
Input and Interaction

Fall 2024
9/26/2024

Kyoung Shin Park
Computer Engineering

Dankook University

 Introduce the basic input devices
 Physical input devices

 Mouse, Keyboard, Trackball

 Logical input devices

 String, Locator, Pick, Choice, Valuators, Stroke device

 Input modes
 Request mode

 Sample mode

 Event mode

 Devices & Event-driven programming
 mouse, keyboard,..

Overview

Interaction

 One of the major advances in computer technology is
that users can interact using computer screens.

 Interaction
 The user takes action through an interactive device such as a

mouse.

 The computer detects user input.

 The program changes it state in response to this input.

 The program displays this new status.

 The users sees the changed display.

 The processes in which the user reacts to this change are
repeated.

Graphical Input

 Input devices can be described either by
 Physical properties

 Mouse, Keyboard, Trackball

 Logical properties

 Characterized by upper interface with application program, not by
physical characteristics

 Input modes
 The way an input device provides an input to an application

program can be described as a measurement process and
device trigger.

 Request mode

 Sample mode

 Event mode

Physical Input Devices

mouse trackball light pen

data tablet joy stick space ball

Physical Input Devices

 Physical input devices
 Pointing devices

 Allows the user to point to a location on the screen

 In most cases, the user has more than one button to send a
signal or interrupt to the computer.

 Mouse, trackball, tablet, lightpen, joystick, spaceball

 Keyboard devices

 A device that returns a character code to a program

 Keyboard

 Devices such as the data tablet return a position
directly to the operating system

 Devices such as the mouse, trackball, and joy stick
return incremental inputs (or velocities) to the
operating system
 Must integrate these inputs to obtain an absolute position

 Rotation of cylinders in mouse

 Roll of trackball

 Difficult to obtain absolute position

 Can get variable sensitivity

Relative Positioning Device

Logical Input Devices

 String device - keyboard
 Provide ASCII strings of characters to the program

 Locator device – mouse, trackball
 Provide real world coordinate position to the program

 Pick device – mouse button, gun
 Return the object’s identifier(ID) to the program

 Choice device – widgets, function keys, mouse button
 Let the user choose one of the options (menu)

 Valuators – slide bars, joystick, dial
 Provide analog input (range of value) to the program

 Stroke – mouse drag
 Return array of positions

Input Modes

 Input devices contain a trigger which can be used to
send a signal to the operating system
 Button on mouse

 Pressing or releasing a key

 When triggered, input devices return information (their
measure) to the system
 Mouse returns position information

 Keyboard returns ASCII code

Request Mode

 In request mode, input measurement are not returned
to the program until the user triggers the device.

 Standard for typical non-GUI program requiring
character input
 For example, when the C program’s scanf function is used, the

program stops while waiting for the terminal to type a
character. Then, you can type and edit until you hit the enter-
key(trigger).

Sample Mode

 Sample mode provides immediate input measures. As
soon as the program encounters a function call, the
measurement is returned. Therefore, no trigger is
required.

 Example: getc function in C program

Event Mode

 Most systems have more than one input device, each
of which can be triggered at an arbitrary time by a
user.

 Each trigger generates an event whose measure is put
in an event queue which can be examined by the user
program.

 Use the callback function for a specific event.

Unity Input Class

 Input.GetAxis(“Mouse X”|”Mouse Y”) – mouse

 Input.GetAxis(“Horizontal”|”Vertical”) – joystick, WASD
and arrow keys
 moveAmount = Input.GetAxis(“Vertical”) * speed

 turnAmount = Input.GetAxis(“Horizontal”) * rotSpeed

 Input.GetButtonDown(“Fire1”|”Fire2”|”Fire3”) – action-like
events only

 Input.GetMouseButtonDown(0|1|2) – mouse button
 Vector3 mousePos = Input.mousePosition

 Input.GetKey(KeyCode.UpArrow|“up”) – holds down key

 Input.GetKeyDown(KeyCode.Space|”space”)

 Input.GetTouch(0|…|Input.touchCount)
 Vector2 touchDeltaPos = Input.GetTouch(0).deltaPosition

https://docs.unity3d.com/ScriptReference/Input.html

Keyboard Functions

 static bool GetAxis(string axisName)
 Returns the value of the virtual axis identified by axisName.

 static bool GetKey(KeyCode key)

 static bool GetKey(string name)
 Returns true while the user holds down the key

 static bool GetKeyDown(KeyCode key)

 static bool GetKeyDown(string name)
 Returns true during the frame the user starts pressing down the

key

 static bool GetKeyUp(KeyCode key)

 static bool GetKeyUp(string name)
 Returns true during the frame the user releases the key

Keyboard Event Callback

 Call this function from the Update() function, since the
state gets reset each frame.

public class Example : MonoBehavior {

void Update() {

// The value is in the range -1 to 1

float translation = Input.GetAxis("Vertical") * speed;

float rotation = Input.GetAxis("Horizontal") * rotSpeed;

// ESC-key exits the program

if (Input.GetKeyDown(KeyCode.Escape)) {

Application.Quit();

}

}

}

Mouse Functions

 static bool GetAxis(string axisName)
 Returns the value of the virtual axis identified by axisName.

 static bool GetMouseButton(int button)
 Returns whether the given mouse button is held down.

 static bool GetMouseButtonDown(int button)
 Returns true during the frame the user pressed the given mouse

button.

 static bool GetMouseButtonUp(int button)
 Returns true during the frame the user releases the given mouse

button.

 static Vector3 mousePosition
 The current mouse position in pixel coordinates (read only)

 static Vector2 mouseScrollDelta
 The mouse scroll delta (read only) -1~0~1

Mouse Event Callback

 Call this function from the Update() function, since the
state gets reset each frame.

public class Example : MonoBehavior {

void Update() {

// The value is in the range -1 to 1

float h = Input.GetAxis(“Mouse X") * rotSpeed;

float v = Input.GetAxis(“Mouse Y") * speed;

// left-mouse holds to print the mouse position

if (Input.GetMouseButton(0)) {

Debug.Log(Input.mousePosition);

}

}

}

 In Unity, the screen coordinate has the origin at the
bottom-left corner, x+ is increasing to the right, y+ is
increasing upwards.

Mouse Positioning

(0,0)

height

width

(0,0,0)

2D screen coordinates 3D world space coordinates

Mouse Positioning

Vector3 worldPosition

// 2D mouse position -> 3D world position

void Update()

{

Vector3 mousePos = Input.mousePosition; // Screen Space

mousePos.z = Camera.main.nearClipPlane;

worldPosition = Camera.main.ScreenToWorldPoint(mousePos);

}

Mouse Positioning

void OnGUI() {

Vector3 point = new Vector3();

Event currentEvent = Event.current;

Vector3 mousePos = new Vector3();

// Get the mouse position from Event.

// Note that the y position from Event is inverted. (GUI Space) –> 2D screen space

mousePos.x = currentEvent.mousePosition.x;

mousePos.y = Camera.main.pixelHeight - currentEvent.mousePosition.y;

mousePos.z = Camera.main.nearClipPlane;

point = Camera.main.ScreenToWorldPoint(mousePos); // 2D screen -> 3D world

GUILayout.BeginArea(new Rect(20, 20, 250, 120));

GUILayout.Label("Screen pixels: " + Camera.main.pixelWidth + ":" +
Camera.main.pixelHeight);

GUILayout.Label("Mouse position: " + mousePos);

GUILayout.Label("World position: " + point.ToString("F3"));

GUILayout.EndArea();

}

