Geometric Objects - Spaces and Matrix

Fall 2024 10/3/2024 Kyoung Shin Park Computer Engineering Dankook University

Spaces

- Vector space
 - The vector space has scalars and vectors.
 - Scalars: α , β , δ
 - Vectors: u, v, w
- Affine space
 - The affine space has point in addition to the vector space.
 - Points: P, Q, R
- Euclidean space
 - In Euclidean space, the concept of distance is added.

Scalars, Points, Vectors

- 3 basic types needed to describe the geometric objects and their relations
- \Box Scalars: α , β , δ
- □ Points: P, Q, R
- Vectors: u, v, w
- Vector space
 - scalars & vectors
- Affine space
 - Extension of the vector space that includes a point

Scalars

- Commutative, associative, and distribution laws are established for addition and multiplication
- Addition identity is 0 and multiplication identity is 1.
 - $\alpha + 0 = 0 + \alpha = \alpha$
 - $\alpha \cdot 1 = 1 \cdot \alpha = \alpha$
- Inverse of addition and inverse of multiplication

 - $\alpha \cdot \alpha^{-1} = 1$

Vectors

- Vectors have magnitude (or length) and direction.
- Physical quantities, such as velocity or force, are vectors.
- Directed line segments used in computer graphics are vectors.
- Vectors do not have a fixed position in space.

Points

- Points have a position in space.
- Operations with points and vectors:
 - Point-point subtraction creates a vector.
 - Point-vector addition creates points.

Specifying Vectors

2D Vector: (x, y)

□ 3D Vector: (x, y, z)

3D Vector Vector from the origin O(0, 0, 0) to the point P(1, -3, -4)

Examples of 2D vectors

Vector Operations

- zero vector
- vector negation
- vector/scalar multiply
- add & subtract two vectors
- vector magnitude (length)
- normalized vector
- distance formula
- vector product
 - dot product
 - cross product

The Zero Vector

□ The three-dimensional zero vector is (0, 0, 0).

■ The zero vector has zero magnitude.

■ The zero vector has no direction.

Negating a Vector

- \blacksquare Every vector \mathbf{v} has a negative vector $-\mathbf{v}$: $\mathbf{v} + (-\mathbf{v}) = \mathbf{0}$
- Negative vector

$$-(a_1, a_2, a_3, ..., a_n) = (-a_1, -a_2, -a_3, ..., -a_n)$$

2D, 3D, 4D vector negation

$$-(x, y) = (-x, -y)$$

$$-(x, y, z) = (-x, -y, -z)$$

$$-(x, y, z, w) = (-x, -y, -z, -w)$$

Vector-Scalar Multiplication

Vector scalar multiplication

$$\alpha * (x, y, z) = (\alpha x, \alpha y, \alpha z)$$

Vector scale division

$$1/\alpha * (x, y, z) = (x/\alpha, y/\alpha, z/\alpha)$$

Example:

$$2 * (4, 5, 6) = (8, 10, 12)$$

 $\frac{1}{2} * (4, 5, 6) = (2, 2.5, 3)$
 $-3 * (-5, 0, 0.4) = (15, 0, -1.2)$
 $3\mathbf{u} + \mathbf{v} = (3\mathbf{u}) + \mathbf{v}$

Vector Addition and Subtraction

- Vector Addition
 - Defined as a head-to-tail axiom

$$(x_1, y_1, z_1) + (x_2, y_2, z_2) = (x_1 + x_2, y_1 + y_2, z_1 + z_2)$$

$$u + v = v + u$$

Vector Subtraction

$$(x_1, y_1, z_1) - (x_2, y_2, z_2) = (x_1-x_2, y_1-y_2, z_1-z_2)$$

$$\mathbf{u} - \mathbf{v} = -(\mathbf{v} - \mathbf{u})$$

Vector Addition and Subtraction

■ The displacement vector from the point P to the point Q is calculated as q – p.

Vector Magnitude (Length)

Vector magnitude (or length):

Examples:
$$||v|| = \sqrt{v_1^2 + v_2^2 + ... + v_{n-1}^2 + v_n^2}$$

 $||(5,-4,7)|| = \sqrt{5^2 + (-4)^2 + 7^2}$
 $= \sqrt{25 + 16 + 49}$
 $= \sqrt{90}$
 $= 3\sqrt{10}$
 ≈ 9.4868

Vector Magnitude

Normalized Vectors

- There is case where you only need the direction of the vector, regardless of the vector length.
- The unit vector has a magnitude of 1.
- The unit vector is also called as normalized vectors or normal.
- "Normalizing" a vector:

$$v_{norm} = \frac{v}{\|v\|}, v \neq 0$$

Distance

- The distance between two points P and Q is calculated as follows.
 - Vector p
 - Vector q
 - Displacement vector d = q p
 - Find the length of the vector d.
 - distance(P, Q) = || d || = || q p ||

Vector Dot Product

Dot product between two vectors: u • v

$$(u_1, u_2, u_3, ..., u_n) \cdot (v_1, v_2, v_3, ..., v_n) = u_1v_1 + u_2v_2 + ... + u_{n-1}v_{n-1} + u_nv_n$$
or
$$u \cdot v = \sum_{i=1}^n u_i v_i$$

$$u \cdot u = \|u\|^2$$

Example:

$$(4, 6) \cdot (-3, 7) = 4*-3 + 6*7 = 30$$

 $(3, -2, 7) \cdot (0, 4, -1) = 3*0 + -2*4 + 7*-1 = -15$

Vector Dot Product

■ The dot product of the two vectors is the cosine of the angle between two vectors (assuming they are normalized).

$$u \cdot v = ||u|||v|| \cos \theta$$

$$\theta = a\cos(\frac{u \cdot v}{\|u\| \|v\|})$$

 $\theta = a\cos(u \cdot v)$, where u, v are unit vectors

Dot Product as Measurement of Angle

■ The following is the characteristics of the dot product.

Projecting One Vector onto Another

Given two vectors, w and v, one vector w can be divided into parallel and orthogonal to the other vector v.

$$W = W_{par} + W_{per}$$

 $W = \alpha V + U$

u must be orthogonal to v, $u \cdot v = 0$

$$W \bullet V = (\alpha V + u) \bullet V = \alpha V \bullet V + u \bullet V = \alpha V \bullet V$$

 αV

$$\alpha = \frac{w \cdot v}{v \cdot v}$$

$$u = w - \alpha v = w - \frac{w \cdot v}{v \cdot v} v = w - \frac{w \cdot v}{\|v\|^2} v$$

$$\alpha v = w - u = w - w + \frac{w \cdot v}{v \cdot v} v = \frac{w \cdot v}{v \cdot v} v = \frac{w \cdot v}{\|v\|^2} v$$

Projecting One Vector onto Another

If v is a unit vector, then ||v|| = 1

$$w_{per} = u = w - (w \cdot v)v$$

$$w_{par} = av = (w \cdot v)v$$

$$\cos \theta = \frac{\|\alpha v\|}{\|w\|} \Rightarrow \|\alpha v\| = \|w\| \cos \theta$$

$$\sin \theta = \frac{\|u\|}{\|w\|} \Rightarrow \|u\| = \|w\| \sin \theta$$

Vector Cross Product

□ Cross product: **u** x **v**

$$(x_1, y_1, z_1) \mathbf{x} (x_2, y_2, z_2) = (y_1 z_2 - z_1 y_2, z_1 x_2 - x_1 z_2, z_2)$$

 $(x_1, y_1, z_1) \mathbf{x} (x_2, y_2, z_2) = (y_1 z_2 - z_1 y_2, z_1 z_2, z_2)$

Example:

Vector Cross Product

The magnitude of the cross product between two vectors, $|(\mathbf{u} \times \mathbf{v})|$, is the product of the magnitude of each other and the sine of the angle between the two vectors.

$$||u \times v|| = ||u||||v|| \sin \theta$$

□ The area of the parallogram is calculated as bh.

Vector Cross Product

- In the left-handed coordinate system, when the vectors u and v move in a clockwise turn, u x v points in the direction toward us, and when moving in a counter-clockwise turn, u x v points in the direction away from us.
- In the right-handed coordinate system, when the vectors u and v move in a counter-clockwise turn, u x v points in the direction toward us, and when moving in a clockwise turn, u x v points in the direction away from us.

Left-handed Coordinates

Right-handed Coordinates

Linear Algebra Identities

Identity	Comments
u + v = v + u	벡터 덧셈 교환법칙
u - v = u + (-v)	벡터 뺄셈
(u+v)+w = u+(v+w)	벡터 덧셈 결합법칙
$\alpha(\beta u) = (\alpha \beta)u$	스칼라-벡터 곱셈 결합법칙
$\alpha(u + v) = \alpha u + \alpha v$	스칼라-벡터 분배법칙
$(\alpha + \beta)u = \alpha u + \beta u$	
$\ \alpha v\ = \alpha \ v\ $	스칼라의 곱
$\ v\ \ge 0$	벡터의 크기는 양수 (nonnegative)
$\ u\ ^2 + \ v\ ^2 = \ u + v\ ^2$	피타고리안 법칙 (Pythagorean theorem)
$ u + v \ge u + v $	벡터 덧셈 삼각법칙 (Triangle rule)
$u \cdot v = v \cdot u$	내적(dot product) 교환법칙
$ v = \sqrt{v \cdot v}$	내적(dot product)을 이용한 벡터의 크기 정의

Linear Algebra Identities

Identity	Comments
$\alpha(u \cdot v) = (\alpha u) \cdot v = u \cdot (\alpha v)$	벡터의 내적과 스칼라 곱 결합법칙
$u \cdot (v + w) = u \cdot v + u \cdot w$	벡터 덧셈/뺄셈과 내적 분배법칙
u x u = 0	벡터 자신의 외적 (cross product)은 0
$u \mathbf{x} v = -(v \mathbf{x} u)$	벡터의 외적은 반교환법칙 (anti-
	commutative)
$u \mathbf{x} v = (-u) \mathbf{x} (-v)$	벡터의 외적은 각 벡터의 역에 외적과 같다
$\alpha(\mathbf{u} \mathbf{x} \mathbf{v}) = (\alpha \mathbf{u}) \mathbf{x} \mathbf{v} = \mathbf{u} \mathbf{x} (\alpha \mathbf{v})$	벡터의 외적과 스칼라 곱 결합법칙
$u \mathbf{x} (v+w) = (u\mathbf{x}v) + (u\mathbf{x}w)$	두 벡터의 덧셈과 다른 벡터와의 외적은 분배법칙을 성립
u · (u x v) = 0	Dot product of any vector with cross product of that vector & another vector is 0

Geometric Objects

- Line
 - 2 points
- Plane
 - 3 points
- 3D objects
 - Defined by a set of triangles
 - Simple convex flat polygons
 - hollow

Lines

- Line is point-vector addition (or subtraction of two points).
- □ Line parametric form: $P(\alpha) = P_0 + \alpha V$
 - P₀ is arbitrary point, and v is arbitrary vector
 - Points are created on a straight line by changing the parameter.

$$\square$$
 \vee = $R - Q$

$$P = Q + \alpha V = Q + \alpha (R - Q) = \alpha R + (1 - \alpha)Q$$

 \square P = α_1 R + α_2 Q where α_1 + α_2 = 1

$$\alpha = 1 \qquad P(\alpha) = Q + \alpha V$$

$$= Q + \alpha(R - Q) = \alpha R + (1 - \alpha)Q$$

$$\alpha = 0$$

$$Q$$

Lines, Rays, Line Segments

- □ The line is infinitely long in both directions.
- \blacksquare A line segment is a piece of line between two endpoints. $0 <= \alpha <= 1$
- \blacksquare A ray has one end point and continues infinitely in one direction. $\alpha >= 0$
- □ Line:

$$p(\alpha) = p_0 + \alpha d$$
 (parametric)
 $y = mx + b$ (explicit)
 $ax + by = d$ (implicit)

 $p \cdot n = d$

 $\alpha = 0$

Convexity

■ An object is *convex* if only if for any two points in the object all points on the line segment between these points are also in the object.

Convex Hull

- □ Smallest convex object containing P_1, P_2,P_n
- Formed by "shrink wrapping" points

Affine Sums

- The affine sum of the points defined by P_1, P_2, P_n is $P = \alpha_1 P_1 + \alpha_2 P_2 + + \alpha_n P_n$ Can show by induction that this sum makes sense iff
 - Can show by induction that this sum makes sense iff $\alpha_1 + \alpha_2 + \alpha_n = 1$
- □ If, in addition, $\alpha_i > = 0$, i=1,2, ..,n, we have the **convex** hull of P_1, P_2, P_n.
- □ Convex hull $\{P_1, P_2, P_n\}$, you can see that it includes all the line segments connecting the pairs of points.

Linear/Affine Combination of Vectors

- Linear combination of m vectors
 - Vector v₁, v₂, .. v_m
 - $w = \alpha_1 v_1 + \alpha_2 v_2 + ... \alpha_m v_m$ where $\alpha_1, \alpha_2, ... \alpha_m$ are scalars
- If the sum of the scalar values, α_1 , α_2 , ... α_m is 1, it becomes an affine combination.
 - $\alpha_1 + \alpha_2 + ... + \alpha_m = 1$

Convex Combination

- □ If, in addition, α_i >=0, i=1,2, ...,n, we have the **convex** hull of P_1, P_2,P_n.
- Therefore, the linear combination of vectors satisfying the following condition is a convex.

```
\alpha_1 + \alpha_2 + ... + \alpha_m = 1
and
\alpha_i \ge 0 for i=1,2, .. m
\alpha_i is between 0 and 1
```

- Convexity
 - Convex hull

Plane

- A plane can be defined by a point and two vectors or by three points.
- Suppose 3 points, P, Q, R
- Line segment PQ

$$S(\alpha) = \alpha P + (1 - \alpha)Q$$

- Line segment SR
 - $T(\beta) = \beta S + (1 \beta)R$
- □ Plane defined by P, Q, R
 - $T(\alpha, \beta) = \beta(\alpha P + (1 \alpha)Q) + (1 \beta)R$ = $P + \beta(1 - \alpha)(Q - P) + (1 - \beta)(R - P)$
 - For $0 \le \alpha$, $\beta \le 1$, we get all points in triangle, $T(\alpha, \beta)$.

Plane

- □ Plane equation defined by a point P₀ and two non parallel vectors, u, v
 - \blacksquare T(α, β) = P₀ + αu + βv
 - P P_0 = αu + βv (P is a point on the plane)
- Using n (the cross product of u, v), the plane equation is as follows
 - \blacksquare n \bullet (P P₀) = 0 (where n = u x v and n is a normal vector)

Plane

- The plane is represented by a normal vector n and a point P_0 on the plane.
 - Plane (n, d) where n (a, b, c)
 - ax + by + cz + d = 0
 - $n \cdot p + d = 0$ $d = -n \cdot p$

- □ For point p on the plane, $n \cdot (p p_0) = 0$
- □ If the plane normal n is a unit vector, then n•p + d gives the shortest signed distance from the plane to point p: d = -n•p

Relationship between Point and Plane

- Relationship between point p and plane (n, d)
 - If $n \cdot p + d = 0$, then p is in the plane.
 - If $n \cdot p + d > 0$, then p is outside the plane.
 - If n•p + d < 0, then p is inside the plane.

Plane Normalization

Plane normalization

- Normalize the plane normal vector
- Since the length of the normal vector affects the constant d, d is also normalized.

$$\frac{1}{\|\mathbf{n}\|}(\mathbf{n},\mathbf{d}) = \left(\frac{n}{\|\mathbf{n}\|},\frac{d}{\|\mathbf{n}\|}\right)$$

Computing a Normal from 3 Points in Plane

- Find the normal from the polygon's vertices.
 - The polygon's normal computes two non-collinear edges.
 (assuming that no two adjacent edges will be collinear)
 - Then, normalize it after the cross product.

```
void computeNormal(vector P1, vector P2, vector P3) {
    vector u, v, n, y(0, 1, 0);
    u = P1 - P2;
    v = P3 - P2;
    n = cross(u, v);
    if (n.length()==0)
        return y;
    else
        return n.normalize();
}
```

Computing a Distance from Point to Plane

- Find the closest distance to a plane (n, d) in space and a point Q out of the plane.
 - The plane's normal is n, and D is the distance between a point P and a point Q on the plane.

$$w = Q - P = [x_0 - x, y_0 - y, z_0 - z]$$

$$D = \frac{|n \cdot w|}{\|n\|}$$

$$= \frac{|a(x_0 - x) + b(y_0 - y) + c(z_0 - z)|}{\sqrt{a^2 + b^2 + c^2}}$$

$$= \frac{ax_0 + by_0 + cz_0 + d}{\sqrt{a^2 + b^2 + c^2}}$$

Projecting
$$w$$
 onto $n: w_{\parallel} = n \frac{w \cdot n}{\|n\|^2} \& \|w_{\parallel}\| = \frac{|w \cdot n|}{\|n\|}$

Closest Point on the Plane

- □ Find a point P on the plane (n, d) closest to one point Q in space.
 - p = q kn (k is the shortest signed distance from point Q to the plane)
 - If n is a unit vector,

$$k = n \cdot q + d$$

 $p = q - (n \cdot q + d)n$

Distance(q, plane) =
$$\frac{ax_0 + by_0 + cz_0 + d}{\sqrt{a^2 + b^2 + c^2}}$$

where $q(x_0, y_0, z_0)$ and Plane ax + by + cz + d = 0

Distance(q, plane) = $n \cdot q + d$ (n is a unit vector)

Intersection of Ray and Plane

- □ Ray $\mathbf{p}(t) = \mathbf{p}_0 + t\mathbf{u} \otimes \text{plane p} \cdot \mathbf{n} + \mathbf{d} = 0$
- Ray/Plane intersection:

$$(\mathbf{p}_{o} + t\mathbf{u}) \cdot \mathbf{n} + d = 0$$

$$t\mathbf{u} \cdot \mathbf{n} = -d - \mathbf{p}_{o} \cdot \mathbf{n}$$

$$t = \frac{-(\mathbf{p}_{o} \cdot \mathbf{n} + d)}{\mathbf{u} \cdot \mathbf{n}}$$

- □ If the ray is parallel to the plane, the denominator u•n=0. Thus, the ray does not intersect the plane.
- □ If the value of t is not in the range $[0, \infty)$, the ray does not intersect the plane.

$$p\left(\frac{-(p_o \cdot n + d)}{u \cdot n}\right) = p_o + \frac{-(p_o \cdot n + d)}{u \cdot n}u$$

Matrix

- Matrix M (r x c matrix)
 - Row of horizontally arranged matrix elements
 - Column of vertically arranged matrix elements
 - Mij is the element in row i and column j

$$M = \begin{pmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{pmatrix}$$
 $r(2)$ rows $c(2)$ columns

Matrix

Mij is the **element** in row i and column j

Square Matrix

- □ The n x n matrix is called an n-th square matrix. e.g. 2x2, 3x3, 4x4
- Diagonal elements vs. Non-diagonal elements

Identity Matrix

$$I = \left[egin{array}{cccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}
ight]$$

- The identity matrix is expressed as I.
- All of the diagonals are 1, the remaining elements are 0 in *n* x *n* square matrix.
- \square M I = I M = M

Vectors as Matrices

- The n-dimension vector is expressed as a 1xn matrix or an nx1 matrix.
 - 1xn matrix is a row vector (also called a row matrix)
 - nx1 matrix is a column vector (also called a column matrix)

$$\mathbf{A} = \begin{bmatrix} a_{11} \\ a_{21} \\ a_{31} \end{bmatrix} \qquad \mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \end{bmatrix}$$

Transpose Matrix

- Transpose of M (rxc matrix) is denoted by M⁷ and is converted to cxr matrix.
 - \blacksquare $M_{ij}^{T} = M_{ji}$
 - $(M^T)^T = M$
 - $\mathbf{D}^{\mathsf{T}} = \mathsf{D}$ for any diagonal matrix D.

$$\begin{pmatrix}
a & m & c \\
d & e & f \\
g & h & i
\end{pmatrix}^{T} = \begin{pmatrix}
a & d & g \\
m & e & h \\
c & f & i
\end{pmatrix}$$

Transposing Matrix

$$\begin{bmatrix} 1 & 4 & 7 & 10 \\ 2 & 5 & 8 & 11 \\ 3 & 6 & 9 & 12 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ 10 & 11 & 12 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x & y & z \end{bmatrix}$$

Matrix Scalar Multiplication

□ Multiplying a matrix **M** with a scalar $\alpha = \alpha$ **M**

$$\alpha M = \alpha \begin{bmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{33} & m_{33} \end{bmatrix} = \begin{bmatrix} \alpha m_{11} & \alpha m_{12} & \alpha m_{13} \\ \alpha m_{21} & \alpha m_{22} & \alpha m_{23} \\ \alpha m_{31} & \alpha m_{33} & \alpha m_{33} \end{bmatrix}$$

Two Matrices Addition

- Matrix C is the addition of A (r x c matrix) and B (r x c matrix), which is a r x c matrix.
- Each element **c**_{ij} is the sum of the ijth element of A and the ijth element of B.

Two Matrices Multiplication

- Matrix C(rxc matrix) is the product of A (rxn matrix) and B (nxc matrix).
- Each element **c**_{ij} is the vector dot product of the ith row of A and the jth column of B.

Multiplying Two Matrices

$$\begin{pmatrix} c_{11} & c_{12} & c_{13} & c_{14} & c_{15} \\ c_{21} & c_{22} & c_{23} & c_{24} & c_{25} \\ c_{31} & c_{32} & c_{33} & c_{34} & c_{35} \\ c_{41} & c_{42} & c_{43} & c_{44} & c_{45} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \\ a_{41} & a_{42} \end{pmatrix} \begin{pmatrix} m_{11} & m_{12} & m_{13} & m_{14} & m_{15} \\ m_{21} & m_{22} & m_{23} & m_{24} & m_{25} \\ m_{21} & a_{22} & m_{23} & m_{24} & m_{25} \end{pmatrix}$$

$$c_{24} = a_{21}m_{14} + a_{22}m_{24}$$

Matrix Operation

- MI = IM = M (I is identity matrix)
- □ A + B = B + A : matrix addition commutative law
- \square A + (B + C) = (A + B) + C : matrix addition associative law
- □ AB ≠BA : Not hold matrix product commutative law
- \square (AB)C = A(BC) : matrix product associative law
- \square ABCDEF = ((((AB)C)D)E)F = A((((BC)D)E)F) = (AB)(CD)(EF)
- \square $\alpha(AB) = (\alpha A)B = A(\alpha B)$: Scalar-matrix product
- \square $\alpha(\beta A) = (\alpha \beta) A$
- \Box (vA)B = v (AB)
- \Box $(AB)^T = B^T A^T$
- \square $(M_1M_2M_3 ... M_{n-1}M_n)^T = M_n^TM_{n-1}^T ... M_3^TM_2^TM_1^T$

Matrix Determinant

- The determinant of a square matrix M is denoted by [M] or "det M".
- The determinant of non-square matrix is not defined.

$$|M| = |m_{11} m_{12}| = m_{11} m_{22} - m_{12} m_{21}$$

 $|m_{21} m_{22}|$

$$|M| = \begin{vmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{vmatrix} = m_{11} (m_{22} m_{33} - m_{23} m_{32}) + m_{12} (m_{23} m_{31} - m_{21} m_{33}) + m_{13} (m_{21} m_{32} - m_{22} m_{31})$$

Inverse Matrix

- Inverse of M (square matrix) is denoted by M⁻¹.
- $^{\square} M^{-1} = \frac{adjM}{|M|}$
- \square $(M^{-1})^{-1} = M$
- \square M(M⁻¹) = M⁻¹M = I
- □ The determinant of a non-singular matrix (i.e, invertible) is nonzero.
- The adjoint of M, denoted "adj M" is the transpose of the matrix of cofactors.

adjM =
$$\begin{bmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33} \end{bmatrix}^T$$

Cofactor of a Square Matrix & Computing Determinant using Cofactor

- Cofactor of a square matrix M at a given row and column is the signed determinant of the corresponding Minor of M.
- $\Box C_{ii} = (-1)^{ij} \mid M^{\{ij\}} \mid$
- Calculation of n x n determinant using cofactor:

$$|M| = \sum_{j=1}^{n} m_{ij} c_{ij} = \sum_{j=1}^{n} m_{ij} (-1)^{i+j} |M^{\{ij\}}|$$

$$|M| = \begin{pmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \\ m_{41} & m_{42} & m_{43} & m_{44} \end{pmatrix} = m_{11} \begin{pmatrix} m_{22} & m_{23} & m_{24} \\ m_{32} & m_{33} & m_{34} \\ m_{42} & m_{43} & m_{44} \end{pmatrix}$$

$$- m_{12} |M^{\{12\}}|$$

$$+ m_{13} |M^{\{13\}}|$$

$$- m_{14} |M^{\{14\}}|$$

Minor of a Matrix

■ The submatrix $M^{\{j\}}$ is known as a minor of M, obtained by deleting row i and column j from M.

$$\mathbf{M} = \begin{bmatrix} -4 & -3 & 3 \\ 0 & 2 & -2 \\ 1 & 4 & -1 \end{bmatrix} \quad \mathbf{M}^{\{12\}} = \begin{bmatrix} 0 & -2 \\ 1 & -1 \end{bmatrix}$$

Determinant, Cofactor, Inverse Matrix

$$M = \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix}$$

$$\det M = m_{11}m_{22} - m_{12}m_{21}$$

$$C = \begin{pmatrix} m_{22} & -m_{21} \\ -m_{12} & m_{11} \end{pmatrix}$$

$$adj M = \begin{pmatrix} m_{22} & -m_{12} \\ -m_{21} & m_{11} \end{pmatrix}$$

$$M^{-1} = \frac{1}{\det M} \begin{pmatrix} m_{22} & -m_{12} \\ -m_{21} & m_{11} \end{pmatrix}$$

Determinant, Cofactor, Inverse Matrix

$$\begin{split} M &= \begin{pmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{pmatrix} \\ \det M &= m_{11} \begin{pmatrix} m_{22} m_{33} - m_{23} m_{32} \\ -m_{12} (m_{21} m_{33} - m_{23} m_{31}) \\ +m_{13} (m_{21} m_{32} - m_{22} m_{31}) \\ \end{pmatrix} \\ &= \begin{pmatrix} (m_{22} m_{33} - m_{23} m_{32}) & -(m_{21} m_{33} - m_{23} m_{31}) & (m_{21} m_{32} - m_{22} m_{31}) \\ -(m_{12} m_{33} - m_{13} m_{32}) & (m_{11} m_{33} - m_{13} m_{31}) & -(m_{11} m_{32} - m_{21} m_{31}) \\ (m_{12} m_{23} - m_{22} m_{13}) & -(m_{11} m_{23} - m_{13} m_{21}) & (m_{11} m_{22} - m_{12} m_{21}) \end{pmatrix} \\ adj M &= \begin{pmatrix} (m_{22} m_{33} - m_{23} m_{32}) & -(m_{12} m_{33} - m_{13} m_{32}) & (m_{12} m_{23} - m_{22} m_{13}) \\ -(m_{21} m_{33} - m_{23} m_{31}) & (m_{11} m_{33} - m_{13} m_{31}) & -(m_{11} m_{23} - m_{13} m_{21}) \\ (m_{21} m_{32} - m_{22} m_{31}) & -(m_{11} m_{32} - m_{21} m_{31}) & (m_{11} m_{22} - m_{12} m_{21}) \end{pmatrix} \\ M^{-1} &= \frac{adj M}{\det M} \end{split}$$

Multiplying a Vector and a Matrix

- A coordinate space transformation can be expressed using a vector-matrix product.
 - uM = v // matrix M converts vector u to vector v

Multiplying a Vector and a Matrix

 Vector-matrix multiplication in Unity (Column-Major Order)

v = M * u // matrix M converts vector u to vector v

$$v = M * u$$

$$\begin{pmatrix} xm_{11} + ym_{12} + zm_{13} \\ xm_{21} + ym_{22} + zm_{23} \end{pmatrix} = \begin{pmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

Mathf Class

Mathf

- Unity's Mathf class provides a collection of common math functions, including trigonometric, logarithmic, etc.
- Trigonometric (work in radians)
 - Sin, Cos, Tan, Asin, Acos, Atan, Atan2
- Powers and Square Roots
 - Pow, Sqrt, Exp, ClosestPowerOfTwo, NextPowerOfTwo, IsPowerOfTwo
- Interpolation
 - Lerp, LerpAngle, LerpUnclamped, InverseLerp, MoveTowards, MoveTowardsAngle, SmoothDamp, SmoothDampAngle, SmoothStep
- Limiting and repeating values
 - Max, Min, Repeat, PingPong, Clamp, Clamp01, Ceil, Floor
- Logarithmic
 - Log

Vector3 Struct

Vector3

- Representation of 3D vectors and points.
- This structure is used throughout Unity to pass 3D positions and directions around. It also contains functions for doing common vector operations.
- The Quaternion and the Matrix4x4 classes are useful for rotating or transforming vectors and points.

Matrix4x4 Struct

■ Matrix4x4

- A standard 4x4 transformation matrix. Matrix4x4 is struct
- A transformation matrix can perform arbitrary linear 3D transformations (i.e. translation, rotation, scale, shear etc.) and perspective transformations using homogenous coordinates.
- You rarely use matrices in scripts, most often using Vector3, Quaternions, and functionality of Transform class is more straightforward.
- In Unity, Matrix4x4 is used by several Transform, Camera, Material and GL functions.
- Matrices in unity are column major.

Plane Struct

Plane

- Representation of a plane in 3D space.
- A plane can also be defined by the three corner points of a triangle that lies within the plane. In this case, the normal vector points toward you if the corner points go around clockwise as you look at the triangle face-on.

Quaternion Struct

Quaternion

- Quaternions are used to represent rotations.
- The Quaternion functions that you use 99% of the time are:
 - Quaternion.LookRotation
 - Quaternion.Angle
 - Quaternion.Euler
 - Quaternion.Slerp
 - Ouaternion.FromToRotation
 - Quaternion.identity