
Communication

470410-1
Spring 2016
3/17/2016

Kyoung Shin Park
Multimedia Engineering

Dankook University

Outline

� Distributed system
� A set of interconnected CPUs communicating by messages

over a network. It is important to consider the many different
means of communication possible.

� Interconnection Networks
� Network Protocols
� Inter-Process Communication (IPC)

� Message Passing
� Sockets
� Client/Server Model
� Remote Procedure Call (RPC)

Interconnection Networks

� There are many ways in which the processors and
memories of a distributed system can be interconnected.

� Interconnection network designs
� Bus, ring, crossbar, hypercube, shuffle-exchange

Network Protocols

� In a distributed system, the network is the medium that
connects the computers.

� On the lowest layer, it takes the form of a physical
transmission medium. In current use are copper wire,
optical fiber, and wireless media.

� Above the physical layer, we have a hierarchy of protocols.
� A protocol is an agreed-upon set of rules, which describe

actions or sequences of actions that initiate and control
the transmission of data along the physical connections.

� In the protocol hierarchy, each layer provides a richer
functionality than the layer below it, and each layer
implements its functionality on the basis of the lower
layer's functionality. A variety of protocol hierarchies and
individual protocols are in current use.

Network Protocols

� Protocol is a set of conventions for formatting data in an
electronic communications system

� A method for
� Establishing a connection between two sites
� Sending a communication over the connection
� Acknowledging receipt of message
� Terminating the connection

� Examples: ISO/OSI, TCP/IP, SMTP

ISO/OSI Protocol

� Probably most popular network protocol model
� Implementation often takes efficiency-related shortcuts
� Includes 7 layers, grouped into 3 types

� Application
� Operating system
� Communication service

ISO/OSI

� Application Layer
� High-level APIs
� Resource sharing, remote file access, directory services and

virtual terminals

� Presentation Layer
� Translation of data between a networking service and an

application
� Character encoding, data compression and

encryption/decryption

� Session Layer
� Managing communication sessions
� Continuous exchange of information in the form of multiple

back-and-forth transmissions between two nodes

ISO/OSI

� Transport Layer
� Reliable transmission of data segments between points on a

network
� Segmentation, acknowledgement and multiplexing

� Network Layer
� Structuring and managing a multi-node network
� Addressing, routing and traffic control

� Data Link Layer
� Reliable transmission of data frames between two nodes

connected by a physical layer

� Physical Layer
� Transmission and reception of raw bit streams over a physical

medium

Internet Protocol

� A 5-layer protocol
� Application Layer
� Transport Layer
� Network Interface
� Link Layer
� Physical Layer

Internet Protocol

� Application Layer
� Protocols used by most applications for providing user services

or exchanging application data over the network connections
� BGP. DHCP, DNS, FTP, HTTP, IMAP, LDAP, MGCP, NNTP, NTP,

SSH, Telnet, TLS/SSL

� Transport Layer
� Establishes basic data channels that applications use for task-

specific data exchange.
� End-to-end services that are independent of the structure of

user data and the logistics of exchanging information for any
particular specific purpose.

� End-to-end message transfer independent of the underlying
network, along with error control, segmentation, flow control,
congestion control, and application addressing (port numbers).

� TCP, UDP, DCCP, SCTP, RSVP

Internet Protocol

� Internet Layer
� Responsibility of sending packets across potentially multiple

networks
� Internetworking requires sending data from the source network

to the destination network. This process is called routing.[
� IP (IPv4, IPv6), ICMP, IGMP

� Link Layer
� Networking scope of the local network connection to which a

host is attached.
� The link layer is used to move packets between the Internet

layer interfaces of two different hosts on the same link.
� These perform data link functions such as adding a packet

header to prepare it for transmission, then actually transmit the
frame over a physical medium

� ARP, NDP, PPP, MAC (Ethernet, DSL, ISDN, FDDI)

TCP/IP

� A 4-layer protocol on top of hardware (physical layer)
� Application Layer
� Transport Layer
� Internet Layer (Network Layer)
� Network Interface Layer (Data Link Layer)

TCP/IP

� Application Layer
� Message exchange between standard or user applications
� HTTP (Hypertext Transfer Protocol)
� FTP (File Transfer Protocol)
� SMTP (Simple Mail Transfer Protocol)
� Telnet

� Transport Layer
� Functionalities for delivering data packets to a specific process

on a remote computer
� TCP (Transmission Control Protocol)
� UDP (User Datagram Protocol)

TCP/IP

� Network Layer (also known as Internet Layer)
� Organize or handle the movement of data on network
� IP (Internet Protocol) - a packet of data to be addressed to a

remote computer and delivered
� ICMP (Internet Control Message Protocol)
� IGMP (Internet Group Management Protocol)

� Data Link Layer (also known as Network Interface Layer)
� Device drivers in the OS and the network interface.
� Functionalities for transmission of signals representing a stream

of data from one computer to another.
� ARP (Address Resolution Protocol)
� PPP (Point to Point Protocol)

Messages (UDP) or Streams (TCP)

Application

Transport

Internet

UDP or TCP packets

IP datagrams

Network-specific frames

Message

Layers

Underlying network

Network interface

TCP/IP Inter-Process Communication (IPC)

� Message Passing
� Primitive commands
� Blocking / Unblocking
� Synchronous / Asynchronous
� Buffered / Unbuffered
� MPI (Message Passing Interface) and PVM (Parallel Virtual

Machine)

� Client/Server Model
� Sockets
� Remote Procedure Call (RPC)

Message Passing Primitives

� Message passing is a form of communication between
two processes.

� A physical copy of the message is sent from one process
to the other.

� Message passing primitive commands
� SEND (msg, dest)
� RECEIVE (src, buffer)

� This is a low-level approach to IPC, and puts the burden
of communication on the programmer

� Message passing is the basis of MPI (Message Passing
Interface) and PVM (Parallel Virtual Machine)

Blocking

� This is a form of synchronous communication
� The primitive commands wait for the message to be

delivered
� That is, the processes are blocked from continuing to

process
� The sending process must wait after send until an

acknowledgement is made by the receiver
� The receiving process must wait for expected message

from the sending process
� The receipt is determined

� by polling common buffer
� by interrupt

Non-Blocking

� This is a form of asynchronous communication
� The sender can continue as soon as the user buffer is

copied from
� Sending process may continue immediately after sending

a message - No wait is needed
� The receiver signals that it wants to receive
� If nothing is available, it can check back periodically or it

can wait for a signal
� Receiving process accepts and processes message -

Then, it continues on
� Control

� Buffer – receiver can tell if message still there
� interrupt

Blocking Send and Receive Primitives No
Buffer

Blocking Send and Receive Primitives
with Buffer Client/Server Model

Client/Server Model

� “The most common paradigm of distributed computing
at present. This paradigm describes an asymmetric
relationship between two processes, of which one is the
client, and the other is the server."

� "In the client/server paradigm, a server process offers a
service that is used by the client process. Client and
server typically run at different locations."

The BSD Sockets Architecture

� When an application sends a packet, the host must
make sure that it gets sent to the right destination,
and when a host receives a packet, it must make sure
that it is delivered to the correct application. To
achieve these two tasks, most hosts on the Internet
use the Berkeley Software Distribution (BSD) Sockets
network architecture to keep track of applications and
network connections.

� This architecture first gained wide acceptance in the
Unix operating system, but today, it is implemented on
virtually all of the major commercial operating systems
on the market. The WinSock library used on Microsoft
Windows platforms is a derivative of the BSD
interfaces.

Sockets & Ports

� Socket
� a software representation of the endpoint to a communication

channel
� can represent many different types of channels (i.e.,

reliable/unreliable communication, single/multiple
destinations, etc)

� IP address + UDP/TCP + port number
� 131.120.1.13, UDP, 51
� 131.120.1.13, TCP, 51

� Port
� A specific numerical identifier for an individual application

Sockets

� A socket identifies several pieces of information about
a communication channel:
� Protocol: How the operating systems exchange application

data
� Destination host: The destination host address(es) for packets

sent on this socket
� Destination application ID or port: Identifies the appropriate

socket on the destination host
� Source host: Identifies which host is sending the data
� Local application ID/port: A 16 bit integer that identifies which

application is sending data along this socket

Port

� The TCP and UDP
protocols use ports to
map incoming data to a
particular process
running on a computer.

server

P

o

r

t

Client

TCP

TCP or UDP

port port port port

app app app app

port# dataData

Packet

Port

� Port is represented by a positive (16-bit) integer value
� Port numbers 1 - 1024 are reserved for “well-known”

applications/OS services
� 1025 - 10,000 are registered for certain “well-known”

protocols
� Example:

� port 21 is reserved for FTP
� port 23 is reserved for Telnet
� port 25 is reserved for SMTP (simple mail transfer protocol)
� port 80 is reserved for HTTP
� port 1080 is used by SOCKS (network firewall security)

� User-level processes/services generally use port
number value >= 1024

Internet Protocols for Networked
Application

� Common Internet Protocols
� Internet Protocol
� TCP
� UDP

� Broadcasting
� Multicasting

TCP vs UDP

A B

A B

…

…

TCP

UDP

Transmission Control Protocol (TCP)

� TCP is a connection-oriented reliable stream
transport protocol

� Most common protocol in use today
� Layered on top of IP referred to as TCP/IP
� Provides illusion of point to point connection to an

application running on another machine
� Each endpoint can regard a TCP/IP connection as a bi-

directional stream of bytes between two endpoints
� Application can detect when other end of connection

has gone away/disconnected

User Datagram Protocol (UDP)

� UDP is a connectionless unreliable datagram
transport protocol

� The User Datagram Protocol (UDP) is a lightweight
communication protocol

� Differs from TCP in three respects:
� connection-less transmission
� best-efforts delivery
� packet-based data semantics

� Does not establish peer-to-peer connections

User Datagram Protocol (UDP)

� Sender and recipient of do not keep any information
about the state of the communication session between
the two hosts

� Simply provides best-efforts delivery, i.e. no
guarantee that data is delivered reliably or in order

� Endpoints do not maintain state information about the
communication, UDP data is sent and received on a
packet-by-packet basis

� Datagrams must not be too big, because if they must
be fragmented, some pieces might get lost in transit

UDP Advantages

� Simplicity
� Does not include the overhead needed to detect

reliability and maintain connection-oriented semantics
� UDP packets require considerably less processing at the

transmitting and receiving hosts

� Does not maintain the illusion of a data stream
� packets can be transmitted as soon as they are sent by the

application instead of waiting in line behind other data in the
stream; similarly, data can be delivered to the application as
soon as it arrives at the receiving host instead of waiting in
line behind missing data

UDP Advantages

� Many operating systems impose limits on how many
simultaneous TCP/IP connections they can support.

� Operating system does not need to keep UDP
connection information for every peer host, UDP/IP is
more appropriate for large-scale distributed systems
where each host communicates with many
destinations simultaneously

UDP Disadvantages

� When a socket is receiving data on a UDP port, it will
receive packets sent to it by any host, whether it is
participating in the application or not

� This possibility can represent a security problem for
some applications that do not robustly distinguish
between expected and unexpected packets

� For this reason, many network firewall administrators
block UDP data from being sent to a protected host
from outside the security perimeter

UDP Broadcasting

� With UDP/IP, an application can direct a packet to be
sent to one other application endpoint

� Could send the same packet to multiple destinations
by repeatedly calling sendto() (in C) or
DatagramSocket.send() (in Java)

� This approach has two disadvantages:
� Excessive network bandwidth is required because the same

packet is sent over the network multiple times
� Each host must maintain an up-to-date list of all other

application endpoints who are interested in its data

UDP Broadcasting

� UDP broadcasting provides a partial solution to these
issues

� Allows a single transmission to be delivered to all
applications on a network who are receiving on a
particular port

� Useful for small networked applications
� Expensive because every host on network must receive

and process every broadcast packet
� Not used for large networked applications (use IP

Multicast)

IP Multicasting

� UDP broadcasting can only be used in a LAN
environment

� Even if no application on that host is actually
interested in receiving the packet each host on the
LAN must:
� receive packet
� process the packet

� Multicasting is the solution to both of these concerns
� Appropriate for Internet use, as well as LAN use
� Does not impose burdens on hosts that are not

interested in receiving the multicast data

IP Multicasting

� IP addresses in the range 224.0.0.0 through
239.255.255.255 are designated as multicast addresses

� The 224.*.*.* addresses are reserved for use by the
management protocols on a LAN, and packets sent to
the 239.*.*.* addresses are typically only sent to hosts
within a single organization

� Internet-based net-VE application should therefore use
one or more random addresses in the 225.*.*.* to
238.*.*.* range

� The sender transmits data to a multicast IP address,
and a subscriber receives the packet if it has explicitly
joined that address

IP Multicasting

� Rapidly emerging as the recommended way to build
large-scale networked applications over the Internet

� Provides:
� desirable network efficiency
� allows the networked application to partition different types of

data by using multiple multicast addresses

� Using a well-known multicast address, networked
application participants can announce their presence
and learn about the presence of other participants

IP Multicasting

� Also an appropriate technique for discovering the
availability of other networked application resources
such as terrain servers

� These features make multicasting desirable even for
LAN-based networked applications.

IP Multicasting Limitations

� Limitations generally related to its infancy
� Although an increasing number of routers are

multicast-capable, many older routers are still not
capable of handling multicast subscriptions

� In the meantime, multicast-aware routers communicate
directly with each other, “tunneling” data past the
routers that cannot handle multicast data

Selecting an Network Protocol

� Multiple protocols can be used in a single system
� Not which protocol should I use in my networked

application but which protocol should I use to transmit
this piece of information?

� Using TCP
� Reliable data transmission between two hosts
� Packets are delivered in order, error handling
� Relatively easy to use
� Point-to-point limits its use in large-scale networked

applications
� Bandwidth overhead

Selecting an Network Protocol

� Using UDP
� Lightweight
� Offers no reliability nor guarantees the order of packets
� Packets can be sent to multiple hosts
� Deliver time-sensitive information among a large number of

hosts
� More complex services have to be implemented in the

application
� Serial numbers, timestamps

� Recovery of lost packets
� Positive acknowledgement scheme
� Negative acknowledgement scheme
� More effective when the destination knows the sources and their

frequency

� Transmit a quench packet if packets are received too often

Selecting an Network Protocol

� Using IP Broadcasting
� Design considerations similar to UNICAST UDP/IP
� Limited to LAN
� Not for large-scale networked application (with a large

number of participants)
� To distinguish different applications using the same port

number (or multicast address)
� Avoid the problem entirely – assign the necessary number
� Detect conflict and re-negotiate – notify the participants and

direct them to migrate a new port number
� Use protocol and instance magic numbers – each packet includes

a magic number at a well-known position
� Use encryption

Selecting an Network Protocol

� Using IP Multicasting
� Provides a quite efficient way to transmit information among

a large number of hosts
� Information delivery is restricted

� Time-to-live
� Group subscription

� Preferred method for large-scale networked application
� How to separate the information flow among different

multicast groups
� A single group/address for all information
� Several multicast groups to segment the information

TCP

Server Client

CLIENT ACTIONS:

1. Obtain a socket
2. Connect to the server
3. Communicate with server

* Send data/requests
* Receive data/replys

4. Close the socket

SERVER ACTIONS:

1. Obtain a socket
2. Bind the socket to a

‘well known’ port
3. Receive connections

from clients
4. Communicate with clients

* Receive data/requests
* Send data/replys

5. Close the socket

C/C++ TCP Socket Implementation UDP

STEPS TO IMPLEMENT A UDP SOCKET
1) Obtain a socket
2) Bind the socket to a ‘well known’ port
3) Transmit Data
4) Receive Data
5) Close the socket

* Above process is ‘a way’ not the only way

C/C++ UDP Socket Implementation

* TO TRANSMIT DATA:
- Multicast transmission is nearly identical to UDP/IP.

Make sure the packets are sent to a multicast address
- The SO_BROADCAST option need not be set
- Can set the Time To Live field as shown below

unsigned char ttl = 31;
setsockopt(sock, IPPROTO_IP, IP_MULTICAST_TTL, &ttl, sizeof(ttl));

C/C++ Multicasting
Socket Implementation

* TO RECEIVE DATA:
- The application must subscribe the socket to a multicast
address
- Subscribing to a multicast address is accomplished by
calling setsockopt() with the IP_ADD_MEMBERSHIP option

struct ip_mreq joinAddr;

// Specify the multicast address to join
joinAddr.imr_multiaddr = inet_addr(“245.8.2.58”);

// Specify which local IP address will do the multicast join
joinAddr.imr_interface = INADDR_ANY;

setsockopt(sock, IPPROTO_IP, IP_ADD_MEMBERSHIP, &joinAddr, sizeof(joinAddr))

C/C++ Multicasting
Socket Implementation

* TO RECEIVE DATA cont:
- To cancel a multicast subscription call setsockopt() with
the IP_DROP_MEMBERSHIP option

struct ip_mreq joinAddr;

// Specify the multicast address to drop
joinAddr.imr_multiaddr = inet_addr(“245.8.2.58”);

// Specify which local IP address will do the multicast drop
joinAddr.imr_interface = INADDR_ANY;

setsockopt(sock, IPPROTO_IP, IP_DROP_MEMBERSHIP, &joinAddr, sizeof(joinAddr))

C / C++ Multicasting
Socket Implementation

Remote Procedure Calls (RPC)

� RPC is an inter-process communication that resembles
a normal procedure call.

� RPC is a client/server communication mechanism
� The called procedure takes the role of the server, and the

caller takes the role of the client

Remote Procedure Call (RPC) Stubs

Establishing Communication for RPC Reference

� http://www.cs.colostate.edu/~cs551/CourseNotes/Com
munication/CommTOC.html

� http://www.cs.colostate.edu/~cs551/CourseNotes/LM/L
M.Lecture3.ppt

� http://dis.dankook.ac.kr/lectures/msd09/lecture3-
NetworkingPrimer.ppt

58

