
Transformation

Fall 2024
10/10/2024

Kyoung Shin Park
Computer Engineering

Dankook University

Geometric Objects

 Line
 2 points: R, Q

 v = R- Q

P = Q + av = Q + a(R - Q) = aR + (1 – a)Q

 P = a1R + a2Q where a1 + a2 = 1 (affine sum)

 Plane
 3 points: P0, Q, R

 T(a, b) = P + au + b v

 n•(P – P0) = 0 where n = u x v

 3D objects
 It is a set of vertices in three dimensional space.

 It is described by the surface, and is hollow.

 It can be composed of convex polygons.

 An arbitrary polygon is divided into triangular polygons, i.e.,
tessellate.

Q

P(a)

R

Q

R
P0

P

n

u

v

Coordinate Systems

 Consider a basis, v1, v2,…., vn

 Any vector v can be written as v=a1v1+ a2v2 +….+anvn

 The list of scalars {a1, a2, …. an} is the representation of
v with respect to the given basis.

 We can write the representation as a row or column
array of scalars.

a=[a1 a2 …. an]
T

=

Frames

 The affine space contains points.

 If we work in an affine space we can add the origin to
the basis vectors to form a frame.

 Frame: (P0, v1, v2, v3)

 Within this frame, every vector can be written as:
v=a1v1+ a2v2 +….+anvn

 Every point can be written as: P = P0 + b1v1+ b2v2 +….+bnvn

P0

v1

v2

v3

v = [a1 a2 a3 0] T

p = [b1 b2 b3 1] T

Change of Coordinate Systems

 Consider two representations of a the same vector, v,
with respect to two different bases : {v1, v2, v3},

{u1, u2, u3}

u1 = g11v1+g12v2+g13v3

u2 = g21v1+g22v2+g23v3

u3 = g31v1+g32v2+g33v3
v

Change of Coordinate Systems

v

aT

bT

a b

Rotation and Scaling of a Basis

 The rotation and scaling transformation can be
represented by the basis vectors.

Translation of a Basis

 However, a simple translation of the origin is not
represented by a 3x3 matrix.

Homogeneous Coordinates

P0 v1

v2

v3

P

v

Change of Frames

 Consider two frames (P0, v1, v2, v3) (Q0, u1, u2, u3)

u1 = g11v1+g12v2+g13v3

u2 = g21v1+g22v2+g23v3

u3 = g31v1+g32v2+g33v3

Q0 = g41v1+g42v2+g43v3 +P0
P0

v1

v2

v3

Q0

u1

u2

u3

Change of Frames

 Within the two frames (P0, v1, v2, v3) (Q0, u1, u2, u3) any
point and vector has a representation of the same form

P0

v1

v2

v3

Q0

u1

u2

u3

a

b

General Transformations

 A transformation maps points to other points and/or
vectors to other vectors

q = f(p)

v = f(u)

Q=T(P)

v=R(u)

Affine Transformations

 The affine transformation maintains collinearity.
 That is, every affine transformation preserves lines. All points

on a line exist on the transformed line.

 Also, it maintains the ratio of distance.
 That is, the midpoint of a line is located at the midpoint of

the transformed line segment.

 P’ = f(P)

 P’ = f(aP1 + bP2) = a f(P1) + b f(P2)

Affine Transformation

 Most transformation in computer graphics are affine
transformation. Affine transformation include
translation, rotation, scaling, shearing.

 The transformed point P’ (x’, y’, z’) can be expressed
as a linear combination of the original point P (x, y, z),
i.e.

Affine Transformation

x’ = a11 x + a12 y + a13

y’ a21 x + a22 y + a23

1 1

x’ = a11 a12 a13 * x

y’ a21 a22 a23 y

1 0 0 1 1

 The transformed point P’ (x’, y’, z’) can be expressed as
a linear combination of the original point P (x, y, z), i.e.,

Geometric Transformation

 Geometric transformation refers to a function that
transforms a group of points describing a geometric
object to new points.

 At this time, the points are transformed to a new
position while maintaining the relationship between
the vertices of the objects.

 Basic transformation
 Translation

 Rotation

 Scaling

Unity Matrix Column-Major Order

 2D transformation matrix, M

 If Point p is a column vector (Unity) :

 If Point p is a row vector:

2D Translation

 Translation moves a point P(x, y) to a new location P’(x’,
y’)

 Displacement determined by a vector d (dx, dy)

x’ = x + dx

y’ = y + dy

P (x,y)

P’ (x’,y’)

dx

dy

x

y

d

Translate individual
vertices

2D Translation

 What if you move an object with multiple vertices?

 Using the homogeneous coordinate representation in
some frame

p = [x y 1]T

p’ = [x’ y’ 1]T

d = [dx dy 0]T

 Hence p’ = p + d or

x’ = x + dx
y’ = y + dy

Note that this expression is in
four dimensions and expresses
point = vector + point

2D Translation

 We can also express 2D translation using a 3 x 3 matrix
T in homogeneous coordinates:

p’=Tp where

T = T(dx, dy) =

 This form is better for implementation because all affine
transformations can be expressed this way and multiple
transformations can be concatenated together.

2D Translation

1 0 dx

0 1 dy

0 0 1

2D Translation

 2D translation

x' = x + dx

y' = y + dy

 Inverse translation

x = x' – dx

y = y' – dy

 Identity translation

x' = x + 0

y' = y + 0

x = r cos () y = r sin ()
x’ = r cos ( + ) y’= r sin ( + )

x’ = r cos ( + )
= r cos() cos() – r sin() sin()
= x cos() – y sin()

y’ = r sin ( + )
= r sin() cos() + r cos() sin()
= y cos() + x sin()

x’ = x cos() – y sin()
y’ = y cos() + x sin()

2D Rotation

r



(x, y)

(x’, y’)



 Rotation of a point P(x,y) by  about an origin (0,0)
















 










y

x

y

x





cossin

sincos

'

'

Rotate individual
Vertices

q

 What if you rotate an object with multiple vertices?

2D Rotation

 Rotation of a point P(x,y) by  about an arbitrary pivot
point, (xr, yr) :

P’ = R() P

x’ = xr + (x – xr) cos  – (y – yr) sin 

y’ = yr + (x – xr) sin  + (y – yr) cos 

2D Rotation about an Arbitrary Pivot

q
(x, y)

(x’, y’)



(xr, yr)

2D Rotation

 2D rotation

 Inverse rotation

 Identity rotation

R-1 = cos sin

-sin cos

R = cos -sin

sin cos

R=0 = 1 0

0 1

2D Scale

(1,1)

(2,2) sx = 2, sy = 2

(2,2)

(4,4)

 Scaling makes an object larger or smaller by a scaling
factor (sx, sy). This is affine non-rigid-body
transformation. Scaling by 1 does not change an object.

 Scaling is done by an origin. Scaling changes not only
the size of object, but also the position of object.

x’ = x· sx

y’ = y· sy

x’ = sx 0 x
y’ 0 sy y

 Scale a point P(x,y) by a scaling factor relative to an

arbitrary pivot point, (xf, yf) : P’ = S(sx, sy) P

x’ = xf + (x – xf) sx

y’ = yf + (y – yf) sy

x’ = x sx + xf (1 – sx)

y’ = y sy + yf (1 – sy)

2D Scale about an Arbitrary Pivot

(1,1)

(2,2)

(3,4)

Pivot point

Scaled by
sx=2, sy=3

2D Scale

 2D scale

 Inverse scale

 Identity scale

S-1 = 1/sx 0

0 1/sy

S = sx 0

0 sy

S = 1 0

0 1

2D Reflection (Mirror)

 Reflection is the transformation of an object in opposite
direction with respect to a fixed point.
 Reflection preserves angles and lengths.

 2D reflection over x axis

x’ = x

y’ = -y

 2D reflection over y axis

x’ = -x

y’ = y

 2D reflection over (0,0)

x’ = -x

y’ = -y

m
ir
ro

r
o
ve

r
x-

a
xi

s

mirror over y-axis

2D Reflection (Mirror)

 2D reflection over a line, y = x

x’ = y

y’ = x

 2D reflection over a line, y = -x

x’ = -y

y’ = -x

y = x

P

P’

x

y

2D Shearing

 The Y-axis is not changed, and shearing applied in the
X-axis direction:

x’ = x + y· hxy

y’ = y

x’ = 1 hxy 0 * x

y’ 0 1 0 y

1 0 0 1 1

Hxy – Shear y into x

2D Shearing

 Shearing transformation does not change the size of
object.

 The X-axis is not changed, and shearing applied in the
Y-axis direction

x’ = x

y’ = x· hyx + y

x’ = 1 0 0 * x

y’ hyx 1 0 y

1 0 0 1 1

hyx

Homogeneous Coordinates

 In order to multiply translation, rotation, scaling
transformation matrix, homogeneous coordinates are
used.

 In homogeneous coordinates, the two-dimensional
point P (x, y) is expressed as P(x, y, w).

 (1, 2, 3) and (2, 4, 6) represent the same homogeneous
coordinates.

 If the w of the point P (x, y, w) is 0, the point is
located at an infinite point. If w is not 0, the point can
be expressed as (x/w, y/w, 1).

Transforming Homogeneous Coordinates

 The two-dimensional
transformation matrix
can be expressed as
a 3x3 matrix of
homogeneous
coordinates.

T(dx, dy) = 1 0 dx

0 1 dy

0 0 1

R() = cos -sin 0

sin cos 0

0 0 1

S(sx, sy) = sx 0 0

0 sy 0

0 0 1

3x3 2D Translation Matrix

x’ = x + dx

y’ y dy

 Matrix-vector multiplication

x’ = 1 0 dx * x

y’ 0 1 dy y

1 0 0 1 1

3x3 2D Rotation Matrix

x’ = cos -sin x

y’ sin cos y

x’ = cos -sin 0 x

y’ sin cos 0 y

1 0 0 1 1

3x3 2D Scale Matrix

x’ = sx 0 x

y’ 0 sy y

x’ = sx 0 0 * x

y’ 0 sy 0 y

1 0 0 1 1

3x3 2D Shearing Matrix

x’ = 1 hxy x

y’ hyx 1 y

x’ = 1 hxy 0 * x

y’ hyx 1 0 y

1 0 0 1 1

Inverse 2D Transformation Matrix

T-1 = 1 0 -dx

0 1 -dy

0 0 1

R-1 = cos sin 0

-sin cos 0

0 0 1

S-1 = 1/sx 0 0

0 1/sy 0

0 0 1

 Composing transformation is a process of forming one
transformation by applying several transformation in
sequence.

 If you want to transform one point, apply one
transformation at a time or multiply the matrix and then
multiply this matrix by the point.

 Matrix multiplication is associative.

M3 · M2 · M1 = (M3 · M2) · M1 = M3 · (M2 · M1)

 Matrix multiplication is not commutative.

A · B != B · A

Composing Transformation

M

(pre-multiply)

Q = (M3 · (M2 · (M1 · P))) = M3 · M2 · M1 · P

Transformation Order Matters!

 The multiplication of the transformation matrix is not
commutative.

 Even if the transformation matrix is the same, it may
have completely different results depending on the
order of multiplication.

Rotate 60 degree and then translate (5,0)

Translate (5, 0) and then rotate 60 degree

2D Rotate about an Arbitrary Pivot

 Two-dimensional rotation by  at an arbitrary pivot
point P(dx, dy) :
1. T(-dx, -dy)

2. R()

3. T(dx, dy)

(dx,dy)

T(-dx,-dy)· R()· T(dx,dy) = R(dx, dy, )

1 0 dx cos -sin 0 1 0 -dx = cos -sin dx(1 -cos)+dy sin

0 1 dy sin cos 0 0 1 -dy sin cos dy(1 -cos)-dx sin

0 0 1 0 0 1 0 0 1 0 0 1

T(-dx,-dy) R() T(dx,dy)

2D Scale about an Arbitrary Pivot

 Two-dimensional scaling an arbitrary pivot point P(dx, dy) :
1. T(-dx, -dy)

2. S(sx, sy)

3. T(dx, dy)

(dx,dy)

T(-dx,-dy) S(sx,sy) T(dx,dy)

1 0 dx sx 0 0 1 0 -dx = sx 0 dx(1 – sx)

0 1 dy 0 sy 0 0 1 -dy 0 sy dy(1 – sy)

0 0 1 0 0 1 0 0 1 0 0 1

T(-dx,-dy)· S(sx, sy)· T(dx,dy) = S(dx, dy, sx, sy)

2D Scale in an Arbitrary Direction

 Two dimensional scaling in an arbitrary direction
(Rotating the object to align the desired scaling directions
with the coordinate axes before scale transformation)
1. R-1()

2. S(sx, sy)

3. R()

cos -sin 0 sx 0 0 cos sin 0 = sxcos2+sysin2 (sx-sy)cossin 0

sin cos 0 0 sy 0 -sin cos 0 (sx-sy)cossin sycos2+sxsin2 0

0 0 1 0 0 1 0 0 1 0 0 1

R-1() S(sx,sy) R()

Example: 2D Rotate about an Arbitrary
Pivot

Rotate a triangle with vertices (1,1), (3,1), (3,4)
by 45 degrees about the pivot point (2,2).

1. Translate point to origin

2. Rotate 45 degrees

3. Translate back to original location

4. Composite transformation P´ = R(P + T1) + T2

Example: 2D Rotate about an Arbitrary
Pivot

 P1 (1, 1)

 P2 (3, 1)

Example: 2D Rotate about an Arbitrary
Pivot

 P3 (3, 4)

Example: 2D Rotate about an Arbitrary
Pivot

 Result:

After:
(2, 0.59), (3.41, 2), (1.29, 4.2)

Before:
(1, 1), (3, 1), (3, 4)

Example: 2D Rotate about an Arbitrary
Pivot

 Rotate a triangle with vertices (1,1), (3,1), (3,4) by 45
degrees about the pivot point (2,2).

 P’= T(2,2)R(45)T(-2,-2)P = M P

Example: 2D Rotate about an Arbitrary Pivot
Using Composite Transformation Matrix

1. P1

2. P2

3. P3

Example: 2D Rotate about an Arbitrary Pivot
Using Composite Transformation Matrix

