From Vertices to Fragments

Fall 2024 11/28/2024 Kyoung Shin Park Computer Engineering Dankook University

Geometric Pipeline

- Geometric pipeline
	- Vertex processing
	- Clipping and primitive assembly
	- Rasterization
	- Fragment processing

Clipping

- **D** Clipping window
- \Box 3D clipping volume
- **D** Curves and text will be converted to lines and polygons.

2D Line-Segment Clipping

□ Clipping 2D line segments

- The clipper determines which basic elements or parts of them should appear on the screen and be sent to the rasterizer.
- **Accepted: Basic elements entering the designated viewing** space area accepted.
- Rejected or culled: Basic elements that cannot appear on the screen are removed.

2D Line-Segment Clipping

- \Box How to calculate intersection for all sides of clipping window
	- **Inefficient because one division must be performed per** intersection

Cohen-Sutherland Algorithm

- Cohen-Sutherland clipping algorithm
	- 1. Extends the clipping window to infinity on 4 sides and divides the space into 9 areas 1001 1000 1010

$$
x = \frac{1001}{x_{\text{min}}} \qquad \frac{1000}{x_{\text{min}}} \qquad \frac{1010}{x_{\text{max}}}
$$
\n
$$
y_{\text{min}} \qquad \frac{0010}{x_{\text{max}}}
$$

2. Assign a unique **outcode (b0b1b2b³)** to each area as follows.

$$
b_0 = \begin{cases} 1 & \text{if } y > y_{\text{max}} \\ 0 & \text{otherwise} \end{cases} \quad b_1 = \begin{cases} 1 & \text{if } y < y_{\text{min}} \\ 0 & \text{otherwise} \end{cases} \quad b_2 = \begin{cases} 1 & \text{if } x > x_{\text{max}} \\ 0 & \text{otherwise} \end{cases} \quad b_3 = \begin{cases} 1 & \text{if } x < x_{\text{min}} \\ 0 & \text{otherwise} \end{cases}
$$

3. 4 cases are judged based on the outcode.

Cohen-Sutherland Algorithm

 \Box For line segment AB: A's outcode = B's outcode = 0

- If both ends of the segmented are inside, accepted
- \blacksquare For line segment CD: C's outcode AND D's outcode ≠ 0
	- If both endpoints of the segment are outside the same side of the clipping window, rejected

Cohen-Sutherland Algorithm

- **□** For line segment EF: E's outcode \neq 0, F's outcode = 0
	- **If one endpoint of the segment is inside the clipping window and** the other is outside, subdivide
	- **Need to find 1 intersection**

For line segment GH, IJ: G's outcode AND H's outcode = 0

- If both endpoints of the segment are outside, subdivide. In case of line segment GH, part of the line segment is inside the clipping window.
- Calculate at least one side of the window and check the outer sign of the resulting point. $y = y_{\text{max}}$ H

- G's outcode = 0001 H 's outcode = 1000 G AND H = 0000
- I's outcode = 0001 J's outcode = 1000 I AND $I = 0000$

Liang-Barsky Algorithm

Liang-Barsky clipping algorithm

1. Parametric line formula

$$
P(\alpha) = (1 - \alpha)P_1 + \alpha P_2, \ 0 \le \alpha \le 1
$$

$$
x(\alpha) = (1 - \alpha)x_1 + \alpha x_2
$$

$$
y(\alpha) = (1 - \alpha)y_1 + \alpha y_2
$$

2. Determined by examining the order of α values by calculating 4 points where the line segment intersects the extended side of the clipping window.

Liang-Barsky Algorithm

■ Liang-Barsky clipping algorithm

3. The line in the clipping window satisfies the following

$$
x_{\min} \le x(\alpha) \le x_{\max}
$$

$$
y_{\min} \le y(\alpha) \le y_{\max}
$$

4. A line outside the clipping window is when (x_1, y_1) is outside $x_{min'}$, x_{max} or y_{min} , y_{max} .

 $q_k < 0 \ (k = 1, 2, 3, 4)$ where $q_1 = x_1 - x_{\min}$

$$
q_2 = x_{\text{max}} - x_1
$$

$$
q_3 = y_1 - y_{\min}
$$

 $q_4 = y_{\text{max}} - y_1$

Liang-Barsky Algorithm

■ Liang-Barsky clipping algorithm

5. Of the two points of a straight line, the point with the smallest x value is assumed to be (x_1, y_1) . If the line is extended infinitely, the clipping window passes from outside to inside and from inside to outside.

Polygon Clipping

- **O** Concave polygon clipping
	- Method1: How to combine into one polygon after clipping
	- **Method2: Split into a set of concave polygons (tessellate), and** clipping

After clipping

Before clipping

Create one polygon

Tessellation

Pipeline Clipping of Line Segments

- Sutherland-Hodgeman algorithm
	- Subdividing the cutter into a simpler cutter pipeline that clips each side of the window.

Pipeline Clipping of Polygons

- Sutherland-Hodgeman algorithm
	- **Input: Polygon (vertices list) and clipping plane**
	- Output: New clipped polygon (vertices list)
	- For 2D, pipeline clipping of polygons
	- For 3D, add front and back clipping

Bounding Boxes

- Use the *axis-aligned bounding box* or *extent of a* polygon for clipping
	- For complex polygons with many sides
	- Bounding box is the smallest rectangle aligned to the window containing the polygon
	- **The bounding box is obtained by calculating the minimum** (min) and maximum (max) values of the x and y values of the polygon vertices.

Bounding boxes

■ Simple clipping using bounding boxes

Cohen-Sutherland Algorithm in 3D

- In 3D, clipping for the bounding volume, not the bounding area
- Cohen-Sutherland clipping algorithm
	- Calculate using 6-bit outcode in 3D (instead of 4-bit outcode used in 2D)

$$
b_4 = \begin{cases} 1 & \text{if } z > z_{\text{max}} \\ 0 & \text{otherwise} \end{cases}
$$

$$
b_5 = \begin{cases} 1 & \text{if } z < z_{\text{min}} \\ 0 & \text{otherwise} \end{cases}
$$

Liang-Barsky Algorithm in 3D

- Liang-Barsky clipping algorithm
	- 3D Line parametric form

 $P(\alpha) = (1 - \alpha)P_1 + \alpha P_2, 0 \leq \alpha \leq 1$ $x(\alpha) = (1-\alpha)x_1 + \alpha x_2$ $y(\alpha) = (1-\alpha)y_1 + \alpha y_2$ $z(\alpha) = (1-\alpha)z_1 + \alpha z_2$

Derive α from the formula of plane (P₀, n)

 $P(\alpha) = (1 - \alpha)P_1 + \alpha P_2$ $n\cdot(P(\alpha)-P_{0})=0$

n

Rasterization

Rasterization/Scan conversion

- The final step in the process from framebuffer to fragment
- The task of deciding which pixels to represent an object
- Mapping from normalized device coordinates to viewport
	- Based on the result of converting vertex coordinates to screen coordinates
	- Convert line segment to screen coordinates
	- Convert inner surface to screen coordinates
	- In the picture below, what pixels should be painted in the area surrounded by A', B' and C' to best represent the triangle ABC?

Rasterization

□ Convert float coordinates to integer coordinates

- **Sometimes, rounding is necessary.**
- For example, convert the vertex's viewpoint coordinates $(1.95, 1.4)$ \rightarrow pixel (2, 1)
- All vertices that are $(1.5 \le x \le 2.5)$ and $(0.5 \le y \le 1.5)$ inside the boundary are mapped to (2, 1)

A and B are all mapped to the same line segment.

Line Scan-Conversion

- \Box A line segment is the most primitive to which the rasterization algorithm that is applied.
- Once the vertices at both ends of the segment have been determined to which pixels on the screen are mapped, the remaining pixels are processed.
- Sampling by slope
	- If greater than 1, increase the y coordinate
	- If less than 1, increase the x coordinate
- If the slope is negative, use the absolute value.

 $\boldsymbol{\chi}$

Line Scan-Conversion

 The following line scan-conversion equation is slow due to floating point multiplication.

DDA (Digital Differential Analyzer)

 The following line scan-conversion equation converts floating-point multiplication to floating-point addition

DDA (Digital Differential Analyzer)

DDA algorithm

DDA (Digital Differential Analyzer)

DDA disadvantage

- **Filoating-point arithmetic operation**
	- Floating-point addition is slower than integer arithmetic operation
- **Rounding**
	- \Box Time it takes to execute the round() function
- **Accuracy**
	- In case of floating point numbers, the back seat is cut off
	- Accumulation of errors by successive addition
	- Selected pixels gradually move away from the actual line segment and thus drift

D Also known as Midpoint Algorithm

- Avoid all floating point calculations and use only integer.
- The line rasterization algorithm, the standard for raster machines.

 \Box Select A (x, y)

- The next pixel is one of B $(x+1, y)$, or C $(x+1, y+1)$
- Determined by the vertical distance between the center of the pixel and the line segment
- **Select Pixel B if the segment is below the midpoint M**, **pixel C if it is above**.

If pixel $A=(x1, y1)$, the coordinates of the midpoint M of pixel B and C are $(x1 + 1, y1 + \frac{1}{2})$, substituting this into F:

$$
y = mx + h, m = \frac{dy}{dx}
$$

\n
$$
F(x, y) = F\left(x1 + 1, y1 + \frac{1}{2}\right)
$$

\n
$$
y = \frac{dy}{dx}x + h
$$

\n
$$
ydx = xdy + hdx
$$

\n
$$
0 = xdy - ydx + hdx
$$

\n
$$
F(x, y) = 2xdy - 2ydx + 2hdx
$$

\n
$$
F(x1, y1) = 2x1dy - 2y1dx + 2hdx = 0
$$

\n
$$
F(x1, y1) = 2x1dy - 2y1dx + 2hdx = 0
$$

$$
F(x, y) = 2dy - dx
$$

- Determine whether the midpoint is above or below the line segment based on the **decision variable, F**.
	- If $F(x, y) < 0$, the midpoint is on the line segment and therefore selects the **East** pixel.
	- If $F(x, y) > 0$, select the **NorthEast** pixel.

 $F(x, y) = 2dy - dx$

 $if(F(x, y) < 0)$ select $E \quad \text{/B} \cong \text{B} \Delta$ 선택

select NE // 동북쪽화소선택 else

 $d2 > d1 \Rightarrow F(x,y) < 0$

- The current pixel is (x, y) and if the **East** pixel is selected, the next step position is **(x+1, y)**.
- If the **NorthEast** pixel is selected, the next step position is **(x+1, y+1).**
- The difference between the decision variable at the next stage and the decision variable at the current stage is:

$$
incrE = F(x+1, y) - F(x, y)
$$

= (2(x+1)dy - 2ydx + 2hdx) - (2xdy - 2ydx + 2hdx)
= 2dy

$$
incrNE = F(x+1, y+1) - F(x, y)
$$

= $(2(x+1)dy - 2(y+1)dx + 2hdx) - (2xdy - 2ydx + 2hdx)$
= $2dy - 2dx$

void MidpointLineDraw(int x1, int y1, int x2, int y2)

```
int dx, dy, incrE, incrNE, D, x, y=y1;
dx = x^2 - x^1; dy = y^2 - y^1;
for (x=x1; x \le x2; x++) {
    } 
   } 
   DrawPixel (x, y); \sqrt{2} // draw pixel
}
```
 $\{$

}

 $D = 2*dy - dx$; $\frac{dy}{dx} = 2$ $\text{incrE} = 2*dy$; $\frac{dy}{dx} = \frac{1}{2}i$ increment when selecting East $incrNE = 2*dy - 2*dx$; // increment when selecting NE

if $(D \le 0)$ { $\frac{1}{2}$ // If the decision variable is negative, D += incrE; $/$ select E and increase decision variable

 $0 \leq m \leq 1$

else { // If the decision variable is positive, D += incrNE; $\frac{1}{2}$ // select NE, increase decision variable $y++$; $y++$ // $y++$ next pixel is NE

- $|m| > 1.0$
	- Calculate by swapping x and y
	- Increasing in the y direction, determine the x-value
- In addition, special cases are handled separately.
	- $\triangle y = 0$ (horizontal line)
	- $\triangle x = 0$ (vertical line)
	- Δx | = Δy | (diagonal lines)

For example, a line segment between $(0, 0)$ and $(6, 4)$

- Increased speed by integer operation $+$ hardware implementation
- Defined only in the first 8th
	- **Apply by moving and reflecting other segments**

Polygon Scan-Conversion

- \Box Polygon rasterization = polygon filling
	- If the point is inside the polygon, paint it with the interior color
- Polygon inside/outside rule
	- Even-odd rule
		- If the boundary of each scan line intersects the odd number, it is inside. If it intersects the even number, it is outside.
	- **Non-zero winding rule**
		- When each scan line crosses the lower boundary, the number of folds increased by 1, and when it crosses the upper boundary, it is decreased by 1.
		- At this time, if the number of folds is greater than θ_{rel} it is defined as the inner area of the polygon.

Flood Fill

<u>Elood</u> fill

}

- Filling an area defined as interior
- Starting at the seed point inside the polygon, looping through the neighbors, if they are not side points, paint with a fill color.

void flood_fill(int x, int y) { // Start at the initial point (x, y) inside polygon if(read_pixel(x,y) = = WHITE) { // if current pixel is background color write_pixel(x,y,BLACK); \qquad // paint with fill color flood_fill(x+1, y); $\frac{1}{2}$ // repeat right side flood_fill(x-1, y); $\frac{1}{2}$ // repeat left side flood_fill(x, $y+1$); // repeat down side flood_fill(x, y-1); $\frac{1}{2}$ // repeat up side }

Scan Line Fill

- **D** Scan line fill
	- **T** Y-X polygon scan line algorithm:
		- Compose Edge list (EL) by arranging all edges in Y-value order
		- □ Take out the edge from EL where each scan line intersects, and move it to the Active Edge List (AEL).
		- Fill the gap b=y pairing the scan line with each edge and intersection point by two.

Aliasing

- Stair-step (Jaggies) border
	- **In bitmap representation, it is only possible to approximate pixel** units.
	- **An inevitable phenomenon when an object with infinite** resolution is approximated in units of pixel with finite resolution.

Anti-Aliasing

■ Super-Sampling

- Sampling in partial pixels. Post filtering
- Reflects the average value of partial pixels

- **Super sampling by jitter**
	- If the object itself is irregular, irregular sampling is advantageous.

Anti-Aliasing

Magnified