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 Right Hand Coordinate System (RHS) – z+ coming 
out of the screen

 Counter clockwise rotation

 If X-axis rotation, 

Y->Z rotation is positive

 If Y-axis rotation, 

Z->X rotation is positive

 If Z-axis rotation, 

X->Y rotation is positive

RHS Coordinate Systems



 Left Hand Coordinate System (LHS) – z+ inside the 
screen

 Clockwise rotation

 If X-axis rotation, 

Y->Z rotation is positive

 If Y-axis rotation, 

Z->X rotation is positive

 If Z-axis rotation, 

X->Y rotation is positive

LHS Coordinate Systems



Homogeneous Coordinates

 Why 3D computer graphics uses 4x4 matrix?
 Because it can express all kinds of transformation matrices 

(including translation, shearing, reflection, etc)

 It also allows transformations to be concatenated easily (by 
multiplying their matrices)

 Non-homogeneous/Homogeneous coordinates 
convert
 (x, y, z)  (x, y, z, 1)

 (x/w, y/w, z/w)  (x, y, z, w)



Unity Matrix

 Unity Matrix4x4
 A transformation matrix can perform arbitrary linear 3D 

transformations (i.e. translation, rotation, scale, shear etc.) and 
perspective transformations using homogenous coordinates. 

 You rarely use matrices in scripts; most often using 
Vector3, Quaternion, and functionality of Transform class is 
more straightforward. 

p’ = M * p = m0 m4 m8 m12 v0

m1 m5 m9 m13 v1

m2 m6 m10 m14 v2

m3 m7 m11 m15 v3



Unity Matrix

 Unity Matrix4x4
 The elements must be specified in column-major order. 

 i.e. the position of a transformation matrix is in the last column, 
and the first three columns contain x, y, and z-axis. 

 Data is accessed as: row + (column*4). Matrices can be indexed 
like 2D arrays but note that in an expression like mat[a, b], a 
refers to the row index, while b refers to the column index.



Unity Matrix Column-Major Order

 Unity uses 4x4 matrix and 4x1 vector for transformation
 v = (2, 6, -3, 1)

 M = translate 10 units in x-axis

 v’ = M * v = (12, 6, -3, 1)

M00*vx +M01*vy+M02*vz+M03*vw = M00 M01 M02 M03 vx

M10*vx +M11*vy+M12*vz+M13*vw M10 M11 M12 M13 vy

M20*vx +M21*vy+M22*vz+M23*vw M20 M21 M22 M23 vz

M30*vx +M31*vy+M32*vz+M33*vw M30 M31 M32 M33 vw



Transformation

 Geometric transformation refers to a function that 
transforms a group of points describing a 
geometric object to new points.

 Transformation
 Translation

 Rotation

 Scaling



Translation

 Translation
 Move the transform by (dx, dy, dz)

 2D translation uses dz = 0.0

// Create a translation matrix in Unity 

Matrix4x4 T = Matrix4x4.Translate(new Vector3(dx, dy, dz)); 



Translation

 Translation
// Unity transform.position set position in world 

transform.position = new Vector(0, -0.5f, 0); // set position

// transform.localPosition set position relative to the parent

transform.localPosition = new Vector(0, -0.5f, 0); 

// move in Vector3 translation

transform.Translate(translation);

// move by (dx,dy,dz)

transform.Translate(dx, dy, dz); 

// Get matrix from the Transform

var matrix = transform.localToWorldMatrix;

// Get position from the matrix last column

var position = new Vector3(matrix[0,3], matrix[1,3], matrix[2,3]);

// Get position from the matrix last column

var position = matrix.GetPosition();



Rotation

 Rotation in Z-axis

x’ = x cos - y sin

y’ = x sin + y cos

z’ = z

// Create a Rz matrix

Matrix4x4 rz = Matrix4x4.Rotate(Quaternion.Euler(0, 0, 45)); 

rz = Matrix4x4.Rotate(Quaternion.AngleAxis(45.0f, new 
Vector3(0, 0, 1f));



Rotation

 Rotation in X-axis

x’ = x

y’ = y cos - z sin

z’ = y sin + z cos

// Create a Rx matrix

Matrix4x4 rx = Matrix4x4.Rotate(Quaternion.Euler(30, 0, 0));

rx = Matrix4x4.Rotate(Quaternion.AngleAxis(30.0f, new 
Vector3(1f, 0, 0));



Rotation

 Rotation in Y-axis

x’ = x cos + z sin

y’ = y

z’ = -x sin + z cos

// Create a Ry matrix

Matrix4x4 ry = Matrix4x4.Rotate(Quaternion.Euler(0, 60, 0));

ry = Matrix4x4.Rotate(Quaternion.AngleAxis(60.0f, new 
Vector3(0, 1f, 0));



Rotation

 Rotation
 Unity uses Quaternion for rotation

// Create a rotation matrix 30 degrees around the y-axis 

Quaternion rotation = Quaternion.Euler(0, 30, 0);

Matrix4x4 R = Matrix4x4.Rotate(rotation); 

// Set the rotation using Euler angles (in degree)

transform.eulerAngles = new Vector3 (30, 60, 45);

transform.rotation = Quaternion.Euler(30, 60, 45);

transform.rotation = Quaternion.Euler(30, 60, 45);

// Set the rotation relative to the parent

transform.localRotation = Quaternion.Euler(30, 60, 45);

// Add an amount of rotation to an object every time it’s called

transform.Rotate(new Vetor3(0, 90, 0)); // add 90 degrees to y-axis

transform.Rotate(0, 90, 0);

transform.Rotate(Vector3.up, 90);

https://docs.unity3d.com/ScriptReference/
Transform.Rotate.html



Rotation

 Rotation in arbitrary axis in Unity
// Create a Ra matrix Euler(30, 60, 45)

Matrix4x4 ra = Matrix4x4.Rotate(Quaternion.Euler(30, 60, 45));

// Create a Rb matrix rz -> rx -> ry

Matrix4x4 rz = Matrix4x4.Rotate(Quaternion.Euler(0, 0, 45));

Matrix4x4 rx = Matrix4x4.Rotate(Quaternion.Euler(30, 0, 0));

Matrix4x4 ry = Matrix4x4.Rotate(Quaternion.Euler(0, 60, 0));

Matrix4x4 rb = ry * rx * rz; // Z → X → Y

Matrix4x4 rc = rz * rx * ry; // Y → X → Z

// ra == rb matrix

if (ra == rb) Debug.Log(“ra == rb”);

// rb != rc matrix

if (rb != rc) Debug.Log(“rb != rc”);



Rotation

 Local rotation vs World rotation
// Unity Transform.eulerAngles or Transform.localEulerAngles

Vector3 worldRotation = transform.eulerAngles;

Vector3 localRotation = transform.localEulerAngles;

 Transform.RotateAround
// Unity Transform.RotateAround to rotate an object around a 

target position in world space and the y-axis by 10 degrees

Transform.RotateAround(target.position, Vector3.up, 10 * 
Time.deltaTime);



Scale

 Scale
 Transform the size by sx, sy, sz on the x-axis, y-axis, z-axis.

 If the scale factor>1, it scales up. If 0<scale factor<=1, it scales 
down. If the scale factor<0, it becomes reflection.

// Create a scaling matrix in Unity 

Matrix4x4 m = Matrix4x4.Scale(new Vector(sx, sy, sz)); 

// Scale the transform relatives to the GameObject parent

transform.localScale = new Vector(-0.5f, -0.5f, 1);



Reflection

 Reflection
// Create a reflection matrix about the yz-plane (the plane x = 0)

Matrix4x4 m = Matrix4x4.Scale(new Vector3(-1, 0, 0)); 

// Create a reflection matrix about the xz-plane (the plane y = 0)

Matrix4x4 m = Matrix4x4.Scale(new Vector3(0, -1, 0)); 

// Create a reflection matrix about the xy-plane (the plane z = 0)

Matrix4x4 m = Matrix4x4.Scale(new Vector3(0, 0, -1)); 

// Create a reflection matrix over (0, 0, 0)

Matrix4x4 m = Matrix4x4.Scale(new Vector3(-1, -1, -1)); 



Composing Transformation

 Composing transformation is a process of forming one 
transformation by applying several transformation in 
sequence. 

 If you want to transform one point, apply one 
transformation at a time or multiply the matrix and 
then multiply this matrix by the point. 



Composing Transformation

// translation, rotation, scale

Vector3 translation = new Vector3(1.5, 0, 0);

Quaternion rotation = Quaternion.Euler(0, 0, 45);

Vector3 scale = new Vector3(0.2, 0.2, 0.2); 

// Create a composing transformation Scale -> Rotate -> Translate

Matrix4x4 m1 = Matrix4x4.TRS(translation, rotation, scale);

// Create a composing transformation Scale -> Rotate -> Translate

Matrix4x4 m2 = Matrix4x4.Translate(translation) * 

Matrix4x4.Rotate(rotation) * Matrix4x4.Scale(scale);

if (m1 == m2) Debug.Log(“m1 == m2”);

// Create a composing transformation Translate -> Rotate -> Scale

Matrix4x4 m3 = Matrix4x4. Matrix4x4.Scale(scale) * 
Matrix4x4.Rotate(rotation) * Translate(translation); 

if (m2 != m3) Debug.Log(“m2 != m3”);

// Get a new position by a composing transformation matrix, m1

Vector3 pos = new Vector3(5, 0, 0);

Vector3 newpos = m1.MultiplyPoint(pos);



Transformation Order Matters!

 The multiplication of the transformation matrix is not 
commutative. 

 Even if the transformation matrix is the same, it may 
have completely different results depending on the 
order of multiplication.

// Original cube at the origin(0, 0, 0)

RT = Rz(45) * T(1.5, 0, 0) // T first, then Rz

TR = T(1.5, 0, 0) * Rz(45) // Rz first, then T

TRS = T(1,2,-3) * Rz(45) * S(0.2, 0.2, 0.2) // S → R → T

SRT = S(0.2, 0.2, 0.2) * Rz(45) * T(1,2,-3) // T→ R → S

TRS != SRT // Transformation Matrix Order Matter!



Transformation Hierarchy

 Hierarchical transformations are often expressed as a 
tree structure of transformations. 

 To design a three-dimensional character, we use a 
hierarchical transformation made of rigid body parts. 

 For more flexible 3D character design, a number of 
hierarchical transformations should be properly mixed.

 These layers are the same as the basis for the scene 
graph.



Hierarchical Transformation

 Hierarchical transformation can be thought of as 
belonging to another transformation. 

 Hierarchical transformation is used as transformation of 
one object relative to other objects. 

 For example, a car hierarchical transformation with a body 
and two wheels. It can be seen that when the car moves, 
the two wheels located in relative positions on the car 
body also move with the body. 

 The two wheels are made to be affected by the 
transformation of the car body, and the wheels are not 
transformed separately. 



Orientation

 We will define orientation to mean an object’s
instantaneous rotational configuration.

 Think of it as the rotational equivalent of position

 Direction
 Vector has a direction but not orientation

 Rotation
 An orientation is given by a rotation from identity orientation

 Angular Displacement
 The amount of rotation is angular displacement



Representing Orientations

 Is there a simple means of representing a 3D 
orientation (analogous to Cartesian coordinates)?
 Not really

 There are several popular options though:
 Euler angles – the simplest

 Rotation vectors (axis/angle)

 Rotation matrices

 Quaternions

 etc..



Euler Angles

 Euler Angles
 Represent any arbitrary orientation as three rotations about 

three mutually perpendicular axes (rotation about X, Y, Z)

 Sometimes described as “Yaw, Pitch, Roll” or similar

 A sequence of rotations around principle axes is called an Euler 
Angle Sequence

 Axis order
 Euler angles represent three composed rotations that move a 

reference frame to a given referred frame.

 Euler angles are used in a lot of applications, but they tend to 
require some rather arbitrary decisions.

 (y, x, z), (x, y, z), (z, x, y),  … can be used

XYZ XZY XYX XZX

YXZ YZX YXY YZY

ZXY ZYX ZXZ ZYZ



Euler Angles

 Yaw, Pitch, Roll

 Yaw (rotation about Y), Pitch (X), Roll (Z) sequence is 
used in computer graphics.

http://en.wikipedia.org/wiki/Image:Flight_dynamics.jpg
http://en.wikipedia.org/wiki/Image:Flight_dynamics.jpg


Euler Angles to Matrix Conversion

 Any orientation can be achieved by composing three 
elemental rotations
 i.e., Any rotation matrix can be decomposed as a product of 

three elemental rotation matrices.



Euler Angle Order

 As matrix multiplication is not commutative, The order 
of operations is important.

 Rotations are assumed to be relative to fixed world axes, 
rather than local to the object.

 One can think of them as being local to the object if 
the sequence order is reversed.

 Euler angle can be used differently by applications.
 XYZ convention is widely used in 3D graphics

 ZXZ convention is used in rigid-body dynamics



Euler Angle Order

 ZXZ convention
 XYZ (fixed) system is shown in blue.

 XYZ (rotated) system is shown in red.

 The line of nodes, N, is shown in green.

 (Z-rotation) Rotate about the Z-axis by a. 

 The X-axis now lies on the line of nodes, N

 (X-rotation) Rotate again about the rotated X-axis 
(i.e., N) by b.

 The Z-axis is now in its final orientation, and the X-
axis remains on the line of nodes

 (Z-rotation) Rotate a third time about the new Z-
axis by g.

http://upload.wikimedia.org/wikipedia/commons/a/a1/Eulerangles.svg
http://upload.wikimedia.org/wikipedia/commons/a/a1/Eulerangles.svg


Vehicle Orientation Using Euler Angles

 Generally, for vehicles, it is convenient to rotate in roll 
(z), pitch (x) and then yaw (y) order.

 In situations where there is a definite ground plane, 
Euler angles can actually be an intuitive representation. 

front of vehicle

+x

+y

z



Rotations not uniquely defined with 
Euler Angles

 Rotations are not uniquely defined with Euler Angles.

 Cartesian coordinates are independent of each other.
 Arbitrary position = x-axis position + y-axis position + z-axis 

position

 Euler angles do not act independently of each other. 
 Arbitrary orientation = x-axis rotation matrix * y-axis rotation 

matrix * z-axis rotation matrix

 For example, (x, y, z) (180, 0, 180) == (0, 180, 0)



Gimbal Lock

 One potential problem is ‘gimbal lock’.

 ‘Gimbal Lock’ results when two axes effectively line up, 
resulting in a temporary loss of a degree of freedom. 
Change to one of the angles affect to the entire system.
 This is related to the singularities in longitude that you get at the 

north and south poles.

 Rotate 30 about X, then rotate 90 about Y. The current Z-axis is 
in line with X0-axis. This is what we call ‘gimbal lock’ situation.

 Any further rotation about the Z-axis affects the same degree of 
freedom as rotating about the X-axis – losing the third DOF.



Gimbal Lock

 https://www.youtube.com/watch?v=zc8b2Jo7mno



Problem with Interpolating Euler Angles

Halfway between 
(0,0,0) and (0,180,0)

Halfway between 
(0,0, 0) and (180,0, 180)

 The second problem is with generating the in-between 
frames, due to the fact that the Euler angles do not act 
independently of each other.

 Let say you have the object with (0,180,0) of rotation 
angles, and the next keyframe rotation angles is in (0,0,0)
 (180,0,180) represents the same orientation of (0,180,0) 

 But, the halfway between (0,180,0) and (0,0,0) is not same 
orientation of the halfway between (180,0,180) and (0,0,0)



Euler Angles

 Euler angles are used in a lot of applications, but they 
tend to require some rather arbitrary decisions.

 They also do not interpolate in a consistent way (but 
this isn’t always bad).

 They can suffer from Gimbal lock and related 
problems.

 There is no simple way to concatenate rotations.

 Conversion to/from a matrix requires several 
trigonometry operations.

 They are compact (requiring only 3 numbers).



Rotation Vectors and Axis/Angle

 Euler’s Theorem also shows that any two 
orientations can be related by a single rotation 
about some axis (not necessarily a principle 
axis).

 This means that we can represent an arbitrary 
orientation as a rotation about some unit axis 
by some angle (4 numbers) (Axis/Angle form).

 Alternately, we can scale the axis by the angle 
and compact it down to a single 3D vector 
(Rotation vector).



Axis/Angle to Matrix

 To generate a matrix as a rotation 
around an arbitrary unit axis a:



Rotation Vectors

 To convert a scaled rotation vector to a matrix, one 
would have to extract the magnitude out of it and then 
rotate around the normalized axis

 Normally, rotation vector format is more useful for 
representing angular velocities and angular 
accelerations, rather than angular position (orientation)



Axis/Angle Representation

 Storing an orientation as an axis and an angle uses 4 
numbers, but Euler’s theorem says that we only need 3 
numbers to represent an orientation

 Mathematically, this means that we are using 4 degrees 
of freedom to represent a 3 degrees of freedom value

 This implies that there is possibly extra or redundant 
information in the axis/angle format

 The redundancy manifests itself in the magnitude of 
the axis vector. The magnitude carries no information, 
and so it is redundant. To remove the redundancy, we 
choose to normalize the axis, thus constraining the 
extra degree of freedom



Matrix Representation

 We can use a 3x3 matrix to represent an orientation as 
well.

 This means we now have 9 numbers instead of 3, and 
therefore, we have 6 extra degrees of freedom.

 NOTE: We don’t use 4x4 matrices here, as those are 
mainly useful because they give us the ability to 
combine translations. We will just think of 3x3 matrices.



Matrix Representation

 Those extra 6 DOFs manifest themselves as 3 scales (x, 
y, and z) and 3 shears (xy, xz, and yz)

 If we assume the matrix represents a rigid transform 
(orthonormal), then we can constrain the extra 6 DOFs



Matrix Representation

 Matrices are usually the most computationally efficient 
way to apply rotations to geometric data, and so most 
orientation representations ultimately need to be 
converted into a matrix in order to do anything useful.

 Why then, shouldn’t we just always use matrices?
 Numerical issues

 Storage issues

 User interaction issues

 Interpolation issues



Quaternions

 Quaternions are an interesting mathematical concept 
with a deep relationship with the foundations of 
algebra and number theory

 Invented by W.R.Hamilton in 1843

 In practice, they are most useful as a means of 
representing orientations

 A quaternion has 4 components



Quaternions (Imaginary Space)

 Quaternions are actually an extension to complex 
numbers.

 Of the 4 components, one is a ‘real’ scalar number, 
and the other 3 form a vector in imaginary ijk space!



Quaternion (Scalar/Vector)

 Quaternions are written as the combination of a scalar 
value s and a vector value v, where



Identity Quaternion

 Unlike vectors, there are two identity quaternions.

 The multiplication identity quaternion is

 The addition identity quaternion (which we do not use) 
is



Unit Quaternion

 For convenience, we will use only unit length 
quaternions, as they will make things a little easier

 These correspond to the set of vectors that form the 
‘surface’ of a 4D hyper-sphere of radius 1

 The ‘surface’ is actually a 3D volume in 4D space, but 
it can sometimes be visualized as an extension to the 
concept of a 2D surface on a 3D sphere

 Quaternion normalization:



Quaternion as Rotations

 A quaternion can represent a rotation by an angle 
around a unit axis a (ax, ay, az) :

 If a has unit length, then q will also has unit length



Quaternions as Rotations



Quaternion to Rotation Matrix

 Equivalent rotation matrix representing a quaternion is:

 Using unit quaternion that x2+y2+z2+w2=1, we can 
reduce the matrix to:



Quaternion to Axis/Angle

 To convert a quaternions to a rotation axis, a (ax, ay, az) 
and an angle  :



Matrix to Quaternion

 To convert a matrix to a quaternion:

 If w=0, then the division is undefined. First, 
determining which q0, q1,q2, q3 is the largest, 
computing that component using the diagonal of the 
matrix.



Quaternion Dot Product

 The dot product of two quaternions works in the same 
way as the dot product of two vectors:

 The angle between two quaternions in 4D space is half 
the angle one would need to rotate from one 
orientation to the other in 3D space.



Quaternion Multiplication

 If q represents a rotation and q’ represents a rotation, 
then qq’ represents q rotated by q’

 This follows very similar rules as matrix multiplication 
(I.e., non-commutative) qq’ ≠ q’q



Quaternion Multiplication

 Note that two unit quaternions multiplied together will 
result in another unit quaternion

 This corresponds to the same property of complex 
numbers

 Remember that multiplication by complex numbers can 
be thought of as a rotation in the complex plane

 Quaternions extend the planar rotations of complex 
numbers to 3D rotations in space



Quaternion Operations

 Negation of quaternion, -q
 -[v s] = [-v –s] = [-x, –y, –z, –w]

 Addition of two quaternion, p + q
 p + q =  [pv, ps] + [qv, qs] = [pv + qv, ps + qs]

 Magnitude of quaternion, |q|


 Conjugate of quaternion, q* (켤레 사원수)
 q* = [v s]* = [–v s] = [–x, –y, –z , w] 

 Multiplicative inverse of quaternion, q-1 (역수)
 q-1 = q*/|q| 

 Exponential of quaternion
 exp(v q) = v sin q + cos q

 Logarithm of quaternion
 log(q) = log(v sin q + cos q) = log(exp(v q)) = v q

q = [v sin q , cos q]

q q-1 = q-1 q = 1



Quaternion Interpolation

 One of the key benefits of using a quaternion 
representation is the ability to interpolate between key 
frames.

alpha = fraction value in between frame0 and frame1

q1 = Euler2Quaternion(frame0)

q2 = Euler2Quaternion(frame1)

qr = QuaternionInterpolation(q1, q2, alpha)

qr.Quaternion2Euler()

 Quaternion Interpolation
 Linear Interpolation (LERP)

 Spherical Linear Interpolation (SLERP)

 Spherical Cubic Interpolation (SQUAD)



Linear Interpolation (LERP)

 If we want to do a direct interpolation between two 
quaternions p and q by alpha:

Lerp(p, q, t) = (1-t)p + (t)q

where 0 ≤ t  ≤ 1

 Note that the Lerp operation can be thought of as a 
weighted average (convex)

 We could also write it in it’s additive blend form:

Lerp(q1, q2, t) = q1 + t(q2 – q1)

q1

q2

0 ≤ t ≤ 1



Why SLERP?

 The set of quaternions live on the unit hypersphere. 
The direct interpolation between quaternions would 
stray from the hypersphere.

 An illustration in the plane of the difference between 
Lerp and Slerp 
 The interpolation covers the angle v in three steps

 [Lerp] The secant across is split in four equal pieces The 
corresponding angles are shown

 [Slerp] The angle is split in four equal angles



Spherical Linear Interpolation (SLERP)
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 If we want to interpolate between two points on a 
sphere (or hypersphere), we will travel across the 
surface of the sphere by following a ‘great arc.’



Spherical Linear Interpolation

 Remember that there are two redundant vectors in 
quaternion space for every unique orientation in 3D 
space

 What is the difference between:

Slerp(p, q, t) and  Slerp(-p, q, t) ?

 One of these will travel less than 90 degrees while the other 
will travel more than 90 degrees across the sphere

 This corresponds to rotating the ‘short way’ or the ‘long way’

 Usually, we want to take the short way, so we negate one of 
them if their dot product is < 0



Why SQUAD?

 Slerp produces smooth interpolation, but it always 
follows a great arc connecting two quaternions – i.e. the 
animations change directions abruptly at the control 
points. To smoothly interpolate through a series of 
quaternions, use splines.

Linear Interpolation

Spline Interpolation



Spherical Cubic Interpolation (SQUAD)

 To achieve C2 continuity between curve segments, a 
cubic interpolation must be done.

 Squad does a cubic interpolation between four 
quaternions by t

 ai, ai+1 are inner quadrangle quaternions between q1 and q2. And 
you have to choose carefully so that continuity is guaranteed 
across segments.



Unity Quaternion

// p · q (dot product of two quaternions)
static float Quaternion.Dot(Quaternion p, Quaternion q);

// yaw(y)/pitch(x)/roll(z) -> quaternion

static Quaternion Euler(float x, float y, float z); 

// axis/angle -> quaternion

static Quaternion AxisAngle(float angle, Vector3 axis);

// lookat(forward) -> quaternion

static Quaternion LookRotation(Vector3 forward, Vector3 upward = 
Vector3.up);

// fromDirection/toDirection -> quaternion

static Quaternion FromToRotation(Vector3 from, Vector3 to);



Unity Quaternion

// slerp(q1, q2, t) spherical linear interpolation between two 
quaternions

Quaternion Quaternion.Slerp(Quaternion quaternion1, 

Quaternion quaternion2,

float amount);

// lerp(q1, q2, t) linear interpolation between two quaternions

Quaternion Quaternion.Lerp(Quaternion quaternion1, 

Quaternion quaternion2,

float amount);



Example: SimpleTransform

 Create an EmptyGameObject

 Add a C# script component, CubeTransform, on an 
EmptyGameObject
 White cube (original)

 Red cube with T->R->S

 Blue cube with S->R->T

 Green cube with Rz->Rx->Ry

 Cyan cube with Ry->Rx->Rz

 Yellow cube with euler1 (0, 180, 0) -> euler2 (180, 0, 180)

 Magenta cube with quat1 180도 (0, 1, 0) -> quat2 180도 (1, 0, 1)



Example: SimpleTransform

 Create Cube, Plane, Capsule
 Cube (0, 0, 0)

 Plane Position (0, -1.5 0) Scale (10, 10, 10)

 Capsule Position (-6, 1, -3)

 Add a C# script component, Mover, on a cube
 W/S-key to move forward/backward

 A/D-key to pan left/right

 L/R-key to lookat camera or rotate around camera

 Add a C# script component, Spinner, on a capsule

 Add a C# script component, Bouncer, on a capsule.



public class Mover: MonoBehaviour {

void Update () {

if (Input.GetKey(KeyCode.W)) {

transform.Translate(10 * Vector3.forward * Time.deltaTime);

} else if (Input.GetKey(KeyCode.S)) {

transform.Translate(10 * Vector3.back * Time.deltaTime);

} else if (Input.GetKey(KeyCode.A)) {

transform.Rotate(-90 * Vector3.up * Time.deltaTime);

} else if (Input.GetKey(KeyCode.D)) {

transform.Rotate(90 * Vector3.up * Time.deltaTime);

} else if (Input.GetKey(KeyCode.L)) {

transform.LookAt(Camera.main.transform.position);

} else if (Input.GetKey(KeyCode.R)) {

isRotating = !isRotating;

} if (isRotating) {

transform.RotateAround(Camera.main.transform.position, Vector3.up, 
90 * Time.deltaTime);

}

}

}



public class Spinner : MonoBehaviour {

public Vector3 axis = new Vector3(0, 0, 1f);

public float speed = 30.0f; 

public bool isRotating = false;

// Update is called once per frame

void Update () {

if (Input.GetKey(KeyCode.Space)) {

isRotating = !isRotating;

}

// Rotate the object around its local coordinate system

transform.Rotate(axis, speed * Time.deltaTime);

}

}



public class Bouncer : MonoBehaviour {

public float speed = 3.0f;

public float distance = 5f;

public Vector3 direction = Vector3.up; // move up/down

Vector3 pos;
void Start() {

pos = transform.position;

}

void Update() {

// Calculate what the new XYY position will be

float newX = Mathf.Sin(Time.time * speed) * distance * direction.x + pos.x;

float newY = Mathf.Sin(Time.time * speed) * distance * direction.y + pos.y;

float newZ = Mathf.Sin(Time.time * speed) * distance * direction.z + pos.z;

// Set the object's position to the new calculated XYZ

transform.position = new Vector3(newX, newY, newZ);

}

}



Example: SimpleCar

 Create Plane, EmptyGameObject (called SimpleCar)
 Plane Position (0, -1.5 0) Scale (10, 10, 10)

 Add a C# script component, Bouncer, on SimpleCar.

 speed = 5

 distance = 3

 direction (1, 0, 0) // left/right movement

 Create Cube (called Body), Capsule                             
(called Wheel1/2/3/4) under SimpleCar
 Body Scale (3, 1, 2)

 Wheel1 Position(-1, -0.5, -1) Rotation(0, 90, 90) Scale(1, 0.5, 1)

 Wheel2 Position(1, -0.5, -1) Rotation(0, 90, 90) Scale(1, 0.5, 1)

 Wheel3 Position(-1, -0.5, 1) Rotation(0, 90, 90) Scale(1, 0.5, 1)

 Wheel4 Position(1, -0.5, 1) Rotation(0, 90, 90) Scale(1, 0.5, 1)

 Add a C# script component, Spinner on wheel1/2/3/4

 speed = 100



Example: SimpleCar



Example: SimpleSolar

 Create EmptyGameObject(SimpleSolar)

 Create EmptyGameObject(Sun) Rotation(10, 0, 10)
 Under Sun, Create Cube(SunObject) Scale (2,2,2)

 Add Spinner script on SunObject, Speed=10

 Create EmptyGameObject(Earth) Position(6, 0, 0)
 Add Orbit script on Earth(ObjectToOrbit=Sun, Speed=40)

 Under Earth, Create Cube(EarthObject)

 Add Spinner script on EarthObject, speed=60

 Under Earth, Create EmptyGameObject(Moon) Position(2, 0, 0)

 Add Orbit script on Moon(ObjectToOrbit=Earth, Speed=90)

 Under Moon, Create Cube(MoonObject) Scale(0.6, 0.6, 0.6)

 Add Spinner script on MoonObject, speed=120



public class Orbit : MonoBehaviour {

float angle;  Vector3 direction;

float radius; // orbit distance

public GameObject objectToOrbit; // object that we will orbit around

public float speed = 30.0f; // orbit degrees per second

void Start () {

direction = transform.position - objectToOrbit.transform.position;

radius = Vector3.Distance(objectToOrbit.transform.position, 
transform.position);

}

void Update () {

angle += speed * Time.deltaTime;

if (angle > 360) angle -= 360;

Vector3 orbit = Vector3.forward * radius;

orbit = Quaternion.LookRotation(direction) * Quaternion.Euler(0, angle, 
0) * orbit;

transform.position = objectToOrbit.transform.position + orbit;

}

}



Example: SimpleSolar

SpinnerOrbit



Example: SimpleCube3D

 Create EmptyGameObject(SimpleCube3D) Rotation(90,0,0)

 Create Quad for Bottom, Left, Right, Front, Back, Top
(Create quads for Back-face culling)

 Create EmptyParent(LeftPivotPoint) for Left 
 LeftPivotPoint Position(-0.5,0,0), Left Position(-0.5,0,0)

 Add RotateFromTo on LeftPivotPoint, From(0,0,0) To(0,-90,0)

 RightPivotPoint Position(0.5,0,0), Right Position(0.5,0,0)
 Add RotateFromTo on RightPivotPoint, From(0,0,0) To(0,90,0)

 FrontPivotPoint Position(0,-0.5,0), Front Position(0,-0.5,0)
 Add RotateFromTo on FrontPivotPoint, From(0,0,0) To(90,0,0)

 BackPivotPoint Position(0,0.5,0), Back Position(0,0.5,0)
 Add RotateFromTo on BackPivotPoint, From(0,0,0) To(-90,0,0)

 TopPivotPoint Position(0,0.5,0), Top Position(0,0.5,0)
 Add RotateFromTo on TopPivotPoint, From(0,0,0) To(-90,0,0)

Unity Global/Local Rotation LHS



public class RotateFromTo : MonoBehaviour {

public bool state = false;

public float smoot = 2f;

public Vector3 fromRotation = Vector3.zero;

public Vector3 toRotation = Vector3.zero;
void Update() {

if (state) {

Quaternion targetRotation = Quaternion.Euler(toRotation.x, toRotation.y, 
toRotation.z);

transform.localRotation = Quaternion.Slerp(transform.localRotation, 
targetRotation, smoot * Time.deltaTime);

} else {

Quaternion targetRotation2 = Quaternion.Euler(fromRotation.x, 
fromRotation.y, fromRotation.z);

transform.localRotation = Quaternion.Slerp(transform.localRotation, 
targetRotation2, smoot * Time.deltaTime);

}
if (Input.GetKey(KeyCode.Space)) state = !state; // toggle state

}

}



Example: SimpleCube3D

Yellow
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Hierarchical Transformation

 The Hierarchy and Parent-child relationships – Unity 
Official Tutorials 
https://www.youtube.com/watch?v=0ZDZaKrofmc


