
Viewing

Fall 2024
11/7/2024

Kyoung Shin Park
Computer Engineering

Dankook University

Viewing

 Viewing requires basic elements

 One or more objects

 A viewer with a projection surface

 Projectors that go from the objects to the
projection plane

 COP vs DOP

 Center Of Projection (COP)

– Perspective views

 Direction Of Projection (DOP)

– Parallel views

Classical Viewing

Classical Viewing

Planar
projections

Parallel Perspective

Oblique Orthographic

Cavalier Cabinet

other

Axonometric

Isometric Dimetric Trimetric

Multiview
orthographic

1-point 2-point 3-point

Parallel Viewing

(Direction
of Projection)

Perspective Viewing

Orthographic Projection

 In the orthographic projection, projectors are orthogonal
to projection plane.

DOP(Direction
of Projection)

Projection plane

Projector
Object

Multiview Orthographic Projection

 In the multiview orthographic projection, projection
plane parallel to principal face.

 Usually form front, top, side views.

Isometric (not multiview
orthographic view)

front

side
top

In CAD and architecture,

we often display three

multiviews plus isometric

Multiview Orthographic Projection
Advantages and Disadvantages

 Preserves both distances and angles
 Shapes preserved

 Can be used for measurements

 Building plans

 Manuals

 Cannot see what object really looks like because many
surfaces hidden from view
 Often we add the isometric

Axonometric Projections

 Axonometric projections allow projection plane to
move relative to object.

q 1

q 3q 2

classify by how many angles of

a corner of a projected cube are

the same

none: trimetric

two: dimetric

three: isometric

Construction of an Axonometric
Projection

Types of Axonometric Projections

Axonometric Projections
Advantages and Disadvantages

 Lines are scaled (foreshortened) but can find scaling
factors

 Lines preserved but angles are not
 Projection of a circle in a plane not parallel to the projection

plane is an ellipse

 Can see three principal faces of a box-like object

 Some optical illusions possible
 Parallel lines appear to diverge

 Does not look real because far objects are scaled the
same as near objects

 Used in CAD applications

Oblique Projection

 Arbitrary relationship between projectors and
projection plane

경사 투영의 평면도 & 측면도

Oblique Projection
Advantages and Disadvantages

 Can pick the angles to emphasize a particular face
 Architecture: plan oblique, elevation oblique

 Angles in faces parallel to projection plane are preserved
while we can still see “around” side

 In physical world, cannot create with simple camera;
possible with bellows camera or special lens
(architectural)

Perspective Projection

 Parallel lines (not parallel to the projection plan) on the
object converge at a single point in the projection (the
vanishing point)

 Drawing simple perspectives by hand uses these
vanishing point(s)

COP

Projection plane

Projector

Object

1-,2-,3-Point Perspective

 Three-point perspectives – no principal face parallel to
projection plane, 3 vanishing points.

 Two-point perspectives – on principal direction parallel
to projection plane, 2 vanishing points.

 One-point perspective – one principal face parallel to
projection plane, 1 vanishing point.

3-point perspective 2-point perspective 1-point perspective

Perspective Projections
Advantages and Disadvantages

 Objects further from viewer are projected smaller than
the same sized objects closer to the viewer
(diminution)
 Looks realistic

 Equal distances along a line are not projected into
equal distances (nonuniform foreshortening)

 Angles preserved only in planes parallel to the
projection plane

 More difficult to construct by hand than parallel
projections (but not more difficult by computer)

View Frustum

 View Frustum is the shape of the region that can be
seen and rendered by a camera.

https://docs.unity3d.com/Manual/UnderstandingFrustum.html

View Frustum

 Orthographic projection projects the rectilinear box
viewing volume onto the screen.

 The size of the object does not change with distance.

 Points are projected onto the z=0 plane towards the
z- axis.

View frustum

http://latedreamer.blogspot.com/2017/08/unity-tutorial-tanks-part-2.html

View Frustum

 Perspective projection projects the frustum (i.e.,
truncated pyramid) viewing space onto the screen.

 Near objects appear larger, and object far away appear
smaller.

View frustum

http://latedreamer.blogspot.com/2017/08/unity-tutorial-tanks-part-2.html

Unity Orthographic Projection

 Matrix4x4.Ortho(left, right, bottom, top, zNear, zFar)
 Projection matrices in Unity follow OpenGL convention, i.e. clip

space near plan is at z= -1 and far plan is at z= 1.

 Camera's projection matrix, creates a projection of the area
between left, right, top and bottom, with zNear and zFar as
the near and far depth clipping planes into a cube going from
(left, bottom, near) = (-1, -1, -1) to (right, top, far) = (1, 1,
1).

Unity Perspective Projection

 Matrix4x4.Frustum(left, right, bottom, top, zNear,
zFar)
 The distance between near and far must be positive and is

measured as the distance from the COP to the near/far plane.

 The viewing volume is frustum (i.e., truncated pyramid).

Unity Perspective Projection

 Matrix4x4.Perspective(fovy, aspect, zNear, zFar) uses
the y-direction viewing angle (FOV) and the aspect
ratio (the value of the width of the nearest clipping
plane divided by the height).
 fovy – angle of field of view in Y-axis direction

 aspect – the aspect ratio (width divided by height)

 zNear – near clipping plane

 zFar – far clipping plane

xp = x
yp = y
zp = 0
wp = 1

Orthographic projection

Orthographic Projection

 Orthographic projection
 Special case of parallel projection in which the projector is

orthogonal to the projection plane.

 The focal length is infinite.

Perspective Projection

 Perspective projection
 Center of projection is located at the origin

 Projection plane zp = d

Projection plane

COP

Perspective Projection

Projection Normalization

 Projection normalization converts all projections into
orthogonal projections by distorting the objects such
that the orthogonal projection of the distorted object
is the same as the desired projection of the original
object.

Orthogonal Projection Matrix

 Orthogonal projection maps a rectilinear view volume
to Canonical view volume.

Rectilinear -> Cube

 Translate the center of viewing volume to the origin

 Scale the viewing volume so that its length is 2x2x2

 P=ST=

Orthogonal Projection Matrix

Orthogonal Projection Matrix

Oblique Projection Matrix

top view

Oblique -> Orthogonal

side view
y - yp

zz

x - xp

 xy shear (z values unchanged)

 P = Mortho H(,)

 General case: P = Mortho ST H(,)

Oblique Projection Matrix

Perspective Projection Matrix

COP

Projection plane at z = -1

Frustum -> Cube
Perspective -> Orthogonal

Perspective Projection Matrix

 Perspective projection maps a frustum view volume to
Canonical view volume.

[l, r] => [-1, 1], [b, t] => [-1, 1], [-n, -f] => [-1, 1]

[n, f] => [1, -1]

Perspective Projection Matrix

New clipping
volume

Distorted object
projects correctly

 Perspective normalization

x = z 1

y = z 1

z = near/far 1

 Perspective normalization converts perspective
projection to orthogonal projection.
 Perspective projection matrix with the projection plane as z =

-1, and the center of projection as the origin, M

 The field of view is fixed at 90 degrees by making the side of
the viewing volume as 45 degree.

Perspective Projection Matrix

x = z

y = z

Perspective Projection Matrix

 N matrix:

 p’=Np:

 Perspective division, p’->p’’:

 If x = z, x’’ = 1

 If y = z, y’’ = 1

 If far plane z = -far,

If near plane z = -near,

 To become z’’ -> 1, select and : (-near, -1) & (-far, 1)

Perspective Projection Matrix

Perspective Projection Matrix

Perspective Projection Matrix

 Frustum(left, right, bottom, top, near, far)

x

z

x

z

x

z

x

z

Shear Scale N

1

1-1

-1

Perspective Projection

 Shear

 Then,

 Scale

 Then,

 Normalize

Perspective Projection Matrix

Perspective Projection Matrix

Computer Viewing

 Viewing
 Set the position and direction of the camera.

 Model-view transformation matrix

 Apply the projection transformation matrix.

 Projection transformation matrix

 Clipping

 View volume

 Default camera in Unity
 Is placed at the (0, 0, -10) world coordinate system

 Faces to the positive z-axis direction

 By default, perspective projection viewing frustum is used

Camera Frame

 View reference point (VRP)

 View plane normal (VPN) n = VRP - PRP

 View-up vector (VUP)

 Side vector u = VUP x n

 Up vector v = n x u

 u, v, n normalize

 Camera frame is defined by viewing coordinate system
(u’-v’-n’) and VRP.

u

v

n

PRP (Projection
Reference Point)

Camera Frame

 View-orientation matrix, M

 Rotation matrix, M-1 = MT = R

 Camera position in World frame: V = RT

lookAt

 gluLookAt(vec3 & eye, vec3 & at, vec3 & up)

n = eye – at

n

u = up x n

u

v = n x u v

lookAt

 Eye Point : camera origin (in World Coordinate System)

 Look-At : the position where the camera is looking at
(the center of the camera image)

 Up-Vector : the camera up vector (in World Coordinate
System)

World space origin Camera space origin

Eye point (cx, cy, cz)

Look-at point (px, py, pz)

Up-vector (0, 1, 0)

gluLookAt

void gluLookAt(GLdouble ex, GLdouble ey, GLdouble ez, GLdouble ax, GLdouble ay, GLdouble az,
GLdouble ux, GLdouble uy, GLdouble uz) {
GLdouble M[16]; GLdouble u[3], v[3], n[3]; GLdouble mag;

n[0] = ex – ax; n[1] = ey – ay; n[2] = ez – az; // n (camera frame Z)
mag = sqrt(n[0]*n[0] + n[1]*n[1] + n[2]*n[2]);
if (mag) { n[0] /= mag; n[1] /= mag; n[2] /= mag; }

v[0] = ux; v[1] = uy; v[2] = uz; // u (camera frame X)
u[0] = v[1]*n[2] – v[2]*n[1]; u[1] = -v[0]*n[2] + v[2]*n[0]; u[2] = v[0]*n[1] - v[1]*n[0];
mag = sqrt(u[0]*u[0] + u[1]*u[1] + u[2]*u[2]);
if (mag) { u[0] /= mag; u[1] /= mag; u[2] /= mag; }

v[0] = n[1]*u[2] – n[2]*u[1]; v[1] = -n[0]*u[2] + n[2]*u[0]; v[2] = n[0]*u[1] - n[1]*u[0]; // v (camera
frame Y)
mag = sqrt(v[0]*v[0] + v[1]*v[1] + v[2]*v[2]);
if (mag) { v[0] /= mag; v[1] /= mag; v[2] /= mag; }

M[0] = u[0]; M[4] = u[1]; M[8] = u[2]; M[12] = 0.0; // R
M[1] = v[0]; M[5] = v[1]; M[9] = v[2]; M[13] = 0.0;
M[2] = n[0]; M[6] = n[1]; M[10] = n[2]; M[14] = 0.0;
M[3] = 0.0; M[7] = 0.0; M[11] = 0.0; M[15] = 1.0;
glMultMatrix(M);

glTranslated(-ex, -ey, -ez); // RT
}

glm::lookAt Matrix
template <typename T, precision P>

GLM_FUNC_QUALIFIER tmat4x4<T, P> lookAtRH

(tvec3<T, P> const & eye, tvec3<T, P> const & center, tvec3<T, P> const & up) {

tvec3<T, P> const f(normalize(center - eye));

tvec3<T, P> const s(normalize(cross(f, up)));

tvec3<T, P> const u(cross(s, f));

tmat4x4<T, P> Result(1);

Result[0][0] = s.x;

Result[1][0] = s.y;

Result[2][0] = s.z;

Result[0][1] = u.x;

Result[1][1] = u.y;

Result[2][1] = u.z;

Result[0][2] = -f.x;

Result[1][2] = -f.y;

Result[2][2] = -f.z;

Result[3][0] = -dot(s, eye);

Result[3][1] = -dot(u, eye);

Result[3][2] = dot(f, eye);

return Result;

}

f = center – eye

s = f x up

u = s x f

Unity Matrix4x4.LookAt

 Matrix4x4.LookAt(Vector3 from, Vector4 to, Vector3
up) creates a “look at” matrix.
 Given a source point (from), a target point (to), and an up

vector (up), computes a transformation matrix that
corresponds to a camera viewing the target from the source,
such that the right-hand vector is perpendicular to the up
vector.

 The resulting matrix corresponds to

Matrix4x4.TRS(from, Quaternion.LookRotation((to-
from).normalized, up.normalized), Vector3.one)

 Note that: glm::lookat != Matrix4x4.LookAt

Yaw, Pitch, Roll

 Yaw – Y-axis rotation

 Pitch – X-axis rotation

 Roll – Z-axis rotation

Elevation and Azimuth

 Azimuth – X-axis rotation (-180 ~ 180)

 Elevation – Y-axis rotation (-90 ~ 90)

 Twist angle – Z-axis rotation (-180 ~ 180)

Spherical Polar Coordinates System

