

 v = g(x, y, z)

 Value:
 LUMINANCE, RGB, RGBA

 Based on parametric texture coordinates

 Texture coordinates must be specified for each vertex

u

v
(1, 1)

(0, 1)

(0, 0) (1, 0)

(u, v) = (0.2, 0.8)

(0.4, 0.2)

(0.8, 0.4)

A

B C

a

b
c

Texture Space Object Space

Mapping a Texture

Texture Parameters

 There are a variety of parameters that determine how
texture is applied
 Wrapping – Wrapping parameters determine what happens if

u and v are outside the (0,1) range, e.g. Repeat, Clamp, Mirror

 Filter modes – Filter modes allow us to use area averaging
instead of point samples

 Mipmapping – Mipmapping allows us to use textures at
multiple resolutions

Texture Wrap Mode

 Wrap mode determines how texture is sampled when
texture coordinates are outside of the typical 0-1 range.

 In Unity, the texture wrap mode can be
 Repeat: Tiles the texture, creating a repeating pattern

 Clamp: Clamps the texture to the last pixel at the edge

 Mirror: Tiles the texture, creating a repeating pattern by
mirroring it at every integer boundary.

 MirrorOne: Mirrors the texture once, then clamps to edge pixels.

 Per-axis: Lets you set different wrap modes for the U axis and
the V axis. The available options are also Repeat, Clamp, Mirror
and Mirror Once.

Texture Polygon

Magnification Minification

PolygonTexture

Magnification and Minification

 More than one texel can cover a pixel (Minification)

 More than one pixel can cover a texel (Magnification)

 Can use point sampling or linear filtering
 linear filtering – use the weighted average of texel groups

including neighbors of texels determined by point sampling

 Point – use the nearest texel value to the value calculated by
line interpolation

Texture Filtering

 In Unity, filter mode controls how the sampling of the

texture uses nearby pixels.

 Point: uses the nearest pixel. This makes the texture appear
pixelated.

 Bilinear: uses a weighted average of the four nearest texels.
This makes the texture appear blurry when you magnify it.

 Trilinear: uses a weighted average of the two nearest mips,
which are bilinearly filtered. This creates a soft transition
between mips, at the cost of a slightly more blurry appearance

http://www.tomshardware.com/reviews/ati,819-4.html

Mipmaps

 Mipmaps

 A mip level is a version of a texture with a specific resolution.

Mips exist in sets called mipmaps. Mipmaps contain progressively

smaller and lower resolution versions of a single texture.

 Mipmaps are commonly used for rendering objects in 3D scenes,

where textured objects can vary in distance from the camera. A

higher mip level is used for objects closer to the camera, and

lower mip levels are used for more distant objects.

https://docs.unity3d.com/Manual/texture-mipmaps-introduction.html
http://www.tomshardware.com/reviews/ati,819-2.html

Anisotropic Filtering

 Anisotropic filtering

 Anisotropic filtering increases texture quality when viewed from
a grazing angle. This rendering is resource-intensive on the
graphics card. Increasing the level of anisotropy is usually a
good idea for ground and floor Textures.

 In Unity, use Quality settings to force anisotropic filtering for all
Textures or disable it completely. Although, if a texture has its
Aniso level set to 0 in Texture Import Settings, forced
anisotropic filtering does not appear on this texture.

https://en.wikipedia.org/wiki/
Anisotropic_filtering

Texture Coordinate (UV) Transformation

 In Unity, texture coordinate offset, scaling, and rotation
are techniques used to manipulate the way a texture is
applied to a 3D object's surface.
 Texture Offset allows you to shift the position of the texture on

the object’s surface. In the shader, the material SetTextureOffset
function is used to modify the texture offset.

 Texture Scaling adjusts the size of the texture on the object’s
surface. In the shader, the material SetTextureScale function is
used to change the texture scale.

 Texture Rotation allows you to rotate the texture on the
object’s surface. Rotation is more complex and often involves
using a rotation matrix to transform the texture coordinates. This
matrix is typically set as a shader property.

Texture Movies

 To create flipbook animation using texture image
sequence
 In Unity, Start() function reads the entire texture images.

 In Unity, Update() function updates currentTextureIndex & sets
material’s texture using currentTextureIndex to the same vertex
coordinates and texture coordinates – giving animation effects.

image1 image2 image3 image4 image5 image6

Environment Mapping

 Environment Maps
 Start with image of environment through a wide angle lens

 Use this texture to generate a spherical or box map

 Use automatic texture coordinate generation

 Spherical environment mapping – Using automatic texture
coordinate generation after creating a spherical map from an
environment image taken with a 180 degree wide angle lens

Multitexturing

 Multitexturing
 Apply a sequence of textures through cascaded texture units

 Light Mapping
 Instead of calculating the light of the object surface, the

texture and bright image are mixed and the resulting image is
directly applied to the object surface

+

+ =

=

Multitexturing

 Single-Pass vs. Multi-Pass Multitexturing
 Single-pass multitexturing means applying multiple textures

within one rendering pass.

 Multi-pass multitexturing is the rendering of the scene or the
polygon itself multiple times by blending.

Billboarding

 Billboard technique
 The front of billboard rectangle is made to always look toward the

camera, and as a result, the billboard always shows the same side
no matter which direction the camera is viewed.

 For example, tree billboard images are used to create a forest,
instead of using tree mesh models.

 The billboard technique combined with the alpha texture is used
to express various natural phenomena that do not have a solid
surface: smoke, fire, fog, explosion, etc.

Billboarding

 Billboarding principle
 The key to implementation is to adjust the vertices that make

up the billboard square using the modelview matrix so that
the user always look at the viewpoint.

 The modelview matrix contains information about the up
vector and the right vector of the viewer’s viewpoint.

Billboarding

m0 m4 m8 m12

m1 m5 m9 m13

m2 m6 m10 m14

m3 m7 m11 m15

Up-vectorRight-vector

Right-vector

Up-vector
Look-vector

Billboarding

 Axial Symmetry

 Billboard rectangle should rotate around the vertical axis.

 Calculate the camera’s yaw angle from the Modelview matrix, M.

theta = atan2f(M[8], M[10]);

 The rotation matrix, R, of the billboard rectangle is calculated as an
arbitrary axis (typically, up vector=(0, 1, 0)) and angle (inverse of the
camera yaw angle).

Look.x Look.z

