
Model, Mesh, Material, Shader, 
Texture

Fall 2023
11/23/2023

Kyoung Shin Park
Computer Engineering

Dankook University



Model, Mesh, Material, Shader, Texture

 In Unity, Materials allow you to specify which Shader to 
use on a Mesh.

 Shaders perform a set of calculations that tell Unity how 
to render (draw) your Meshes based on properties 
specific to that Shader.

 You can apply Materials to make your floor look like it's 
made of tile, wood, stone, or anything.

 Some Materials use Textures, which are bitmap images 
(BMP, JPEG, PNG, etc). Unity projects these images on the 
surfaces of Mesh to achieve a more realistic result.

 The Mesh stores the texture mapping data as UVs.

 UV coordinates (also sometimes called texture 
coordinates) are references to specific locations on the 
image.



Model

 Models

 Models are files that contain data about the shape and 

appearance of 3D objects, such as characters, terrain, or 

environment objects.

 Model files contain a variety of data including meshes, materials, 

and textures.

 They can also contain animation data, for animated characters.

 You usually create models in an external application(such as 

Maya, Blender), and then import them into Unity.

 Unity read .fbx, .dae(Collada), .dxf, .obj standard 3D file formats.

https://medium.com/shad
er-coding-in-unity-from-a-
to-z/rendering-pipe-line-
f0471aa0904b



Model

 Model Import Settings window

 Model inspector window shows the Model tab (for 3D model) 

by default. It also has the Rig (for skeleton), Animation (for 

animation clip), Materials (for materials and textures) tab.



Mesh

 A mesh is a collection of data that describes a shape.

 In graphics, you use meshes together with materials. Meshes 

describe the shape of an object, and materials describe the 

appearance of its surface.

 In physics, you can use a mesh to determine the shape of a 

collider.

Wireframe view of the meshes in Unity’s 2020.1 HDRP template example project

https://docs.unity3d.com/2019.4/Documentation/Manual/mesh.html



Mesh

V2

V3

Raster

Scan line

V1



Mesh

 Unity also supports deformable meshes, such as:

 Skinned meshes

 These meshes work with additional data called bones. Bones form a 

structure called a skeleton (also called a rig, or joint hierarchy), and 

the skinned mesh contains data that allows it to deform in a realistic 

way when the skeleton moves. You usually use skinned meshes for 

skeletal animation with Unity’s Animation features, but you can also 

use them with Rigidbody components to create “ragdoll” effects.

 Meshes with blend shapes

 These meshes contain data called blend shapes. Blend shapes 

describe versions of the mesh that are deformed into different 

shapes, which Unity interpolates between. You use blend shapes for 

morph target animation, which is a common technique for facial 

animation.

 Meshes with a Cloth component for realistic fabric simulation.



Mesh

 A mesh is defined by these properties: 

 Vertices – a collection of positions in 3D space, with optional 

additional attributes 

 Topology – the type of structure that defines each face of the 

surface

 Indices – A collection of integers that describe how the 

vertices combine to create the surface, based on the topology

 In addition to this, deformable meshes contain either

 Blend shapes – data that describes different deformed 

versions of the mesh, for use with animation

 Bind poses – data that describes the “base” pose of the 

skeleton in a skinned mesh



Vertex Data

 Every vertex can have the following attributes:

 Position

 The vertex position represents the position of the vertex in object 

space. Unity uses this value to determine the surface of the mesh.

 Normal

 The vertex normal represents the direction that points directly “out” 

from the surface at the position of the vertex. Unity uses this value 

to calculate the way that light reflects off the surface of a mesh.

 Tangent

 The vertex tangent represents the direction that points along the 

“u” (horizontal texture) axis of the surface at the position of the 

vertex. Unity uses the w value to compute the binormal, which is 

the cross product of the tangent and normal. Unity uses the 

tangent and binormal values in normal mapping.



Vertex Data

 Color 

 The vertex color represents the base color of a vertex, if any. This 

color exists independently of any textures that the mesh may use.

 Texture coordinates (UVs)

 A mesh can contain up to 8 sets of texture coordinates. Texture 

coordinates are commonly called UVs, and the sets are called 

channels. Unity uses texture coordinates when it “wraps” a texture 

around the mesh. The UVs indicate which part of the texture aligns 

with the mesh surface at the vertex position.

 Bone weights and blend indices (skinned meshes only)

 In a skinned mesh, blend indices indicate which bones affects a 

vertex, and bone weights describe how much influence those 

bones have on the vertex. Unity uses blend indices and bone 

weights to deform a skinned mesh based on the movement of its 

skeleton.



Topology

 Topology describes the type of face that a mesh has.

 A mesh’s topology defines the structure of the index buffer, 

which in turn describes how the vertex positions combine into 

faces. Each type of topology uses a different number of 

elements in the index array to define a single face.

 Unity supports the following mesh topologies:

 Points

 Lines

 LineStrip

 Triangles

 Quads

 In the Mesh class, you can get the topology with 

Mesh.GetTopology, and set it as a parameter of Mesh.SetIndices.

v0

v1

v2 v3

v4

v5 v0

v1

v2 v3

v4

v5 v0

v1

v2 v3

v4

v5 v0

v1

v2 v3

v4

v5

v0

v1

v2 v3

v5

v4

v6

v7



Index Data

 The index array contains integers that refer to elements 

in the vertex positions array.

 Unity uses the indices to connect the vertex positions into faces. 

The number of indices that make up each face depends on the 

topology of the mesh.

 In the Mesh class, you can get this data with Mesh.GetIndices, 

and set it with Mesh.SetIndices. Unity also stores this data in 

Mesh.triangles, but this older property is less efficient and user-

friendly.

 The Points topology doesn’t create faces; instead, Unity 

renders a single point at each position.

 All other mesh topologies use more than one index to create 

either faces or edges.



Index Data

 For example, for a mesh that has an index array that contains 

the following values: 0,1,2,3,4,5. If the mesh has a triangular

topology, then the first three elements (0,1,2) identify one 

triangle, and the following three elements (3, 4, 5) identify 

another triangle. 

 There is no limit to the number of faces that a vertex can 

contribute to. This means that the same vertex can appear in 

the index array multiple times. For example, an index array 

could contain these values: 0,1,2,1,2,3. If the mesh has a 

triangular topology, then the first three elements (0,1,2) identify 

one triangle, and the following three elements (1,2,3) identify 

another triangle that shares vertices with the first.



Winding Order

 The order of the vertices in each group in the index 

array is called the winding order. 

 Unity uses winding order to determine whether a face is front-

facing or back-facing, and in turn whether it should render a 

face or cull it (exclude it from rendering). 

 By default, Unity renders front-facing polygons and culls back-

facing polygons. 

 Unity uses a clockwise winding order, which means that Unity 

considers any face where the indices connect in a clockwise 

direction is front facing.

https://docs.unity3d.com/Man
ual/AnatomyofaMesh.html



Mesh Renderer Component

 A Mesh Renderer component renders a mesh. 

 It works with a Mesh Filter component on the same 

GameObject; the Mesh Renderer renders the mesh that the 

Mesh Filter references.

 To render a deformable mesh, use a Skinned Mesh Renderer 

instead.

https://docs.unity3d.com/Manual
/class-MeshRenderer.html



Level of Detail (LOD) for Meshes

 Level Of Detail (LOD)

 LOD is a technique reduces the number of GPU operations that 

Unity requires to render distant meshes. 

 When a GameObject in the Scene is far away from the Camera, 

you see less detail compared to when it is close to the Camera. 

 By default, Unity uses the same number of triangles to render it 

at both distances. This can result in wasted GPU operations, 

which can impact performance in your Scene.

https://docs.unity3d.com
/Manual/LevelOfDetail.ht
ml



Level of Detail (LOD) for Meshes

 LOD Levels

 A LOD level is a mesh that defines the level of detail Unity 

renders for a GameObject’s geometry. 

 When a GameObject uses LOD, Unity displays the appropriate 

LOD level for that GameObject based on the GameObject’s 

distance from the Camera.

 Each LOD level exists in a separate GameObject, each of which 

has a Mesh Renderer component that displays that LOD level. 

 For the very lowest level of detail, you can use a Billboard Asset, 

which Unity displays instead of a 3D mesh. Unity shows and 

hides these GameObjects as required. LOD levels must be child 

GameObjects to the GameObject they relate to.



Materials, Shaders & Textures

 Rendering in Unity uses Materials, Shaders and Textures. 

 Materials define how a surface should be rendered, by 

including references to the Textures it uses, tiling information, 

Color tints and more. 

 Shaders are small scripts that contain the mathematical 

calculations and algorithms for calculating the Color of each pixel 

rendered, based on the lighting input and the Material

configuration.

 Textures are bitmap images. A Material can contain references 

to textures, so that the Material’s Shader can use the textures 

while calculating the surface color of a GameObject. In addition 

to basic Color (Albedo) of a GameObject’s surface, Textures can 

represent many other aspects of a Material’s surface such as its 

reflectivity or roughness.



Materials, Shaders & Textures

 Example of using 3 materials, 2 shaders and 1 texture. 
 “Red car material”, “Blue car material”, “Wheel material”

 Both bodywork materials use the same custom shader, 
“Carbody Shader”. Wheel material use “Standard Shader”.

 Each car body material has a reference to the “Car Texture”.

https://docs.unity3d.com/2018.4/Documentation/Manual/Materials.html



Material

 Materials
 A Material specifies one specific Shader to use, and the Shader 

used determines which options are available in the Material. A 
Shader specifies one or more Texture variables that it expects to 
use, and the Material Inspector in Unity allows you to assign your 
own Texture Assets to these Texture variables.

 A Material contains a reference to a Shader object. If that 
Shader object defines material properties, then the material can 
also contain data such as colors or references to textures.

 The Material class represents a material in C# code.

 A Material asset is a file with the .mat extension. It represents a 
material in your Unity project. 



Material

 Assigning a material asset to a GameObject
 Materials are used by Renderer components attached to Game 

Objects, to render each Game Object’s mesh.

 To render a GameObject using a material:

1. Add a component that inherits from Renderer. MeshRenderer is 
the most common and is suitable for most use cases, but 
SkinnedMeshRenderer, LineRenderer, or TrailRenderer might be 
more suitable if your GameObject has special requirements.

2. Assign the material asset to the component’s Material property.

 To render a particle system in the Built-in Particle System using 
a material:

1. Add a Renderer Module to the Particle System.

2. Assign the material asset to the Renderer Module’s Material
property.



Material Inspector

 Material Inspector
 When you select a material asset in your Unity project, you can 

view and edit it using the Inspector window. 

https://docs.unity3d.com/Manual/Materials.html



Using Materials with C# Scripts

 All the parameters of a material asset in the Inspector 
window are accessible via script, giving you the power 
to change or animate how a material works at runtime.

 This allows you to modify numeric values on the 
material, change colors, and swap textures dynamically 
during gameplay. 

 Some of the most commonly used functions are:

Function Name Use

SetColor Change the color of a material (e.g. the albedo 
tint color)

SetFloat Set a floating point value (e.g. the normal map 
multiplier)

SetInt Set an integer value in the material

SetTexture Assign a new texture to the material



Shader

 Shader
 A Shader is a script which contains mathematical calculations 

and algorithms for how the pixels on the surface of a model 
should look. 

 The standard shader performs complex and realistic lighting 
calculations. Other shaders may use simpler or different 
calculations to show different results. 

 Within any given Shader are a number of properties which can 
be given values by a Material using that shader. These 
properties can be numbers, colors definitions or textures, 
which appear in the Material inspector window. 

 It is possible and often desirable to have several different 
Materials which may reference the same textures. These 
materials may also use the same or different shaders, 
depending on the requirements.



Shader

 Types of shader
 Shaders that are part of the graphics 

pipeline are the most common type of 
shader. They perform calculations that 
determine the color of pixels on the screen. 
In Unity, you usually work with this type of 
shader by using Shader objects.

 Compute shaders perform calculations on 
the GPU, outside of the regular graphics 
pipeline.

 Ray tracing shaders perform calculations 
related to ray tracing.

https://gamedevbill.com/unity-vertex-
shader-and-geometry-shader-tutorial/



Shader

 Terminology
 shader or shader program - a program that runs on a GPU. 

Unless otherwise specified, this means shader programs that are 
part of the graphics pipeline.

 Shader object - an instance of the Shader class. A Shader
object is a wrapper for shader programs and other information.

 ShaderLab - a Unity-specific language for writing shaders.

 Shader Graph - a tool for creating shaders without writing 
code.

 shader asset - a file with the .shader extension in your Unity 
project. It defines a Shader object.

 Shader Graph asset - a file in your Unity project. It defines a 
Shader object.



Standard Shader

 Standard Shader
 The Standard Shader is designed with hard surfaces in mind 

(also known as “architectural materials”), and can deal with most 
real-world materials like stone, glass, ceramics, brass, silver or 
rubber. It will even do a decent job with non-hard materials like 
skin, hair and cloth.

https://docs.unity3d.com/Manual/shader-StandardShader.html



Standard Shader

 Standard Shader
 The Unity Standard Shader is a built-in shader with a 

comprehensive set of features. 

 It can be used to render “real-world” objects such as stone, 
wood, glass, plastic and metal, and supports a wide range of 
shader types and combinations. 

 Its features are enabled or disabled by simply using or not using 
the various texture slots and parameters in the material editor.

 With the Standard Shader, a large range of shader types (such 
as Diffuse, Specular, Bumped Specular, Reflective) are 
combined into a single shader intended to be used across all 
material types. 

 The benefit of this is that the same lighting calculations are used 
in all areas of your scene, which gives a realistic, consistent and 
believable distribution of light and shade across all models that 
use the shader.



Standard Shader

 Standard Shader
 The Standard Shader also incorporates an advanced lighting 

model called Physically Based Shading (PBS). 

 Physically Based Shading (PBS) simulates the interactions 
between materials and light in a way that mimics reality. PBS 
has only recently become possible in real-time graphics. It 
works at its best in situations where lighting and materials need 
to exist together intuitively and realistically.

 The idea behind our Physically Based Shader is to create a user-
friendly way of achieving a consistent, plausible look under 
different lighting conditions. It models how light behaves in 
reality, without using multiple ad-hoc models that may or may 
not work. To do so, it follows principles of physics, including 
energy conservation (meaning that objects never reflect more 
light than they receive), Fresnel reflections (all surfaces become 
more reflective at grazing angles), and how surfaces occlude 
themselves (what is called Geometry Term), among others.



Standard Shader

 Material Parameters
 Rendering Mode – Opaque, Cutout, Transparent, Fade

 Albedo Color and Transparency

 Specular Mode

 Metallic Mode

 Smoothness

 Normal Map (Bump mapping)

 Height Map

 Occlusion Map

 Emission

 Secondary Maps (Detail Maps) & Detail Mask

 The Fresnel Effect

https://docs.unity3d.com/Manual/StandardShaderMaterialParameters.html



Standard Shader

 Rendering Mode
 Opaque - normal solid objects with no transparent areas.

 Cutout - create a transparent effect that has hard edges 
between the opaque and transparent areas. In this mode, there 
are no semi-transparent areas, the texture is either 100% 
opaque, or invisible. This is useful when using transparency to 
create the shape of materials such as leaves, or cloth with holes.

 Transparent - rendering realistic transparent materials such as 
clear plastic or glass. In this mode, the material itself will take on 
transparency values, however reflections and lighting highlights 
will remain visible at full clarity as is the case with real 
transparent materials.

 Fade - allows the transparency values to entirely fade an object 
out, including any specular highlights or reflections it may have. 
This mode is useful if you want to animate an object fading in 
or out. 



Standard Shader

 Albedo Color and Transparency 
 The Albedo parameter controls the base color of the surface.

 Specifying a single color for the Albedo value is sometimes 
useful, but it is far more common to assign a texture map for 
the Albedo parameter.

 The alpha value of the Albedo color controls the transparency
level for the material. This only has an effect if the Rendering 
Mode for the material is set to one of the transparent mode, 
and not Opaque.

https://docs.unity3d.com/Manual/StandardShaderMaterialParameterAlbedoColor.html

A range of transparency values from 0 to 1, using the Transparent mode 
suitable for realistic transparent objects



Standard Shader

 Specular Mode
 The Specular parameter is only visible when using the Specular 

setup, as shown in the Shader field.

 Specular effects are essentially the direct reflections of light 
sources in your Scene, which typically show up as bright 
highlights and shine on the surface of objects.

https://docs.unity3d.com/Manual/StandardShaderMaterialParameterSpecular.html

The Specular Smoothness values from 0 to 1



Standard Shader

 Metallic Mode
 The metallic parameter of a material determines how “metal-

like” the surface is. 

 When a surface is more metallic, it reflects the environment 
more and its albedo color becomes less visible. 

 At full metallic level, the surface color is entirely driven by 
reflections from the environment. When a surface is less metallic, 
its albedo color is more clear and any surface reflections are 
visible on top of the surface color, rather than obscuring it.

https://docs.unity3d.com/Manual/StandardShaderMaterialParameterMetallic.html

A range of metallic values from 0 to 1 (with smoothness at a constant 0.8 
for all samples)



Standard Shader

 Smoothness
 With a smooth surface, all light rays tend to bounce off at 

predictable and consistent angles. Taken to its extreme, a 
perfectly smooth surface reflects light like a mirror. 

 Less smooth surfaces reflect light over a wider range of angles 
(as the light hits the bumps in the microsurface), and therefore 
the reflections have less detail and are spread across the surface 
in a more diffuse way.

https://docs.unity3d.com/Manual/StandardShaderMaterialParameterSmoothness.html

A comparison of low, medium and high values for smoothness (left to 
right), as a diagram of the theoretical microsurface detail of a material. The 
yellow lines represent light rays hitting the surface and reflecting off the 
angles encountered at varying levels of smoothness.



Standard Shader

 Normal maps (Bump mapping)

 Normal maps are used by normal map Shaders to make low-

polygon models look as if they contain more detail. Unity uses 

normal maps encoded as RGB images. You also have the option 

to generate a normal map from a grayscale height map image.

https://docs.unity3d.com/Manual/StandardShaderMateri
alParameterNormalMap.html



Standard Shader

 Heightmap (Parallax Mapping)
 Height mapping (also known as parallax mapping) is a similar 

concept to normal mapping, however this technique is more 
complex - and therefore also more performance-expensive. 

 Heightmaps are usually used in conjunction with normalmaps, 
and often they are used to give extra definition to surfaces 
where the texture maps are responsible for rendering large 
bumps and protrusions.

 While normal mapping modifies the lighting across the surface 
of the texture, parallax height mapping goes a step further and 
actually shifts the areas of the visible surface texture around, to 
achieve a kind of surface-level occlusion effect. 

 This means that apparent bumps will have their near side 
(facing the camera) expanded and exaggerated, and their far 
side (facing away from the camera) will be reduced and seem to 
be occluded from view.



Standard Shader

https://docs.unity3d.com/Manual/StandardShaderMaterialParameterHeightMap.html

An albedo color map, and a heightmap to match.

1. No normalmap or heightmap, 2. Normal map, 3. Normal map and heightmap



Standard Shader

 Emission
 The Material emission properties control the color and intensity 

of light that the surface of a Material emits.

 Emission is useful when you want some part of a GameObject to 
appear lit from the inside, such as the screen of a monitor, the 
disc brakes of a car braking at high speed, or glowing buttons on 
a control panel. GameObjects that use emissive Materials appear 
to remain bright even in dark areas of your Scene.

https://docs.unity3d.com/Manual/StandardShaderMaterialParameterEmission.html



Standard Shader

 Detail maps (Secondary maps)

 Secondary Maps (or Detail maps) allow you to overlay a second 
set of textures on top of the main textures listed above. 

 You can apply a second Albedo color map, and a second 
Normal map. 

 Typically, these would be mapped on a much smaller scale 
repeated many times across the object’s surface, compared with 
the main Albedo and Detail maps.

https://docs.unity3d.com/Manual/StandardShaderMaterialParameterDetail.html



Standard Shader

 Material Charts

https://docs.unity3d.com/2018.4/Documentation/Manual/StandardShaderMaterialCharts.html



Other Built-in Shaders

 In addition to the Standard Shader, 
there are a number of built-in shaders:
 FX: Lighting and glass effects.

 GUI and UI: For user interface graphics.

 Mobile: Simplified high-performance shader for mobile devices.

 Nature: For trees and terrain.

 Particles: Particle system effects.

 Skybox: For rendering background environments behind all 
geometry

 Sprites: For use with the 2D sprite system

 Unlit: For rendering that entirely bypasses all light & shadowing

 Legacy: The large collection of older shaders which were 
superseded by the Standard Shader



Shader "Examples/ShaderSyntax"
{

CustomEditor = "ExampleCustomEditor"
Properties
{

// Material property declarations go here
}
SubShader
{

// The code that defines the rest of the SubShader goes here

Pass
{

// The code that defines the Pass goes here
}

}
Fallback "ExampleFallbackShader"

}

ShaderLab

 ShaderLab
 Properties

 SubShader

 Fallback

 CustomEditor



Texture

 Texture

 Normally, the mesh geometry of an object only gives a rough 

approximation of the shape while most of the fine detail is 

supplied by Textures.

 A texture is just a standard bitmap image that is applied over 

the mesh surface. 

 The positioning of the texture is done with the 3D modelling 

software that is used to create the mesh.

https://docs.unity3d.com
/Manual/Textures.html



Texture

 Textures for use on 3D models

 Textures are applied to objects using Materials. Materials use 

specialized graphics programs called Shaders to render a 

texture on the mesh surface. 

 You should make your textures in dimensions that are to the 

power of two (e.g. 32x32, 64x64, 128x128, 256x256, etc.) 

 Once your texture has been imported, you should assign it to 

a Material. The material can then be applied to a mesh, 

Particle System, or GUI Texture. 

 Using the Import Settings, it can also be converted to a 

Cubemap or Normalmap for different types of applications in 

the game.



Sprite Texture

 Sprite Textures for 2D Graphics

 In 2D games, the Sprites are implemented using textures 
applied to flat meshes that approximate the objects’ shapes.

 An object in a 2D game may require a set of related graphic 
images to represent animation frames or different states of a 
character. Special techniques are available to allow these sets 
of images to be designed and rendered efficiently.

https://docs.unity3d.com
/Manual/Textures.html



Sprite Texture

 In computer graphics or games, a sprite is a 2D image 
or animation that is integrated into a larger scene.

 Originally invented as a method of quickly compositing 
several images together in 2D video games.

 In general, 2D game figures are all referred to as sprites.

https://learn.unity.com/tu
torial/introduction-to-
sprite-animations



GUI Texture

 GUI

 A game’s graphic user interface (GUI) consists of graphics that 
are not used directly in the game scene but are there to allow 
the player to make choices and see information. 

 For example, the score display and the options menu are 
typical examples of game GUI. These graphics are clearly very 
different from the kind used to detail a mesh surface but they 
are handled using standard Unity textures nevertheless. 

https://docs.unity3d.com
/kr/2018.4/Manual/UICa
nvas.html



Particle Systems

 Particles

 A particle is a small 2D graphic representing a small portion of 
something that is basically fluid or gaseous. 

 When many of these particles are created at once and set in 
motion, optionally with random variations, they can create a very 
convincing effect. 

 For example, you might display an explosion by sending particles 
with a fire texture out at great speed from a central point. A 
waterfall could be simulated by accelerating water particles 
downward from a line high in the scene.

https://docs.unity3d.com
/Manual/Textures.html



Terrain Heightmaps

 Terrain Heightmaps

 Textures can even be used in cases where the image will never be 
viewed at all, at least not directly. In a greyscale image, each pixel 
value is simply a number corresponding to the shade of grey at 
that point in the image (this could be a value in the range 0..1 
where zero is black and one is white, say).

https://chulin28ho
.tistory.com/344



Terrain Heightmaps

 Terrain Heightmaps

 A terrain is a mesh representing an area of ground where each 
point on the ground has a particular height from a baseline. The 
heightmap for a terrain stores the numeric height samples at 
regular intervals as greyscale values in an image where each pixel 
corresponds to a grid coordinate on the ground. The values are 
not shown in the scene as an image but are converted to 
coordinates that are used to generate the terrain mesh.

https://chulin28ho
.tistory.com/344



Importing Textures

 Importing Textures

 In a 3D Project, Unity imports image and movie files in the 

Assets folder as Textures. In a 2D Project, Unity imports image 

and movie files in the Assets folder as Sprites.

 To import image and movie files as Textures and Sprites in Unity

1. Select the image file in the Project window.

2. In the Inspector, set the Texture Import Settings.

3. Click the Apply button to save the changes.

4. To use the imported Assets in your Project:

 For 3D Projects, create a Material and assign the Texture to the new 

Material.

 For 2D Projects, use the Sprite Editor.



Importing Textures

 HDR Textures

 When importing from an EXR or HDR file containing HDR

information, the Texture Importer automatically chooses the 

right HDR format for the output Texture. This format changes 

automatically depending on which platform you are building for.

 Texture dimension sizes

 Texture dimension sizes should be powers of two on each side 

(that is, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, and so on). 

 It is possible to use NPOT (non-power of two) Texture sizes with 

Unity. However, NPOT Texture sizes generally take slightly more 

memory and might be slower for the GPU to sample, so it’s 

better for performance to use power of two sizes whenever you 

can.



Alpha Textures

 Alpha maps

 An alpha map is a Texture that contains only alpha information. 

You can use an alpha map to apply varying levels of 

transparency to a Material.

https://docs.unity3d.com/462/Documentation/Manual/HOWTO-alphamaps.html



Cubemap

 Reflections (cubemaps)

 To use a Texture for reflection maps (for example, in Reflection 

Probes or a cubemapped Skybox), set the Texture Shape to 

Cube. 

https://docs.unity3d.com/Manual/class-Cubemap.html
https://community.arm.com/arm-community-
blogs/b/graphics-gaming-and-vr-blog/posts/reflections-
based-on-local-cubemaps-in-unity


