
From Vertices to Fragments

Fall 2023
11/30/2023

Kyoung Shin Park
Computer Engineering

Dankook University

Geometric Pipeline

 Geometric pipeline
 Vertex processing

 Clipping and primitive assembly

 Rasterization

 Fragment processing

Application

Graphics system

Framebuffer

Clipping

 Clipping window

 3D clipping volume

 Curves and text will be converted to lines and
polygons.

 Clipping 2D line segments
 The clipper determines which basic elements or parts of them

should appear on the screen and be sent to the rasterizer.

 Accepted: Basic elements entering the designated viewing
space area accepted.

 Rejected or culled: Basic elements that cannot appear on the
screen are removed.

 2D line-segment clipping

2D Line-Segment Clipping

 How to calculate intersection for all sides of clipping
window
 Inefficient because one division must be performed per

intersection

2D Line-Segment Clipping

Cohen-Sutherland Algorithm

 Cohen-Sutherland clipping algorithm
1. Extends the clipping window to infinity on 4 sides and divides

the space into 9 areas

2. Assign a unique outcode (b0b1b2b3) to each area as follows.

3. 4 cases are judged based on the outcode.





 


otherwise

yif y
b

max

0

1
0

x = xmaxx = xmin

y = ymax

y = ymin

1001 1000 1010

0001 0000 0010

0101 0100 0110





 


otherwise

yif y
b

min

0

1
1





 


otherwise

xif x
b

max

0

1
2





 


otherwise

xif x
b

min

0

1
3

Cohen-Sutherland Algorithm

 For line segment AB: A’s outcode = B’s outcode = 0
 If both ends of the segmented are inside, accepted

 For line segment CD: C’s outcode AND D’s outcode ≠ 0
 If both endpoints of the segment are outside the same side of

the clipping window, rejected

x = xmaxx = xmin

y = ymax

y = ymin

A

B

C

D
A’s outcode = 0000
B’s outcode = 0000

C’s outcode = 0010
D’s outcode = 1010

C AND D = 0010 ≠ 0

Cohen-Sutherland Algorithm

 For line segment EF: E’s outcode ≠ 0, F’s outcode = 0
 If one endpoint of the segment is inside the clipping window and

the other is outside, subdivide

 Need to find 1 intersection

 For line segment GH, IJ: G’s outcode AND H’s outcode = 0
 If both endpoints of the segment are outside, subdivide. In case of

line segment GH, part of the line segment is inside the clipping
window.

 Calculate at least one side of the window and check the outer sign
of the resulting point.

x = xmaxx = xmin

y = ymax

E

F

G

H

y = ymin

I

J

G’s outcode = 0001
H’s outcode = 1000
G AND H = 0000

I’s outcode = 0001
J’s outcode = 1000

I AND J = 0000
E’s outcode = 0000
F’s outcode = 1000

Liang-Barsky Algorithm

p1

p2

right, top, left, bottom
order intersect

right, left, top, bottom
order intersect

 Liang-Barsky clipping algorithm
1. Parametric line formula

2. Determined by examining the order of α values by calculating
4 points where the line segment intersects the extended side
of the clipping window.

Liang-Barsky Algorithm

 Liang-Barsky clipping algorithm
3. The line in the clipping window satisfies the following

4. A line outside the clipping window is when (x1, y1) is outside xmin, xmax

or ymin, ymax.

Liang-Barsky Algorithm

 Liang-Barsky clipping algorithm
5. Of the two points of a straight line, the point with the smallest x value

is assumed to be (x1, y1). If the line is extended infinitely, the clipping
window passes from outside to inside and from inside to outside.

x = xmaxx = xmin

y = ymax

E

F

G

H

y = ymin

I

J

EF

A

B C

D

Polygon Clipping

 Concave polygon clipping
 Method1: How to combine into one polygon after clipping

 Method2: Split into a set of concave polygons (tessellate), and
clipping

Create one polygon

Tessellation

Before clipping

After clipping

Pipeline Clipping of Line Segments

 Sutherland-Hodgeman algorithm
 Subdividing the cutter into a simpler cutter pipeline that clips

each side of the window.

x = xmax
x = xmin

y = ymax

y = ymin

Pipeline Clipping of Polygons

 Sutherland-Hodgeman algorithm
 Input: Polygon (vertices list) and clipping plane

 Output: New clipped polygon (vertices list)

 For 2D, pipeline clipping of polygons

 For 3D, add front and back clipping

Bounding Boxes

 Use the axis-aligned bounding box or extent of a
polygon for clipping
 For complex polygons with many sides

 Bounding box is the smallest rectangle aligned to the window
containing the polygon

 The bounding box is obtained by calculating the minimum
(min) and maximum (max) values of the x and y values of the
polygon vertices.

 Simple clipping using bounding boxes

Bounding boxes

Reject, because it is
outside of the window

Accept, because it is
inside the window

Requires detailed clipping
using all sides of the polygon

Cohen-Sutherland Algorithm in 3D

 In 3D, clipping for the bounding volume, not the
bounding area

 Cohen-Sutherland clipping algorithm
 Calculate using 6-bit outcode in 3D (instead of 4-bit outcode

used in 2D)

Liang-Barsky Algorithm in 3D

 Liang-Barsky clipping algorithm
 3D Line parametric form

 Derive a from the formula of plane (P0, n)

Rasterization

 Rasterization/Scan conversion
 The final step in the process from framebuffer to fragment

 The task of deciding which pixels to represent an object

 Mapping from normalized device coordinates to viewport

 Based on the result of converting vertex coordinates to screen
coordinates

 Convert line segment to screen coordinates

 Convert inner surface to screen coordinates

 In the picture below, what pixels should be painted in the area
surrounded by A’, B’ and C’ to best represent the triangle ABC?

Rasterization

0 1 2 3

0

1

2

3

0 1 2 3

0

1

2

3

A

B

 Convert float coordinates to integer coordinates
 Sometimes, rounding is necessary.

 For example, convert the vertex’s viewpoint coordinates (1.95, 1.4)
 pixel (2, 1)

 All vertices that are (1.5 <= x < 2.5) and (0.5 <= y < 1.5) inside
the boundary are mapped to (2, 1)

A and B are all mapped to the same line segment.

Line Scan-Conversion

 A line segment is the most primitive to which the
rasterization algorithm that is applied.

 Once the vertices at both ends of the segment have
been determined to which pixels on the screen are
mapped, the remaining pixels are processed.

 Sampling by slope
 If greater than 1, increase the y coordinate

 If less than 1, increase the x coordinate

 If the slope is negative, use the absolute value.

x

y

(x1,y1)

(x2,y2)

Line Scan-Conversion

 The following line scan-conversion equation is slow due
to floating point multiplication.

void LineDraw(int x1, int y1, int x2, int y2)

{

float y, m;

int dx, dy;

dx = x2 - x1;

dy = y2 - y1;

m = dy / dx;

for (x = x1; x <= x2; x++) {

y = m*(x - x1) + y1;

DrawPixel(x, round(y));

}

} 1)1(
12

12

)2,2)(1,1(

yxx
xx

yy
y

yxyx







직선방정식지나는을두점

DDA (Digital Differential Analyzer)

 The following line scan-conversion equation converts
floating-point multiplication to floating-point addition

void LineDraw(int x1, int y1, int x2, int y2)

{

float m, y;

int dx, dy;

dx = x2 - x1;

dy = y2 - y1;

m = dy / dx;

y = y1;

for (int x = x1; x <= x2; x++) {

y += m;

DrawPixel(x, round(y));

}

}

) 1 (x 때증가할씩가

12

12

my

xmy

x

y

xx

yy
mwherehmxy















(x1,y1)

(x2,y2)

DDA (Digital Differential Analyzer)

 DDA algorithm

x (x, y) 반올림 결과

x = 0 (0, 0.00) (0, 0)

x = 1 (1, 0.33) (1, 0)

x = 2 (2, 0.66) (2, 1)

x = 3 (3, 0.99) (3, 1)

x = 4 (4, 1.32) (4, 1)

x = 5 (5, 1.65) (5, 2)

x = 6 (6, 1.98) (6, 2)

DDA (Digital Differential Analyzer)

 DDA disadvantage
 Floating-point arithmetic operation

 Floating-point addition is slower than integer arithmetic
operation

 Rounding

 Time it takes to execute the round() function

 Accuracy

 In case of floating point numbers, the back seat is cut off

 Accumulation of errors by successive addition

 Selected pixels gradually move away from the actual line
segment and thus drift

Bresenham’s Line Algorithm

 Also known as Midpoint Algorithm
 Avoid all floating point calculations and use only integer.

 The line rasterization algorithm, the standard for raster machines.

 Select A (x, y)
 The next pixel is one of B (x+1, y), or C (x+1, y+1)

 Determined by the vertical distance between the center of the
pixel and the line segment

 Select Pixel B if the segment is below the midpoint M, pixel C
if it is above.

(x1,y1)

(x2,y2)

(x,y) (x+1,y)

(x+1,y+1)

M(x+1,y+½)

Bresenham’s Line Algorithm

 If pixel A=(x1, y1), the coordinates of the midpoint M
of pixel B and C are (x1 + 1, y1 + ½), substituting this
into F:

Bresenham’s Line Algorithm

 Determine whether the midpoint is above or below the
line segment based on the decision variable, F.
 If F(x, y) < 0, the midpoint is on the line segment and therefore

selects the East pixel.

 If F(x, y) > 0, select the NorthEast pixel.

d2

d1

d2>d1 => F(x,y) <0

Bresenham’s Line Algorithm

 The current pixel is (x, y) and if the East pixel is selected,
the next step position is (x+1, y).

 If the NorthEast pixel is selected, the next step position
is (x+1, y+1).

 The difference between the decision variable at the next
stage and the decision variable at the current stage is:

Bresenham’s Line Algorithm

void MidpointLineDraw(int x1, int y1, int x2, int y2)
{

int dx, dy, incrE, incrNE, D, x, y=y1;
dx = x2 - x1; dy = y2 - y1;
D = 2*dy - dx; // initialize the decision variable
incrE = 2*dy; // increment when selecting East
incrNE = 2*dy - 2*dx; // increment when selecting NE
for (x=x1; x <= x2; x++) {

if (D <= 0) { // If the decision variable is negative,
D += incrE; // select E and increase decision variable

}
else { // If the decision variable is positive,

D += incrNE; // select NE, increase decision variable
y++; // y++ next pixel is NE

}
DrawPixel (x, y); // draw pixel

}
}

0 ≤ m ≤ 1

Bresenham’s Line Algorithm

 |m| > 1.0
 Calculate by swapping x and y

 Increasing in the y direction, determine the x-value

 In addition, special cases are handled separately.
 Δy = 0 (horizontal line)

 Δx = 0 (vertical line)

 |Δx| = |Δy| (diagonal lines)

x1<x2

0 ≤ m ≤ 1

x1<x2
-1 ≤ m ≤ 0

y2<y1
-∞ < m < -1

y2<y1

1 < m < ∞

x2<x1

0 ≤ m ≤ 1

x2<x1
-1 ≤ m ≤ 0

y1<y2
-∞ < m < -1

y1<y2
1 < m < ∞

x

y

Bresenham’s Line Algorithm

0

0 6

4

 For example, a line segment between (0, 0) and (6, 4)

(0, 0) D > 0

(1,1) D < 0

(2, 1) …

… …

(6, 4)

Bresenham’s Line Algorithm

 Increased speed by integer operation + hardware
implementation

 Defined only in the first 8th
 Apply by moving and reflecting other segments

 Circle algorithm
 Similar to line segment algorithm

 Polygon rasterization = polygon filling
 If the point is inside the polygon, paint it with the interior color

 Polygon inside/outside rule
 Even-odd rule

 If the boundary of each scan line intersects the odd number, it is
inside. If it intersects the even number, it is outside.

 Non-zero winding rule

 When each scan line crosses the lower boundary, the number of
folds increased by 1, and when it crosses the upper boundary, it is
decreased by 1.

 At this time, if the number of folds is greater than 0, it is defined
as the inner area of the polygon.

Polygon Scan-Conversion

Flood Fill

 Flood fill
 Filling an area defined as interior

 Starting at the seed point inside the polygon, looping through the
neighbors, if they are not side points, paint with a fill color.

void flood_fill(int x, int y) { // Start at the initial point (x, y) inside polygon

if(read_pixel(x,y)= = WHITE) { // if current pixel is background color

write_pixel(x,y,BLACK); // paint with fill color

flood_fill(x+1, y); // repeat right side

flood_fill(x-1, y); // repeat left side

flood_fill(x, y+1); // repeat down side

flood_fill(x, y-1); // repeat up side

}

}

http://en.wikipedia.org/wiki/Image:Recursive_Flood_Fill_4_%28aka%29.gif
http://en.wikipedia.org/wiki/Image:Recursive_Flood_Fill_4_%28aka%29.gif

Scan Line Fill

 Scan line fill
 Y-X polygon scan line algorithm:

 Compose Edge list (EL) by arranging all edges in Y-value order

 Take out the edge from EL where each scan line intersects, and
move it to the Active Edge List (AEL).

 Fill the gap b=y pairing the scan line with each edge and
intersection point by two.

1
2
3
4
5
6
7
8
9

Edge List e1 e2 e3

e1
e2

e3

Active Edge List

0y=2

y=3
..

y=6

y=9

e1 e2

e1 e3

0

0y=1

..

Aliasing

 Stair-step (Jaggies) border
 In bitmap representation, it is only possible to approximate pixel

units.

 An inevitable phenomenon when an object with infinite
resolution is approximated in units of pixel with finite resolution.

Anti-Aliasing

 Super-Sampling
 Sampling in partial pixels. Post filtering

 Reflects the average value of partial pixels

 Super sampling by jitter

 If the object itself is irregular, irregular sampling is advantageous.

Anti-Aliasing

Aliasing Anti-aliased

Magnified

