From Vertices to Fragments

Fall 2023
11/30/2023
Kyoung Shin Park
Computer Engineering
Dankook University

Geometric Pipeline

- Geometric pipeline
- Vertex processing
- Clipping and primitive assembly
- Rasterization
- Fragment processing

Application

Framebuffer

Clipping

- Clipping window
- 3D clipping volume
- Curves and text will be converted to lines and polygons.

2D Line-Segment Clipping

- Clipping 2D line segments
- The clipper determines which basic elements or parts of them should appear on the screen and be sent to the rasterizer.
- Accepted: Basic elements entering the designated viewing space area accepted.
- Rejected or culled: Basic elements that cannot appear on the screen are removed.
- 2D line-segment clipping

2D Line-Segment Clipping

- How to calculate intersection for all sides of clipping window
- Inefficient because one division must be performed per intersection

Before Clipping

After Clipping

Cohen-Sutherland Algorithm

- Cohen-Sutherland clipping algorithm

1. Extends the clipping window to infinity on 4 sides and divides the space into 9 areas

$x=$| 1001 | 1000 | |
| :--- | :--- | :--- |
| 0001 | $y_{\text {m2x }}$ | 1010 |
| 000 | $x_{\text {min }}^{0010}=x_{\text {max }}$ | |
| 0101 | $y^{100} y_{\text {min }}$ | 0110 |

2. Assign a unique outcode $\left(\mathbf{b}_{0} \mathbf{b}_{1} \mathbf{b}_{2} \mathbf{b}_{3}\right)$ to each area as follows.

$$
b_{0}=\left\{\begin{array}{l}
1 \text { if } y>y_{\text {max }} \\
0 \text { otherwise }
\end{array} b_{1}=\left\{\begin{array}{l}
1 \text { if } y<y_{\text {min }} \\
0 \text { otherwise }
\end{array} \quad b_{2}=\left\{\begin{array}{l}
1 \text { if } x>x_{\max } \\
0 \text { otherwise }
\end{array}\right.\right.\right.
$$

3. 4 cases are judged based on the outcode.

Cohen-Sutherland Algorithm

- For line segment $A B$: A 's outcode $=B^{\prime}$ s outcode $=0$
- If both ends of the segmented are inside, accepted
- For line segment CD: C's outcode AND D's outcode $\neq 0$
- If both endpoints of the segment are outside the same side of the clipping window, rejected

$$
\begin{aligned}
& \text { A's outcode }=0000 \\
& \text { B's outcode }=0000 \\
& \text { C's outcode }=0010 \\
& \text { D's outcode = } 1010 \\
& \text { C AND D }=0010 \neq 0
\end{aligned}
$$

Cohen-Sutherland Algorithm

- For line segment EF: E's outcode $\neq 0$, F's outcode $=0$
- If one endpoint of the segment is inside the clipping window and the other is outside, subdivide
- Need to find 1 intersection
- For line segment GH, IJ: G's outcode AND H's outcode = 0
- If both endpoints of the segment are outside, subdivide. In case of line segment GH, part of the line segment is inside the clipping window.
- Calculate at least one side of the window and check the outer sign of the resulting pointt. $y=y_{\text {max }}{ }^{F}$

G's outcode $=0001$
H's outcode $=1000$
G AND H $=0000$
I's outcode $=0001$
J's outcode $=1000$
I AND J $=0000$

Liang-Barsky Algorithm

- Liang-Barsky clipping algorithm

1. Parametric line formula

$$
\begin{aligned}
& P(\alpha)=(1-\alpha) P_{1}+\alpha P_{2}, 0 \leq \alpha \leq 1 \\
& x(\alpha)=(1-\alpha) x_{1}+\alpha x_{2} \\
& y(\alpha)=(1-\alpha) y_{1}+\alpha y_{2}
\end{aligned}
$$

2. Determined by examining the order of α values by calculating 4 points where the line segment intersects the extended side of the clipping window.

$$
\begin{aligned}
& y_{\text {max }}=\left(1-\alpha_{3}\right) y_{1}+\alpha_{3} y_{2} \\
& x_{\text {min }}=\left(1-\alpha_{2}\right) x_{1}+\alpha_{2} x_{2} \\
& \alpha_{3}=\frac{y_{\text {max }}-y_{1}}{y_{2}-y_{1}}
\end{aligned}
$$

$$
\alpha_{2}=\frac{x_{\min }-x_{1}}{x_{2}-x_{1}} \quad \begin{aligned}
& 1>\alpha_{4}>\alpha_{3}>\alpha_{2}>\alpha_{1}>0 \\
& \text { right, top, left, bottom }
\end{aligned}
$$

order intersect

$$
\begin{gathered}
1>\alpha_{4}>\alpha_{2}>\alpha_{3}>\alpha_{1}>0 \\
\text { right, left, top, bottom }
\end{gathered}
$$

order intersect

Liang-Barsky Algorithm

- Liang-Barsky clipping algorithm

3. The line in the clipping window satisfies the following

$$
\begin{aligned}
& x_{\min } \leq x(\alpha) \leq x_{\max } \\
& y_{\min } \leq y(\alpha) \leq y_{\max }
\end{aligned}
$$

4. A line outside the clipping window is when $\left(x_{1}, y_{1}\right)$ is outside $x_{\min }, x_{\max }$ or $\mathrm{y}_{\text {min }} \mathrm{y}_{\text {max }}$.

$$
\begin{aligned}
q_{k}<0 \quad(k & =1,2,3,4) \\
\text { where } \quad q_{1} & =x_{1}-x_{\min } \\
q_{2} & =x_{\max }-x_{1} \\
q_{3} & =y_{1}-y_{\min } \\
q_{4} & =y_{\max }-y_{1}
\end{aligned}
$$

Liang-Barsky Algorithm

- Liang-Barsky clipping algorithm

5. Of the two points of a straight line, the point with the smallest x value is assumed to be $\left(x_{1}, y_{1}\right)$. If the line is extended infinitely, the clipping window passes from outside to inside and from inside to outside.

Polygon Clipping

- Concave polygon clipping
- Method1: How to combine into one polygon after clipping
- Method2: Split into a set of concave polygons (tessellate), and clipping

After clipping
Before clipping

Pipeline Clipping of Line Segments

- Sutherland-Hodgeman algorithm
- Subdividing the cutter into a simpler cutter pipeline that clips each side of the window.

$$
\begin{aligned}
& x_{3}=x_{1}+\left(y_{\max }-y_{1}\right) \frac{x_{2}-x_{1}}{y_{2}-y_{1}} \\
& y_{3}=y_{\text {max }}
\end{aligned}
$$

Pipeline Clipping of Polygons

- Sutherland-Hodgeman algorithm
- Input: Polygon (vertices list) and clipping plane
- Output: New clipped polygon (vertices list)
- For 2D, pipeline clipping of polygons
- For 3D, add front and back clipping

Bounding Boxes

- Use the axis-aligned bounding box or extent of a polygon for clipping
- For complex polygons with many sides
- Bounding box is the smallest rectangle aligned to the window containing the polygon
- The bounding box is obtained by calculating the minimum (min) and maximum (max) values of the x and y values of the polygon vertices.

Bounding boxes

- Simple clipping using bounding boxes

Reject, because it is outside of the window

Accept, because it is inside the window

Requires detailed clipping using all sides of the polygor

Cohen-Sutherland Algorithm in 3D

- In 3D, clipping for the bounding volume, not the bounding area
- Cohen-Sutherland clipping algorithm
- Calculate using 6-bit outcode in 3D (instead of 4-bit outcode used in 2D)

Liang-Barsky Algorithm in 3D

- Liang-Barsky clipping algorithm
- 3D Line parametric form

$$
\begin{aligned}
& P(\alpha)=(1-\alpha) P_{1}+\alpha P_{2}, 0 \leq \alpha \leq 1 \\
& x(\alpha)=(1-\alpha) x_{1}+\alpha x_{2} \\
& y(\alpha)=(1-\alpha) y_{1}+\alpha y_{2} \\
& z(\alpha)=(1-\alpha) z_{1}+\alpha z_{2}
\end{aligned}
$$

- Derive α from the formula of plane $\left(P_{0}, n\right)$

$$
\begin{aligned}
& P(\alpha)=(1-\alpha) P_{1}+\alpha P_{2} \\
& n \cdot\left(P(\alpha)-P_{0}\right)=0 \\
& \alpha=\frac{n \cdot\left(P_{0}-P_{1}\right)}{n \cdot\left(P_{2}-P_{1}\right)}
\end{aligned}
$$

Rasterization

- Rasterization/Scan conversion
- The final step in the process from framebuffer to fragment
- The task of deciding which pixels to represent an object
- Mapping from normalized device coordinates to viewport
\square Based on the result of converting vertex coordinates to screen coordinates
\square Convert line segment to screen coordinates
\square Convert inner surface to screen coordinates
- In the picture below, what pixels should be painted in the area surrounded by A^{\prime}, B^{\prime} and C^{\prime} to best represent the triangle $A B C$?

Rasterization

- Convert float coordinates to integer coordinates
- Sometimes, rounding is necessary.
- For example, convert the vertex's viewpoint coordinates $(1.95,1.4)$ \rightarrow pixel $(2,1)$
- All vertices that are (1.5 <= $x<2.5$) and ($0.5<=y<1.5$) inside the boundary are mapped to $(2,1)$

A and B are all mapped to the same line segment.

Line Scan-Conversion

- A line segment is the most primitive to which the rasterization algorithm that is applied.
- Once the vertices at both ends of the segment have been determined to which pixels on the screen are mapped, the remaining pixels are processed.
- Sampling by slope
- If greater than 1, increase the y coordiniate
- If less than 1 , increase the x coordinate
- If the slope is negative, use the absolute value:

Line Scan-Conversion

- The following line scan-conversion equation is slow due to floating point multiplication.
void LineDraw(int x1, int y1, int x2, int y2)
float $y, m ;$
int dx, dy;
$\mathrm{dx}=\mathrm{x} 2-\mathrm{x} 1$;
$d y=y 2-y 1 ;$
m = dy / dx;
for ($\mathrm{x}=\mathrm{x} 1$; $\mathrm{x}<=\mathrm{x} 2 ; \mathrm{x}++$) \{
$y=m^{*}(x-x 1)+y 1 ;$
DrawPixel(x, round(y));
\}

$$
\begin{aligned}
& \text { 두점 }(x 1, y 1)(x 2, y 2) \text { 을 지나는 직선방 정식 } \\
& y=\frac{y 2-y 1}{x 2-x 1}(x-x 1)+y 1
\end{aligned}
$$

DDA (Digital Differential Analyzer)

- The following line scan-conversion equation converts floating-point multiplication to floating-point addition
void LineDraw(int x1, int y1, int x2, int y2) \{ float m, y;
int dx, dy;
$\mathrm{dx}=\mathrm{x} 2-\mathrm{x} 1$;
$d y=y 2-y 1 ;$
$\mathrm{m}=\mathrm{dy} / \mathrm{dx}$;
($\mathrm{x} 1, \mathrm{y} 1$)
$y=y 1$;
for (int $x=x 1$; $x<=x 2 ; x++$) \{
$y+=m ;$
DrawPixel(x, round(y));

$$
\begin{aligned}
& y=m x+h \text { where } m=\frac{y 2-y 1}{x 2-x 1}=\frac{\Delta y}{\Delta x} \\
& \Rightarrow \Delta y=m \Delta x \\
& \Rightarrow \Delta y=m \text { (x가 } 1 \text { 씩 증가할 때) }
\end{aligned}
$$

DDA (Digital Differential Analyzer)

- DDA algorithm

x	(x, y)	반올림 결과
$x=0$	$(0,0.00)$	$(0,0)$
$x=1$	$(1,0.33)$	$(1,0)$
$x=2$	$(2,0.66)$	$(2,1)$
$x=3$	$(3,0.99)$	$(3,1)$
$x=4$	$(4,1.32)$	$(4,1)$
$x=5$	$(5,1.65)$	$(5,2)$
$x=6$	$(6,1.98)$	$(6,2)$

DDA (Digital Differential Analyzer)

- DDA disadvantage
- Floating-point arithmetic operation
- Floating-point addition is slower than integer arithmetic operation
- Rounding
- Time it takes to execute the round() function
- Accuracy
- In case of floating point numbers, the back seat is cut off
\square Accumulation of errors by successive addition
- Selected pixels gradually move away from the actual line segment and thus drift

Bresenham's Line Algorithm

- Also known as Midpoint Algorithm
- Avoid all floating point calculations and use only integer.
- The line rasterization algorithm, the standard for raster machines.

- Select A (x, y)
- The next pixel is one of $B(x+1, y)$, or $C(x+1, y+1)$
- Determined by the vertical distance between the center of the pixel and the line segment
- Select Pixel B if the segment is below the midpoint M, pixel C if it is above.

Bresenham's Line Algorithm

- If pixel $A=(x 1, y 1)$, the coordinates of the midpoint M of pixel B and C are ($x 1+1, y 1+1 / 2$), substituting this into F :
$y=m x+h, m=\frac{d y}{d x}$
$y=\frac{d y}{d x} x+h$
$y d x=x d y+h d x$
$0=x d y-y d x+h d x$
$F(x, y)=2 x d y-2 y d x+2 h d x$

$$
\begin{aligned}
F(x, y) & =F\left(x 1+1, y 1+\frac{1}{2}\right) \\
& =2(x 1+1) d y-2\left(y 1+\frac{1}{2}\right) d x+2 h d x \\
& =2 x 1 d y-2 y 1 d x+2 h d x+2 d y-d x \\
& =F(x 1, y 1)+2 d y-d x
\end{aligned}
$$

$$
\begin{aligned}
& F(x 1, y 1)=2 x 1 d y-2 y 1 d x+2 h d x=0 \\
& F(x, y)=2 d y-d x
\end{aligned}
$$

Bresenham's Line Algorithm

- Determine whether the midpoint is above or below the line segment based on the decision variable, F.
- If $F(x, y)<0$, the midpoint is on the line segment and therefore selects the East pixel.
- If $F(x, y)>0$, select the NorthEast pixel.

$$
F(x, y)=2 d y-d x
$$

$$
\text { if }(F(x, y)<0) \quad \text { select } E \quad / / \text { 동쪽화소 선택 }
$$

else select NE //동북쪽화소선택

Bresenham's Line Algorithm

- The current pixel is (x, y) and if the East pixel is selected, the next step position is $(\mathbf{x}+\mathbf{1}, \mathrm{y})$.
- If the NorthEast pixel is selected, the next step position is $(x+1, y+1)$.
- The difference between the decision variable at the next stage and the decision variable at the current stage is:

$$
\begin{aligned}
\operatorname{incrE} & =F(x+1, y)-F(x, y) \\
& =(2(x+1) d y-2 y d x+2 h d x)-(2 x d y-2 y d x+2 h d x) \\
& =2 d y
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{incr} N E & =F(x+1, y+1)-F(x, y) \\
& =(2(x+1) d y-2(y+1) d x+2 h d x)-(2 x d y-2 y d x+2 h d x) \\
& =2 d y-2 d x
\end{aligned}
$$

Bresenham's Line Algorithm

```
void MidpointLineDraw(int x1, int y1, int x2, int y2)
{
    int dx, dy, incrE, incrNE, D, x, y=y1;
    dx = x2 - x1; dy = y2 - y1;
    D = 2*dy - dx;
incrE = 2*dy;
incrNE = 2*dy - 2*dx;
// initialize the decision variable
// increment when selecting East
for (x=x1;x <= x2; x++) {
if (D <= 0) {
D += incrE;
// If the decision variable is negative,
// select E and increase decision variable
}
else {
D += incrNE;
y++;
}
DrawPixel (x, y); // draw pixel
}

\section*{Bresenham's Line Algorithm}
- \(|m|>1.0\)
- Calculate by swapping \(x\) and \(y\)
- Increasing in the \(y\) direction, determine the \(x\)-value
- In addition, special cases are handled separately.
- \(\Delta y=0\) (horizontal line)
- \(\Delta x=0\) (vertical line)
- \(|\Delta x|=|\Delta y|\) (diagonal lines)


\section*{Bresenham's Line Algorithm}
- For example, a line segment between \((0,0)\) and \((6,4)\)
\begin{tabular}{|l|l|l|l|}
\hline\((0,0)\) & \(\mathrm{D}>0\) \\
\hline\((1,1)\) & \(\mathrm{D}<0\) \\
\hline & & & \(\ldots\) \\
\hline\((2,1)\) & \(\cdots\) \\
\hline & & & \\
\hline & & & \\
\hline\((6,4)\) & \\
\hline
\end{tabular}

\section*{Bresenham's Line Algorithm}
- Increased speed by integer operation + hardware implementation
- Defined only in the first 8th
- Apply by moving and reflecting other segments

(a)

- Circle algorithm
- Similar to line segment algorithm

\section*{Polygon Scan-Conversion}
- Polygon rasterization = polygon filling
- If the point is inside the polygon, paint it with the interior color
- Polygon inside/outside rule
- Even-odd rule
- If the boundary of each scan line intersects the odd number, it is inside. If it intersects the even number, it is outside.
- Non-zero winding rule
\(\square\) When each scan line crosses the lower boundary, the number of folds increased by 1 , and when it crosses the upper boundary, it is decreased by 1 .
\(\square\) At this time, if the number of folds is greater than 0 , it is defined as the inner area of the polygon.


\section*{Flood Fill}
- Flood fill
- Filling an area defined as interior
- Starting at the seed point inside the polygon, looping through the neighbors, if they are not side points, paint with a fill color.
void flood_fill(int \(x\), int \(y\) ) \{ // Start at the initial point ( \(x, y\) ) inside polygon if(read_pixel \((x, y)==\) WHITE) \(\{/ /\) if current pixel is background color
write_pixel( \(x, y, B L A C K\) ); // paint with fill color
flood_fill \((x+1, y)\); // repeat right side
flood_fill( \(x-1, y\) );
flood_fill( \(x, y+1\) );
flood_fill( \(x, y-1\) );
// repeat left side
// repeat down side
// repeat up side

\section*{Scan Line Fill}
- Scan line fill
- Y-X polygon scan line algorithm:
- Compose Edge list (EL) by arranging all edges in Y-value order
- Take out the edge from EL where each scan line intersects, and move it to the Active Edge List (AEL).
\(\square\) Fill the gap \(b=y\) pairing the scan line with each edge and intersection point by two.



Active Edge List


\section*{Aliasing}
- Stair-step (Jaggies) border
- In bitmap representation, it is only possible to approximate pixel units.
- An inevitable phenomenon when an object with infinite resolution is approximated in units of pixel with finite resolution.


\section*{Anti-Aliasing}
- Super-Sampling
- Sampling in partial pixels. Post filtering
- Reflects the average value of partial pixels

- Super sampling by jitter
- If the object itself is irregular, irregular sampling is advantageous.


\section*{Anti-Aliasing}

\section*{Aliasing \\  \\ Anti-aliased}


Magnified```

