
Transformation &
Representing Orientations

Fall 2024
10/17/2024

Kyoung Shin Park
Computer Engineering

Dankook University

 Right Hand Coordinate System (RHS) – z+ coming
out of the screen

 Counter clockwise rotation

 If X-axis rotation,

Y->Z rotation is positive

 If Y-axis rotation,

Z->X rotation is positive

 If Z-axis rotation,

X->Y rotation is positive

RHS Coordinate Systems

 Left Hand Coordinate System (LHS) – z+ inside the
screen

 Clockwise rotation

 If X-axis rotation,

Y->Z rotation is positive

 If Y-axis rotation,

Z->X rotation is positive

 If Z-axis rotation,

X->Y rotation is positive

LHS Coordinate Systems

Homogeneous Coordinates

 Why 3D computer graphics uses 4x4 matrix?
 Because it can express all kinds of transformation matrices

(including translation, shearing, reflection, etc)

 It also allows transformations to be concatenated easily (by
multiplying their matrices)

 Non-homogeneous/Homogeneous coordinates
convert
 (x, y, z)  (x, y, z, 1)

 (x/w, y/w, z/w)  (x, y, z, w)

Unity Matrix

 Unity Matrix4x4
 A transformation matrix can perform arbitrary linear 3D

transformations (i.e. translation, rotation, scale, shear etc.) and
perspective transformations using homogenous coordinates.

 You rarely use matrices in scripts; most often using
Vector3, Quaternion, and functionality of Transform class is
more straightforward.

p’ = M * p = m0 m4 m8 m12 v0

m1 m5 m9 m13 v1

m2 m6 m10 m14 v2

m3 m7 m11 m15 v3

Unity Matrix

 Unity Matrix4x4
 The elements must be specified in column-major order.

 i.e. the position of a transformation matrix is in the last column,
and the first three columns contain x, y, and z-axis.

 Data is accessed as: row + (column*4). Matrices can be indexed
like 2D arrays but note that in an expression like mat[a, b], a
refers to the row index, while b refers to the column index.

Unity Matrix Column-Major Order

 Unity uses 4x4 matrix and 4x1 vector for transformation
 v = (2, 6, -3, 1)

 M = translate 10 units in x-axis

 v’ = M * v = (12, 6, -3, 1)

M00*vx +M01*vy+M02*vz+M03*vw = M00 M01 M02 M03 vx

M10*vx +M11*vy+M12*vz+M13*vw M10 M11 M12 M13 vy

M20*vx +M21*vy+M22*vz+M23*vw M20 M21 M22 M23 vz

M30*vx +M31*vy+M32*vz+M33*vw M30 M31 M32 M33 vw

Transformation

 Geometric transformation refers to a function that
transforms a group of points describing a
geometric object to new points.

 Transformation
 Translation

 Rotation

 Scaling

Translation

 Translation
 Move the transform by (dx, dy, dz)

 2D translation uses dz = 0.0

// Create a translation matrix in Unity

Matrix4x4 T = Matrix4x4.Translate(new Vector3(dx, dy, dz));

Translation

 Translation
// Unity transform.position set position in world

transform.position = new Vector(0, -0.5f, 0); // set position

// transform.localPosition set position relative to the parent

transform.localPosition = new Vector(0, -0.5f, 0);

// move in Vector3 translation

transform.Translate(translation);

// move by (dx,dy,dz)

transform.Translate(dx, dy, dz);

// Get matrix from the Transform

var matrix = transform.localToWorldMatrix;

// Get position from the matrix last column

var position = new Vector3(matrix[0,3], matrix[1,3], matrix[2,3]);

// Get position from the matrix last column

var position = matrix.GetPosition();

Rotation

 Rotation in Z-axis

x’ = x cos - y sin

y’ = x sin + y cos

z’ = z

// Create a Rz matrix

Matrix4x4 rz = Matrix4x4.Rotate(Quaternion.Euler(0, 0, 45));

rz = Matrix4x4.Rotate(Quaternion.AngleAxis(45.0f, new
Vector3(0, 0, 1f));

Rotation

 Rotation in X-axis

x’ = x

y’ = y cos - z sin

z’ = y sin + z cos

// Create a Rx matrix

Matrix4x4 rx = Matrix4x4.Rotate(Quaternion.Euler(30, 0, 0));

rx = Matrix4x4.Rotate(Quaternion.AngleAxis(30.0f, new
Vector3(1f, 0, 0));

Rotation

 Rotation in Y-axis

x’ = x cos + z sin

y’ = y

z’ = -x sin + z cos

// Create a Ry matrix

Matrix4x4 ry = Matrix4x4.Rotate(Quaternion.Euler(0, 60, 0));

ry = Matrix4x4.Rotate(Quaternion.AngleAxis(60.0f, new
Vector3(0, 1f, 0));

Rotation

 Rotation
 Unity uses Quaternion for rotation

// Create a rotation matrix 30 degrees around the y-axis

Quaternion rotation = Quaternion.Euler(0, 30, 0);

Matrix4x4 R = Matrix4x4.Rotate(rotation);

// Set the rotation using Euler angles (in degree)

transform.eulerAngles = new Vector3 (30, 60, 45);

transform.rotation = Quaternion.Euler(30, 60, 45);

transform.rotation = Quaternion.Euler(30, 60, 45);

// Set the rotation relative to the parent

transform.localRotation = Quaternion.Euler(30, 60, 45);

// Add an amount of rotation to an object every time it’s called

transform.Rotate(new Vetor3(0, 90, 0)); // add 90 degrees to y-axis

transform.Rotate(0, 90, 0);

transform.Rotate(Vector3.up, 90);

https://docs.unity3d.com/ScriptReference/
Transform.Rotate.html

Rotation

 Rotation in arbitrary axis in Unity
// Create a Ra matrix Euler(30, 60, 45)

Matrix4x4 ra = Matrix4x4.Rotate(Quaternion.Euler(30, 60, 45));

// Create a Rb matrix rz -> rx -> ry

Matrix4x4 rz = Matrix4x4.Rotate(Quaternion.Euler(0, 0, 45));

Matrix4x4 rx = Matrix4x4.Rotate(Quaternion.Euler(30, 0, 0));

Matrix4x4 ry = Matrix4x4.Rotate(Quaternion.Euler(0, 60, 0));

Matrix4x4 rb = ry * rx * rz; // Z → X → Y

Matrix4x4 rc = rz * rx * ry; // Y → X → Z

// ra == rb matrix

if (ra == rb) Debug.Log(“ra == rb”);

// rb != rc matrix

if (rb != rc) Debug.Log(“rb != rc”);

Rotation

 Local rotation vs World rotation
// Unity Transform.eulerAngles or Transform.localEulerAngles

Vector3 worldRotation = transform.eulerAngles;

Vector3 localRotation = transform.localEulerAngles;

 Transform.RotateAround
// Unity Transform.RotateAround to rotate an object around a

target position in world space and the y-axis by 10 degrees

Transform.RotateAround(target.position, Vector3.up, 10 *
Time.deltaTime);

Scale

 Scale
 Transform the size by sx, sy, sz on the x-axis, y-axis, z-axis.

 If the scale factor>1, it scales up. If 0<scale factor<=1, it scales
down. If the scale factor<0, it becomes reflection.

// Create a scaling matrix in Unity

Matrix4x4 m = Matrix4x4.Scale(new Vector(sx, sy, sz));

// Scale the transform relatives to the GameObject parent

transform.localScale = new Vector(-0.5f, -0.5f, 1);

Reflection

 Reflection
// Create a reflection matrix about the yz-plane (the plane x = 0)

Matrix4x4 m = Matrix4x4.Scale(new Vector3(-1, 0, 0));

// Create a reflection matrix about the xz-plane (the plane y = 0)

Matrix4x4 m = Matrix4x4.Scale(new Vector3(0, -1, 0));

// Create a reflection matrix about the xy-plane (the plane z = 0)

Matrix4x4 m = Matrix4x4.Scale(new Vector3(0, 0, -1));

// Create a reflection matrix over (0, 0, 0)

Matrix4x4 m = Matrix4x4.Scale(new Vector3(-1, -1, -1));

Composing Transformation

 Composing transformation is a process of forming one
transformation by applying several transformation in
sequence.

 If you want to transform one point, apply one
transformation at a time or multiply the matrix and
then multiply this matrix by the point.

Composing Transformation

// translation, rotation, scale

Vector3 translation = new Vector3(1.5, 0, 0);

Quaternion rotation = Quaternion.Euler(0, 0, 45);

Vector3 scale = new Vector3(0.2, 0.2, 0.2);

// Create a composing transformation Scale -> Rotate -> Translate

Matrix4x4 m1 = Matrix4x4.TRS(translation, rotation, scale);

// Create a composing transformation Scale -> Rotate -> Translate

Matrix4x4 m2 = Matrix4x4.Translate(translation) *

Matrix4x4.Rotate(rotation) * Matrix4x4.Scale(scale);

if (m1 == m2) Debug.Log(“m1 == m2”);

// Create a composing transformation Translate -> Rotate -> Scale

Matrix4x4 m3 = Matrix4x4. Matrix4x4.Scale(scale) *
Matrix4x4.Rotate(rotation) * Translate(translation);

if (m2 != m3) Debug.Log(“m2 != m3”);

// Get a new position by a composing transformation matrix, m1

Vector3 pos = new Vector3(5, 0, 0);

Vector3 newpos = m1.MultiplyPoint(pos);

Transformation Order Matters!

 The multiplication of the transformation matrix is not
commutative.

 Even if the transformation matrix is the same, it may
have completely different results depending on the
order of multiplication.

// Original cube at the origin(0, 0, 0)

RT = Rz(45) * T(1.5, 0, 0) // T first, then Rz

TR = T(1.5, 0, 0) * Rz(45) // Rz first, then T

TRS = T(1,2,-3) * Rz(45) * S(0.2, 0.2, 0.2) // S → R → T

SRT = S(0.2, 0.2, 0.2) * Rz(45) * T(1,2,-3) // T→ R → S

TRS != SRT // Transformation Matrix Order Matter!

Transformation Hierarchy

 Hierarchical transformations are often expressed as a
tree structure of transformations.

 To design a three-dimensional character, we use a
hierarchical transformation made of rigid body parts.

 For more flexible 3D character design, a number of
hierarchical transformations should be properly mixed.

 These layers are the same as the basis for the scene
graph.

Hierarchical Transformation

 Hierarchical transformation can be thought of as
belonging to another transformation.

 Hierarchical transformation is used as transformation of
one object relative to other objects.

 For example, a car hierarchical transformation with a body
and two wheels. It can be seen that when the car moves,
the two wheels located in relative positions on the car
body also move with the body.

 The two wheels are made to be affected by the
transformation of the car body, and the wheels are not
transformed separately.

Orientation

 We will define orientation to mean an object’s
instantaneous rotational configuration.

 Think of it as the rotational equivalent of position

 Direction
 Vector has a direction but not orientation

 Rotation
 An orientation is given by a rotation from identity orientation

 Angular Displacement
 The amount of rotation is angular displacement

Representing Orientations

 Is there a simple means of representing a 3D
orientation (analogous to Cartesian coordinates)?
 Not really

 There are several popular options though:
 Euler angles – the simplest

 Rotation vectors (axis/angle)

 Rotation matrices

 Quaternions

 etc..

Euler Angles

 Euler Angles
 Represent any arbitrary orientation as three rotations about

three mutually perpendicular axes (rotation about X, Y, Z)

 Sometimes described as “Yaw, Pitch, Roll” or similar

 A sequence of rotations around principle axes is called an Euler
Angle Sequence

 Axis order
 Euler angles represent three composed rotations that move a

reference frame to a given referred frame.

 Euler angles are used in a lot of applications, but they tend to
require some rather arbitrary decisions.

 (y, x, z), (x, y, z), (z, x, y), … can be used

XYZ XZY XYX XZX

YXZ YZX YXY YZY

ZXY ZYX ZXZ ZYZ

Euler Angles

 Yaw, Pitch, Roll

 Yaw (rotation about Y), Pitch (X), Roll (Z) sequence is
used in computer graphics.

http://en.wikipedia.org/wiki/Image:Flight_dynamics.jpg
http://en.wikipedia.org/wiki/Image:Flight_dynamics.jpg

Euler Angles to Matrix Conversion

 Any orientation can be achieved by composing three
elemental rotations
 i.e., Any rotation matrix can be decomposed as a product of

three elemental rotation matrices.

Euler Angle Order

 As matrix multiplication is not commutative, The order
of operations is important.

 Rotations are assumed to be relative to fixed world axes,
rather than local to the object.

 One can think of them as being local to the object if
the sequence order is reversed.

 Euler angle can be used differently by applications.
 XYZ convention is widely used in 3D graphics

 ZXZ convention is used in rigid-body dynamics

Euler Angle Order

 ZXZ convention
 XYZ (fixed) system is shown in blue.

 XYZ (rotated) system is shown in red.

 The line of nodes, N, is shown in green.

 (Z-rotation) Rotate about the Z-axis by a.

 The X-axis now lies on the line of nodes, N

 (X-rotation) Rotate again about the rotated X-axis
(i.e., N) by b.

 The Z-axis is now in its final orientation, and the X-
axis remains on the line of nodes

 (Z-rotation) Rotate a third time about the new Z-
axis by g.

http://upload.wikimedia.org/wikipedia/commons/a/a1/Eulerangles.svg
http://upload.wikimedia.org/wikipedia/commons/a/a1/Eulerangles.svg

Vehicle Orientation Using Euler Angles

 Generally, for vehicles, it is convenient to rotate in roll
(z), pitch (x) and then yaw (y) order.

 In situations where there is a definite ground plane,
Euler angles can actually be an intuitive representation.

front of vehicle

+x

+y

z

Rotations not uniquely defined with
Euler Angles

 Rotations are not uniquely defined with Euler Angles.

 Cartesian coordinates are independent of each other.
 Arbitrary position = x-axis position + y-axis position + z-axis

position

 Euler angles do not act independently of each other.
 Arbitrary orientation = x-axis rotation matrix * y-axis rotation

matrix * z-axis rotation matrix

 For example, (x, y, z) (180, 0, 180) == (0, 180, 0)

Gimbal Lock

 One potential problem is ‘gimbal lock’.

 ‘Gimbal Lock’ results when two axes effectively line up,
resulting in a temporary loss of a degree of freedom.
Change to one of the angles affect to the entire system.
 This is related to the singularities in longitude that you get at the

north and south poles.

 Rotate 30 about X, then rotate 90 about Y. The current Z-axis is
in line with X0-axis. This is what we call ‘gimbal lock’ situation.

 Any further rotation about the Z-axis affects the same degree of
freedom as rotating about the X-axis – losing the third DOF.

Gimbal Lock

 https://www.youtube.com/watch?v=zc8b2Jo7mno

Problem with Interpolating Euler Angles

Halfway between
(0,0,0) and (0,180,0)

Halfway between
(0,0, 0) and (180,0, 180)

 The second problem is with generating the in-between
frames, due to the fact that the Euler angles do not act
independently of each other.

 Let say you have the object with (0,180,0) of rotation
angles, and the next keyframe rotation angles is in (0,0,0)
 (180,0,180) represents the same orientation of (0,180,0)

 But, the halfway between (0,180,0) and (0,0,0) is not same
orientation of the halfway between (180,0,180) and (0,0,0)

Euler Angles

 Euler angles are used in a lot of applications, but they
tend to require some rather arbitrary decisions.

 They also do not interpolate in a consistent way (but
this isn’t always bad).

 They can suffer from Gimbal lock and related
problems.

 There is no simple way to concatenate rotations.

 Conversion to/from a matrix requires several
trigonometry operations.

 They are compact (requiring only 3 numbers).

Rotation Vectors and Axis/Angle

 Euler’s Theorem also shows that any two
orientations can be related by a single rotation
about some axis (not necessarily a principle
axis).

 This means that we can represent an arbitrary
orientation as a rotation about some unit axis
by some angle (4 numbers) (Axis/Angle form).

 Alternately, we can scale the axis by the angle
and compact it down to a single 3D vector
(Rotation vector).

Axis/Angle to Matrix

 To generate a matrix as a rotation 
around an arbitrary unit axis a:

Rotation Vectors

 To convert a scaled rotation vector to a matrix, one
would have to extract the magnitude out of it and then
rotate around the normalized axis

 Normally, rotation vector format is more useful for
representing angular velocities and angular
accelerations, rather than angular position (orientation)

Axis/Angle Representation

 Storing an orientation as an axis and an angle uses 4
numbers, but Euler’s theorem says that we only need 3
numbers to represent an orientation

 Mathematically, this means that we are using 4 degrees
of freedom to represent a 3 degrees of freedom value

 This implies that there is possibly extra or redundant
information in the axis/angle format

 The redundancy manifests itself in the magnitude of
the axis vector. The magnitude carries no information,
and so it is redundant. To remove the redundancy, we
choose to normalize the axis, thus constraining the
extra degree of freedom

Matrix Representation

 We can use a 3x3 matrix to represent an orientation as
well.

 This means we now have 9 numbers instead of 3, and
therefore, we have 6 extra degrees of freedom.

 NOTE: We don’t use 4x4 matrices here, as those are
mainly useful because they give us the ability to
combine translations. We will just think of 3x3 matrices.

Matrix Representation

 Those extra 6 DOFs manifest themselves as 3 scales (x,
y, and z) and 3 shears (xy, xz, and yz)

 If we assume the matrix represents a rigid transform
(orthonormal), then we can constrain the extra 6 DOFs

Matrix Representation

 Matrices are usually the most computationally efficient
way to apply rotations to geometric data, and so most
orientation representations ultimately need to be
converted into a matrix in order to do anything useful.

 Why then, shouldn’t we just always use matrices?
 Numerical issues

 Storage issues

 User interaction issues

 Interpolation issues

Quaternions

 Quaternions are an interesting mathematical concept
with a deep relationship with the foundations of
algebra and number theory

 Invented by W.R.Hamilton in 1843

 In practice, they are most useful as a means of
representing orientations

 A quaternion has 4 components

Quaternions (Imaginary Space)

 Quaternions are actually an extension to complex
numbers.

 Of the 4 components, one is a ‘real’ scalar number,
and the other 3 form a vector in imaginary ijk space!

Quaternion (Scalar/Vector)

 Quaternions are written as the combination of a scalar
value s and a vector value v, where

Identity Quaternion

 Unlike vectors, there are two identity quaternions.

 The multiplication identity quaternion is

 The addition identity quaternion (which we do not use)
is

Unit Quaternion

 For convenience, we will use only unit length
quaternions, as they will make things a little easier

 These correspond to the set of vectors that form the
‘surface’ of a 4D hyper-sphere of radius 1

 The ‘surface’ is actually a 3D volume in 4D space, but
it can sometimes be visualized as an extension to the
concept of a 2D surface on a 3D sphere

 Quaternion normalization:

Quaternion as Rotations

 A quaternion can represent a rotation by an angle 
around a unit axis a (ax, ay, az) :

 If a has unit length, then q will also has unit length

Quaternions as Rotations

Quaternion to Rotation Matrix

 Equivalent rotation matrix representing a quaternion is:

 Using unit quaternion that x2+y2+z2+w2=1, we can
reduce the matrix to:

Quaternion to Axis/Angle

 To convert a quaternions to a rotation axis, a (ax, ay, az)
and an angle  :

Matrix to Quaternion

 To convert a matrix to a quaternion:

 If w=0, then the division is undefined. First,
determining which q0, q1,q2, q3 is the largest,
computing that component using the diagonal of the
matrix.

Quaternion Dot Product

 The dot product of two quaternions works in the same
way as the dot product of two vectors:

 The angle between two quaternions in 4D space is half
the angle one would need to rotate from one
orientation to the other in 3D space.

Quaternion Multiplication

 If q represents a rotation and q’ represents a rotation,
then qq’ represents q rotated by q’

 This follows very similar rules as matrix multiplication
(I.e., non-commutative) qq’ ≠ q’q

Quaternion Multiplication

 Note that two unit quaternions multiplied together will
result in another unit quaternion

 This corresponds to the same property of complex
numbers

 Remember that multiplication by complex numbers can
be thought of as a rotation in the complex plane

 Quaternions extend the planar rotations of complex
numbers to 3D rotations in space

Quaternion Operations

 Negation of quaternion, -q
 -[v s] = [-v –s] = [-x, –y, –z, –w]

 Addition of two quaternion, p + q
 p + q = [pv, ps] + [qv, qs] = [pv + qv, ps + qs]

 Magnitude of quaternion, |q|


 Conjugate of quaternion, q* (켤레 사원수)
 q* = [v s]* = [–v s] = [–x, –y, –z , w]

 Multiplicative inverse of quaternion, q-1 (역수)
 q-1 = q*/|q|

 Exponential of quaternion
 exp(v q) = v sin q + cos q

 Logarithm of quaternion
 log(q) = log(v sin q + cos q) = log(exp(v q)) = v q

q = [v sin q , cos q]

q q-1 = q-1 q = 1

Quaternion Interpolation

 One of the key benefits of using a quaternion
representation is the ability to interpolate between key
frames.

alpha = fraction value in between frame0 and frame1

q1 = Euler2Quaternion(frame0)

q2 = Euler2Quaternion(frame1)

qr = QuaternionInterpolation(q1, q2, alpha)

qr.Quaternion2Euler()

 Quaternion Interpolation
 Linear Interpolation (LERP)

 Spherical Linear Interpolation (SLERP)

 Spherical Cubic Interpolation (SQUAD)

Linear Interpolation (LERP)

 If we want to do a direct interpolation between two
quaternions p and q by alpha:

Lerp(p, q, t) = (1-t)p + (t)q

where 0 ≤ t ≤ 1

 Note that the Lerp operation can be thought of as a
weighted average (convex)

 We could also write it in it’s additive blend form:

Lerp(q1, q2, t) = q1 + t(q2 – q1)

q1

q2

0 ≤ t ≤ 1

Why SLERP?

 The set of quaternions live on the unit hypersphere.
The direct interpolation between quaternions would
stray from the hypersphere.

 An illustration in the plane of the difference between
Lerp and Slerp
 The interpolation covers the angle v in three steps

 [Lerp] The secant across is split in four equal pieces The
corresponding angles are shown

 [Slerp] The angle is split in four equal angles

Spherical Linear Interpolation (SLERP)

i

j

k

1q

2q



21
sin

sin

sin

)1(sin
)(q

t
q

t
tq













)(cos 21

1 qq  

 If we want to interpolate between two points on a
sphere (or hypersphere), we will travel across the
surface of the sphere by following a ‘great arc.’

Spherical Linear Interpolation

 Remember that there are two redundant vectors in
quaternion space for every unique orientation in 3D
space

 What is the difference between:

Slerp(p, q, t) and Slerp(-p, q, t) ?

 One of these will travel less than 90 degrees while the other
will travel more than 90 degrees across the sphere

 This corresponds to rotating the ‘short way’ or the ‘long way’

 Usually, we want to take the short way, so we negate one of
them if their dot product is < 0

Why SQUAD?

 Slerp produces smooth interpolation, but it always
follows a great arc connecting two quaternions – i.e. the
animations change directions abruptly at the control
points. To smoothly interpolate through a series of
quaternions, use splines.

Linear Interpolation

Spline Interpolation

Spherical Cubic Interpolation (SQUAD)

 To achieve C2 continuity between curve segments, a
cubic interpolation must be done.

 Squad does a cubic interpolation between four
quaternions by t

 ai, ai+1 are inner quadrangle quaternions between q1 and q2. And
you have to choose carefully so that continuity is guaranteed
across segments.

Unity Quaternion

// p · q (dot product of two quaternions)
static float Quaternion.Dot(Quaternion p, Quaternion q);

// yaw(y)/pitch(x)/roll(z) -> quaternion

static Quaternion Euler(float x, float y, float z);

// axis/angle -> quaternion

static Quaternion AxisAngle(float angle, Vector3 axis);

// lookat(forward) -> quaternion

static Quaternion LookRotation(Vector3 forward, Vector3 upward =
Vector3.up);

// fromDirection/toDirection -> quaternion

static Quaternion FromToRotation(Vector3 from, Vector3 to);

Unity Quaternion

// slerp(q1, q2, t) spherical linear interpolation between two
quaternions

Quaternion Quaternion.Slerp(Quaternion quaternion1,

Quaternion quaternion2,

float amount);

// lerp(q1, q2, t) linear interpolation between two quaternions

Quaternion Quaternion.Lerp(Quaternion quaternion1,

Quaternion quaternion2,

float amount);

Example: SimpleTransform

 Create an EmptyGameObject

 Add a C# script component, CubeTransform, on an
EmptyGameObject
 White cube (original)

 Red cube with T->R->S

 Blue cube with S->R->T

 Green cube with Rz->Rx->Ry

 Cyan cube with Ry->Rx->Rz

 Yellow cube with euler1 (0, 180, 0) -> euler2 (180, 0, 180)

 Magenta cube with quat1 180도 (0, 1, 0) -> quat2 180도 (1, 0, 1)

Example: SimpleTransform

 Create Cube, Plane, Capsule
 Cube (0, 0, 0)

 Plane Position (0, -1.5 0) Scale (10, 10, 10)

 Capsule Position (-6, 1, -3)

 Add a C# script component, Mover, on a cube
 W/S-key to move forward/backward

 A/D-key to pan left/right

 L/R-key to lookat camera or rotate around camera

 Add a C# script component, Spinner, on a capsule

 Add a C# script component, Bouncer, on a capsule.

public class Mover: MonoBehaviour {

void Update () {

if (Input.GetKey(KeyCode.W)) {

transform.Translate(10 * Vector3.forward * Time.deltaTime);

} else if (Input.GetKey(KeyCode.S)) {

transform.Translate(10 * Vector3.back * Time.deltaTime);

} else if (Input.GetKey(KeyCode.A)) {

transform.Rotate(-90 * Vector3.up * Time.deltaTime);

} else if (Input.GetKey(KeyCode.D)) {

transform.Rotate(90 * Vector3.up * Time.deltaTime);

} else if (Input.GetKey(KeyCode.L)) {

transform.LookAt(Camera.main.transform.position);

} else if (Input.GetKey(KeyCode.R)) {

isRotating = !isRotating;

} if (isRotating) {

transform.RotateAround(Camera.main.transform.position, Vector3.up,
90 * Time.deltaTime);

}

}

}

public class Spinner : MonoBehaviour {

public Vector3 axis = new Vector3(0, 0, 1f);

public float speed = 30.0f;

public bool isRotating = false;

// Update is called once per frame

void Update () {

if (Input.GetKey(KeyCode.Space)) {

isRotating = !isRotating;

}

// Rotate the object around its local coordinate system

transform.Rotate(axis, speed * Time.deltaTime);

}

}

public class Bouncer : MonoBehaviour {

public float speed = 3.0f;

public float distance = 5f;

public Vector3 direction = Vector3.up; // move up/down

Vector3 pos;
void Start() {

pos = transform.position;

}

void Update() {

// Calculate what the new XYY position will be

float newX = Mathf.Sin(Time.time * speed) * distance * direction.x + pos.x;

float newY = Mathf.Sin(Time.time * speed) * distance * direction.y + pos.y;

float newZ = Mathf.Sin(Time.time * speed) * distance * direction.z + pos.z;

// Set the object's position to the new calculated XYZ

transform.position = new Vector3(newX, newY, newZ);

}

}

Example: SimpleCar

 Create Plane, EmptyGameObject (called SimpleCar)
 Plane Position (0, -1.5 0) Scale (10, 10, 10)

 Add a C# script component, Bouncer, on SimpleCar.

 speed = 5

 distance = 3

 direction (1, 0, 0) // left/right movement

 Create Cube (called Body), Capsule
(called Wheel1/2/3/4) under SimpleCar
 Body Scale (3, 1, 2)

 Wheel1 Position(-1, -0.5, -1) Rotation(0, 90, 90) Scale(1, 0.5, 1)

 Wheel2 Position(1, -0.5, -1) Rotation(0, 90, 90) Scale(1, 0.5, 1)

 Wheel3 Position(-1, -0.5, 1) Rotation(0, 90, 90) Scale(1, 0.5, 1)

 Wheel4 Position(1, -0.5, 1) Rotation(0, 90, 90) Scale(1, 0.5, 1)

 Add a C# script component, Spinner on wheel1/2/3/4

 speed = 100

Example: SimpleCar

Example: SimpleSolar

 Create EmptyGameObject(SimpleSolar)

 Create EmptyGameObject(Sun) Rotation(10, 0, 10)
 Under Sun, Create Cube(SunObject) Scale (2,2,2)

 Add Spinner script on SunObject, Speed=10

 Create EmptyGameObject(Earth) Position(6, 0, 0)
 Add Orbit script on Earth(ObjectToOrbit=Sun, Speed=40)

 Under Earth, Create Cube(EarthObject)

 Add Spinner script on EarthObject, speed=60

 Under Earth, Create EmptyGameObject(Moon) Position(2, 0, 0)

 Add Orbit script on Moon(ObjectToOrbit=Earth, Speed=90)

 Under Moon, Create Cube(MoonObject) Scale(0.6, 0.6, 0.6)

 Add Spinner script on MoonObject, speed=120

public class Orbit : MonoBehaviour {

float angle; Vector3 direction;

float radius; // orbit distance

public GameObject objectToOrbit; // object that we will orbit around

public float speed = 30.0f; // orbit degrees per second

void Start () {

direction = transform.position - objectToOrbit.transform.position;

radius = Vector3.Distance(objectToOrbit.transform.position,
transform.position);

}

void Update () {

angle += speed * Time.deltaTime;

if (angle > 360) angle -= 360;

Vector3 orbit = Vector3.forward * radius;

orbit = Quaternion.LookRotation(direction) * Quaternion.Euler(0, angle,
0) * orbit;

transform.position = objectToOrbit.transform.position + orbit;

}

}

Example: SimpleSolar

SpinnerOrbit

Example: SimpleCube3D

 Create EmptyGameObject(SimpleCube3D) Rotation(90,0,0)

 Create Quad for Bottom, Left, Right, Front, Back, Top
(Create quads for Back-face culling)

 Create EmptyParent(LeftPivotPoint) for Left
 LeftPivotPoint Position(-0.5,0,0), Left Position(-0.5,0,0)

 Add RotateFromTo on LeftPivotPoint, From(0,0,0) To(0,-90,0)

 RightPivotPoint Position(0.5,0,0), Right Position(0.5,0,0)
 Add RotateFromTo on RightPivotPoint, From(0,0,0) To(0,90,0)

 FrontPivotPoint Position(0,-0.5,0), Front Position(0,-0.5,0)
 Add RotateFromTo on FrontPivotPoint, From(0,0,0) To(90,0,0)

 BackPivotPoint Position(0,0.5,0), Back Position(0,0.5,0)
 Add RotateFromTo on BackPivotPoint, From(0,0,0) To(-90,0,0)

 TopPivotPoint Position(0,0.5,0), Top Position(0,0.5,0)
 Add RotateFromTo on TopPivotPoint, From(0,0,0) To(-90,0,0)

Unity Global/Local Rotation LHS

public class RotateFromTo : MonoBehaviour {

public bool state = false;

public float smoot = 2f;

public Vector3 fromRotation = Vector3.zero;

public Vector3 toRotation = Vector3.zero;
void Update() {

if (state) {

Quaternion targetRotation = Quaternion.Euler(toRotation.x, toRotation.y,
toRotation.z);

transform.localRotation = Quaternion.Slerp(transform.localRotation,
targetRotation, smoot * Time.deltaTime);

} else {

Quaternion targetRotation2 = Quaternion.Euler(fromRotation.x,
fromRotation.y, fromRotation.z);

transform.localRotation = Quaternion.Slerp(transform.localRotation,
targetRotation2, smoot * Time.deltaTime);

}
if (Input.GetKey(KeyCode.Space)) state = !state; // toggle state

}

}

Example: SimpleCube3D

Yellow

Green

Cyan

Red

Blue

Magenta

Ry(-90)
Ry(90)

Rx(90)

Rx(-90)
Rx(-90)

Hierarchical Transformation

 The Hierarchy and Parent-child relationships – Unity
Official Tutorials
https://www.youtube.com/watch?v=0ZDZaKrofmc

