
Blending

Fall 2023
11/23/2023

Kyoung Shin Park
Computer Engineering

Dankook University



Alpha Channel

 Alpha Channel Model
 Porter & Duff’s “Compositing Digital Images”, SIGGRAPH’84

 RGBA – alpha is the 4th color and is used to adjust the 
opacity of color.
 Opacity is a measure of how much light passes through a surface.

 Alpha=1.0 – completely opaque

 Alpha=0.5 – translucent 

 Alpha=0.0 – completely transparent



 In Unity, when graphics are rendered, after all shaders
have executed and all textures have been applied, the 
pixels are written to the screen. How they are combined 
with what is already there is controlled by the Blend
command.

Blending

https://docs.unity3d.com/kr/current/Manual/SL-Blend.html



Blending

 Blend the color of framebuffer and the color of object

 Blending equation
FinalValue = srcFactor * srcColor BlendOp DstFactor * dstColor

 SourceValue is the value output by the fragment shader.

 DestinationValue is the value already in the destination buffer.

 SourceFactor, DestinationFactor are specified with Blend 
command.

 If the BlendOp command is used, the blending operation is set 
to that value. Otherwise, the blending operation defaults to 
Add.

 If the blending operation is Add, Sub, RevSub, Min, or Max, the 
GPU multiplies the value of the output of the fragment shader by 
the source factor.

 If the blending operation is Add, Sub, RevSub, Min, or Max, the 
GPU multiplies the value that is already in the render target by the 
destination factor.



 The BlendOp command sets the blending operation 
used by the Blend command.

 Example syntax:
 BlendOp Sub // the subtract blending operation

BlendOp

BlendOp Description

Add Add source and destination together

Sub Subtract destination from source.

RebSub Subtract source from destination.

Min Use the smaller of source and destination.

Max Use the larger of source and destination.

LogicalClear Logical operation: Clear

… …



Blend Syntax

Example Syntax Function

Blend Off Disables blending for the default render target. This is 
the default value.

Blend 1 Off As above, but for a given render target. (1)

Blend One Zero Enables blending for the default render target. Sets 
blend factors for RGBA values.

Blend 1 One Zero As above, but for a given render target. (1)

Blend One Zero, Zero 
One

Enables blending the default render target. Sets 
separate blend factors for RGB and alpha values. (2)

Blend 1 One Zero, 
Zero One

As above, but for a given render target. (1) (2)



Blend Factor

SrcFactor/DstFactor Function

One 1 Use this to use the value of the source or the 
destination color.

Zero 0 Use this to remove either the source or the 
destination values.

SrcColor SrcColor

DstColor DstColor

DstAlpha DstAlpha

OneMinusSrcColor (1 – SrcColor)

OneMinusSrcAlpha (1 – SrcAlpha)

OneMinusDstColor (1 – DstColor)

OneMinusDstAlpha (1 – DstAlpha)



Common Blend Types

Example Syntax Blending

Blend SrcAlpha OneMinusSrcAlpha Alpha blending

Blend One OneMinusSrcAlpha Premultiplied alpha blending

Blend One One Additive blending

Blend OneMinusDstColor One Soft additive

Blend DstColor Zero Multiplicative

Blend DstColor SrcColor 2x multiplicative



Blend Filtering

 Blending can be used for effects that filter out the color 
of the entire scene.
 Draw a rectangle with the size of the entire screen and apply a 

blending function.

// alpha blending (Cs * As + Cd * (1-As))

Blend SrcAlpha OneMinusSrcAlpha



Blend Filtering

// no blending (Cs * 1 + Cd * 0)

Blend One Zero

// draw background (Cs * 0 + Cd * 1)

Blend Zero One

// Brighten the entire scene

Blend SrcAlpha One



Blend Filtering

// additive blending (Cs * 1 + Cd * 1)

Blend One One

// soft additive blending (Cs * (1 - Cd) + Cd * 1)

Blend OneMinusDstColor One

// invert the color of the entire scene (Cs * (1 - Cd) + Cd * 0)

Blend OneMinusDstColor Zero



Blend Filtering

// multiplicative blending (Cs * Cd + Cd * 0)

Blend DstColor Zero

// multiplicative blending (Cs * 0 + Cd * Cs)

Blend Zero SrcColor

// 2x multiplicative blending (Cs * Cd + Cd * Cs)

Blend DstColor SrcColor



Blend Filtering

Shader "Custom/OneOne“ { // OneOne.shader

Properties {

_MainTex ("Albedo (RGB)", 2D) = "white" {}

}

SubShader {

Tags { "RenderType"="Transparent" "Queue"="Transparent" }

Pass {

ZWrite Off

Blend One One // additive blending (Cs * 1 + Cd * 1)

SetTexture [_MainTex] 

{

Combine texture * previous

}

}

}

}



Blending

 Alpha Blending makes the object appear transparent.
Alpha blending = As * Cs + (1 - As) * Cd

// alpha blending – determine the transparency of object to be 
drawn by alpha

 R = As * Rs + (1 - As) * Rd

 G = As * Gs + (1 - As) * Gd

 B = As * Bs + (1 - As) * Bd

 A = As * As + (1 - As) * Ad

// source alpha = 0.3 

 R = 0.3 * Rs + 0.7 * Rd

 G = 0.3 * Gs + 0.7 * Gd

 B = 0.3 * Bs + 0.7 * Bd

 A = 0.3 * As + 0.7 * Ad

Dst color Cd = vec4(0.5, 1, 1, 1) 
Src color Cs = vec4(1, 0, 1, 0.3)

R = 0.3*1 + 0.7*0.5 = 0.65
G = 0.3*0 + 0.7*1 = 0.7
B = 0.3*1 + 0.7*1 = 1
A = 0.3*0.3 + 0.7*1 = 0.79



Smooth-shaded Alpha

 Like RGB colors, you can control the alpha value for 
each pixel in the application program.

 If the alpha value is specified differently for each vertex, the 
alpha value is also interpolated – so, it can form a soft edge.



Time-Varying Alpha

 Changing the alpha value over time gives a fade-in or 
fade-out effect.



Texture Alpha

 Using RGBA 4-channel texture images, more complex 
shapes can be constructed on a simple geometric 
object.



Chroma Keying

 Often used in film or video production.

 One example of chroma keying is the synthesis of 
images of live actors and graphical weather 
information in a weather caster’s TV broadcasting.

 Use the background color as an alpha value.



Blending & Drawing Order

 For blending, the drawing order of the object to be 
drawn and the previously drawn object is important.
 It acts as the source color (the color of object to be drawn) 

and the destination color (the color of the framebuffer already 
drawn) of the blending function.

 If you want to draw transparent and opaque object 
together, draw opaque first and then transparent.
 Make sure depth-buffering run before blending

Draw sphere first,
Then draw cube



Blending & Drawing Order

 If you want to draw multiple transparent objects 
together, draw them in back-to-front order.
 This order may vary depending on the location of camera.

 When drawing multiple transparent objects together, 
disable the depth mask to prevent occlusion.
 Makes the depth buffer read-only.



Render Queues

Name Index Description

Background 1000 Use this queue for anything that should be drawn 
in the background of your Scene

Geometry 2000 Use this queue for opaque geometry. This is the 
default queue.

AlphaTest 2450 Use this queue for alpha tested geometry. This is 
after the Geometry queue because it’s more 
efficient to render alpha-tested objects after all 
solid ones are drawn.

Transparent 3000 Use this queue for anything alpha-blended; 
i.e. shaders that don’t write to the depth buffer. 
Examples include glass, or particle effects.

Overlay 4000 Use this queue for effects that are rendered on 
top of everything else, such as lens flares.

 Unity sorts objects into groups called render queues, 
which it renders in the following order.



Backface Culling

 When drawing transparent objects, enable backface 
culling.
 Transparent objects usually have a rear view.

 Backface culling prevents drawing the backface of an object.

No backface culling Backface culling

CCW

Back face

CW

Front face



Fog

 Fog effect
 By blending with a depth-dependent color, it creates the 

feeling of a partially translucent space between the object and 
the observer.

 To implement Fog in computer graphics, objects distant from 
the viewpoint are rendered small and fuzzy.

 The point of time to apply the haze effect is performed last in 
the drawing process such as coordinate change, light source 
setting, and texture mapping.

Example of “cheating” at atmospheric effects using global fog.

https://docs.unity3d.com/530/Documentation/Manual/script-GlobalFog.html



Fog

 Fog Mode
 Linear (depth cueing)

 The linear fog factor is computed with the function

where c is the fog coordinate and S (the start) and E (the end). 

 Exponential, which is a more realistic approximation of fog

 The exponential fog factor uses the function

Where d is the fog’s density factor.

 Exponential Squared

 It uses the function

which results in less fog 

at close range, but 

Increases quicker.



Fog

Linear fog

Exponential fog

Exponential squared fog

https://catlikecoding.com/unity/tutorials/rendering/part-14/



Fog

 Fog effect is the blending of the fog color and the color 
of a fragment. The degree of blending is calculated as a 
function of the distance between the fragment to be 
rendered and the viewer.


