
Viewing

Fall 2024
11/7/2024

Kyoung Shin Park
Computer Engineering

Dankook University

Viewing

 Viewing requires basic elements

 One or more objects

 A viewer with a projection surface

 Projectors that go from the objects to the
projection plane

 COP vs DOP

 Center Of Projection (COP)

– Perspective views

 Direction Of Projection (DOP)

– Parallel views

Classical Viewing

Classical Viewing

Planar
projections

Parallel Perspective

Oblique Orthographic

Cavalier Cabinet

other

Axonometric

Isometric Dimetric Trimetric

Multiview
orthographic

1-point 2-point 3-point

Parallel Viewing

(Direction
of Projection)

Perspective Viewing

Orthographic Projection

 In the orthographic projection, projectors are orthogonal
to projection plane.

DOP(Direction
of Projection)

Projection plane

Projector
Object

Multiview Orthographic Projection

 In the multiview orthographic projection, projection
plane parallel to principal face.

 Usually form front, top, side views.

Isometric (not multiview
orthographic view)

front

side
top

In CAD and architecture,

we often display three

multiviews plus isometric

Multiview Orthographic Projection
Advantages and Disadvantages

 Preserves both distances and angles
 Shapes preserved

 Can be used for measurements

 Building plans

 Manuals

 Cannot see what object really looks like because many
surfaces hidden from view
 Often we add the isometric

Axonometric Projections

 Axonometric projections allow projection plane to
move relative to object.

q 1

q 3q 2

classify by how many angles of

a corner of a projected cube are

the same

none: trimetric

two: dimetric

three: isometric

Construction of an Axonometric
Projection

Types of Axonometric Projections

Axonometric Projections
Advantages and Disadvantages

 Lines are scaled (foreshortened) but can find scaling
factors

 Lines preserved but angles are not
 Projection of a circle in a plane not parallel to the projection

plane is an ellipse

 Can see three principal faces of a box-like object

 Some optical illusions possible
 Parallel lines appear to diverge

 Does not look real because far objects are scaled the
same as near objects

 Used in CAD applications

Oblique Projection

 Arbitrary relationship between projectors and
projection plane

경사 투영의 평면도 & 측면도

Oblique Projection
Advantages and Disadvantages

 Can pick the angles to emphasize a particular face
 Architecture: plan oblique, elevation oblique

 Angles in faces parallel to projection plane are preserved
while we can still see “around” side

 In physical world, cannot create with simple camera;
possible with bellows camera or special lens
(architectural)

Perspective Projection

 Parallel lines (not parallel to the projection plan) on the
object converge at a single point in the projection (the
vanishing point)

 Drawing simple perspectives by hand uses these
vanishing point(s)

COP

Projection plane

Projector

Object

1-,2-,3-Point Perspective

 Three-point perspectives – no principal face parallel to
projection plane, 3 vanishing points.

 Two-point perspectives – on principal direction parallel
to projection plane, 2 vanishing points.

 One-point perspective – one principal face parallel to
projection plane, 1 vanishing point.

3-point perspective 2-point perspective 1-point perspective

Perspective Projections
Advantages and Disadvantages

 Objects further from viewer are projected smaller than
the same sized objects closer to the viewer
(diminution)
 Looks realistic

 Equal distances along a line are not projected into
equal distances (nonuniform foreshortening)

 Angles preserved only in planes parallel to the
projection plane

 More difficult to construct by hand than parallel
projections (but not more difficult by computer)

View Frustum

 View Frustum is the shape of the region that can be
seen and rendered by a camera.

https://docs.unity3d.com/Manual/UnderstandingFrustum.html

View Frustum

 Orthographic projection projects the rectilinear box
viewing volume onto the screen.

 The size of the object does not change with distance.

 Points are projected onto the z=0 plane towards the
z- axis.

View frustum

http://latedreamer.blogspot.com/2017/08/unity-tutorial-tanks-part-2.html

View Frustum

 Perspective projection projects the frustum (i.e.,
truncated pyramid) viewing space onto the screen.

 Near objects appear larger, and object far away appear
smaller.

View frustum

http://latedreamer.blogspot.com/2017/08/unity-tutorial-tanks-part-2.html

Unity Orthographic Projection

 Matrix4x4.Ortho(left, right, bottom, top, zNear, zFar)
 Projection matrices in Unity follow OpenGL convention, i.e. clip

space near plan is at z= -1 and far plan is at z= 1.

 Camera's projection matrix, creates a projection of the area
between left, right, top and bottom, with zNear and zFar as
the near and far depth clipping planes into a cube going from
(left, bottom, near) = (-1, -1, -1) to (right, top, far) = (1, 1,
1).

Unity Perspective Projection

 Matrix4x4.Frustum(left, right, bottom, top, zNear,
zFar)
 The distance between near and far must be positive and is

measured as the distance from the COP to the near/far plane.

 The viewing volume is frustum (i.e., truncated pyramid).

Unity Perspective Projection

 Matrix4x4.Perspective(fovy, aspect, zNear, zFar) uses
the y-direction viewing angle (FOV) and the aspect
ratio (the value of the width of the nearest clipping
plane divided by the height).
 fovy – angle of field of view in Y-axis direction

 aspect – the aspect ratio (width divided by height)

 zNear – near clipping plane

 zFar – far clipping plane

xp = x
yp = y
zp = 0
wp = 1

Orthographic projection

Orthographic Projection

 Orthographic projection
 Special case of parallel projection in which the projector is

orthogonal to the projection plane.

 The focal length is infinite.

Perspective Projection

 Perspective projection
 Center of projection is located at the origin

 Projection plane zp = d

Projection plane

COP

Perspective Projection

Projection Normalization

 Projection normalization converts all projections into
orthogonal projections by distorting the objects such
that the orthogonal projection of the distorted object
is the same as the desired projection of the original
object.

Orthogonal Projection Matrix

 Orthogonal projection maps a rectilinear view volume
to Canonical view volume.

Rectilinear -> Cube

 Translate the center of viewing volume to the origin

 Scale the viewing volume so that its length is 2x2x2

 P=ST=

Orthogonal Projection Matrix

Orthogonal Projection Matrix

Oblique Projection Matrix

top view

Oblique -> Orthogonal

side view
y - yp

zz

x - xp

 xy shear (z values unchanged)

 P = Mortho H(,)

 General case: P = Mortho ST H(,)

Oblique Projection Matrix

Perspective Projection Matrix

COP

Projection plane at z = -1

Frustum -> Cube
Perspective -> Orthogonal

Perspective Projection Matrix

 Perspective projection maps a frustum view volume to
Canonical view volume.

[l, r] => [-1, 1], [b, t] => [-1, 1], [-n, -f] => [-1, 1]

[n, f] => [1, -1]

Perspective Projection Matrix

New clipping
volume

Distorted object
projects correctly

 Perspective normalization

x = z  1

y = z  1

z = near/far  1

 Perspective normalization converts perspective
projection to orthogonal projection.
 Perspective projection matrix with the projection plane as z =

-1, and the center of projection as the origin, M

 The field of view is fixed at 90 degrees by making the side of
the viewing volume as 45 degree.

Perspective Projection Matrix

x = z

y = z

Perspective Projection Matrix

 N matrix:

 p’=Np:

 Perspective division, p’->p’’:

 If x =  z, x’’ =  1

 If y =  z, y’’ =  1

 If far plane z = -far,

If near plane z = -near,

 To become z’’ ->  1, select  and : (-near, -1) & (-far, 1)

Perspective Projection Matrix

Perspective Projection Matrix

Perspective Projection Matrix

 Frustum(left, right, bottom, top, near, far)

x

z

x

z

x

z

x

z

Shear Scale N

1

1-1

-1

Perspective Projection

 Shear

 Then,

 Scale

 Then,

 Normalize

Perspective Projection Matrix

Perspective Projection Matrix

Computer Viewing

 Viewing
 Set the position and direction of the camera.

 Model-view transformation matrix

 Apply the projection transformation matrix.

 Projection transformation matrix

 Clipping

 View volume

 Default camera in Unity
 Is placed at the (0, 0, -10) world coordinate system

 Faces to the positive z-axis direction

 By default, perspective projection viewing frustum is used

Camera Frame

 View reference point (VRP)

 View plane normal (VPN) n = VRP - PRP

 View-up vector (VUP)

 Side vector u = VUP x n

 Up vector v = n x u

 u, v, n normalize

 Camera frame is defined by viewing coordinate system
(u’-v’-n’) and VRP.

u

v

n

PRP (Projection
Reference Point)

Camera Frame

 View-orientation matrix, M

 Rotation matrix, M-1 = MT = R

 Camera position in World frame: V = RT

lookAt

 gluLookAt(vec3 & eye, vec3 & at, vec3 & up)

n = eye – at

n

u = up x n

u

v = n x u v

lookAt

 Eye Point : camera origin (in World Coordinate System)

 Look-At : the position where the camera is looking at
(the center of the camera image)

 Up-Vector : the camera up vector (in World Coordinate
System)

World space origin Camera space origin

Eye point (cx, cy, cz)

Look-at point (px, py, pz)

Up-vector (0, 1, 0)

gluLookAt

void gluLookAt(GLdouble ex, GLdouble ey, GLdouble ez, GLdouble ax, GLdouble ay, GLdouble az,
GLdouble ux, GLdouble uy, GLdouble uz) {
GLdouble M[16]; GLdouble u[3], v[3], n[3]; GLdouble mag;

n[0] = ex – ax; n[1] = ey – ay; n[2] = ez – az; // n (camera frame Z)
mag = sqrt(n[0]*n[0] + n[1]*n[1] + n[2]*n[2]);
if (mag) { n[0] /= mag; n[1] /= mag; n[2] /= mag; }

v[0] = ux; v[1] = uy; v[2] = uz; // u (camera frame X)
u[0] = v[1]*n[2] – v[2]*n[1]; u[1] = -v[0]*n[2] + v[2]*n[0]; u[2] = v[0]*n[1] - v[1]*n[0];
mag = sqrt(u[0]*u[0] + u[1]*u[1] + u[2]*u[2]);
if (mag) { u[0] /= mag; u[1] /= mag; u[2] /= mag; }

v[0] = n[1]*u[2] – n[2]*u[1]; v[1] = -n[0]*u[2] + n[2]*u[0]; v[2] = n[0]*u[1] - n[1]*u[0]; // v (camera
frame Y)
mag = sqrt(v[0]*v[0] + v[1]*v[1] + v[2]*v[2]);
if (mag) { v[0] /= mag; v[1] /= mag; v[2] /= mag; }

M[0] = u[0]; M[4] = u[1]; M[8] = u[2]; M[12] = 0.0; // R
M[1] = v[0]; M[5] = v[1]; M[9] = v[2]; M[13] = 0.0;
M[2] = n[0]; M[6] = n[1]; M[10] = n[2]; M[14] = 0.0;
M[3] = 0.0; M[7] = 0.0; M[11] = 0.0; M[15] = 1.0;
glMultMatrix(M);

glTranslated(-ex, -ey, -ez); // RT
}

glm::lookAt Matrix
template <typename T, precision P>

GLM_FUNC_QUALIFIER tmat4x4<T, P> lookAtRH

(tvec3<T, P> const & eye, tvec3<T, P> const & center, tvec3<T, P> const & up) {

tvec3<T, P> const f(normalize(center - eye));

tvec3<T, P> const s(normalize(cross(f, up)));

tvec3<T, P> const u(cross(s, f));

tmat4x4<T, P> Result(1);

Result[0][0] = s.x;

Result[1][0] = s.y;

Result[2][0] = s.z;

Result[0][1] = u.x;

Result[1][1] = u.y;

Result[2][1] = u.z;

Result[0][2] = -f.x;

Result[1][2] = -f.y;

Result[2][2] = -f.z;

Result[3][0] = -dot(s, eye);

Result[3][1] = -dot(u, eye);

Result[3][2] = dot(f, eye);

return Result;

}

f = center – eye

s = f x up

u = s x f

Unity Matrix4x4.LookAt

 Matrix4x4.LookAt(Vector3 from, Vector4 to, Vector3
up) creates a “look at” matrix.
 Given a source point (from), a target point (to), and an up

vector (up), computes a transformation matrix that
corresponds to a camera viewing the target from the source,
such that the right-hand vector is perpendicular to the up
vector.

 The resulting matrix corresponds to

Matrix4x4.TRS(from, Quaternion.LookRotation((to-
from).normalized, up.normalized), Vector3.one)

 Note that: glm::lookat != Matrix4x4.LookAt

Yaw, Pitch, Roll

 Yaw – Y-axis rotation

 Pitch – X-axis rotation

 Roll – Z-axis rotation

Elevation and Azimuth

 Azimuth – X-axis rotation (-180 ~ 180)

 Elevation – Y-axis rotation (-90 ~ 90)

 Twist angle – Z-axis rotation (-180 ~ 180)

Spherical Polar Coordinates System

