
Process

470410-1
Spring 2016
3/24/2016

Kyoung Shin Park
Multimedia Engineering

Dankook University

Outline

� Kernel
� Process
� Thread
� Process Management
� Multi-Thread Programming

Kernel

� The privileged portion of the OS that has complete
access to all resources

� The kernel controls
� Process management
� Process migration
� Process scheduling
� Address space

Kernel Types

� Monolithic kernel
� Unix, MS-DOS, VMS
� Every node doesn’t need entire kernel in distributed operating

system

� Microkernel
� Mach, Chorus (JavaOS)
� OS services are processes; Microkernel supports messages

between such processes

Kernel Types Microkernel Structure

� The design of a microkernel contains three layers
� The application layer containing all applications
� The server layer containing all servers for the OS
� The microkernel layer

� Between these layers are two interfaces
� The applications interface

� Between the application layer and the OS server layer

� The system interface
� The OS server layer and the microkernel layer

� The microkernel layer contains (starting from top to
bottom)
� All portable machine independent processes
� All machine independent processes
� All hardware

Microkernel Design Process

� A program whose execution has started, but not
terminated

� Has a current state (ready, running, waiting)
� Has a single address space
� May run serially or concurrently
� May interact with other processes via

� Shared memory
� Message passing

� Is a single thread of control

Process States Thread

� A lightweight process
� Has state
� May share address space with other threads
� May run serially or concurrently
� Interacts with other threads via

� Shared address space
� Message passing

A Multithreaded Process Issues with Processes and Threads

� If there is shared memory space
� There is no protection barrier to other processes and threads
� There needs to be methods to maintain the integrity of the

processes and threads

� Thus access to this space must be synchronized
� Processes/Threads must enforce mutual exclusion
� Any code that accesses a shared resource must be a critical

section

Multi-Threaded Systems

� Three models
� Specialist model which keeps all threads equal
� Client/server model where the server assigns tasks to clients
� Assembly line model which acts like a pipeline

� It is multi-threaded system that support
� POSIX
� Java

Multithreaded Process Paradigms

Why Threads?

� Processes
� Expensive to create or destroy a process

� requires more memory space

� Expensive to restore or swap out a process
� requires memory map changes

� Threads
� Can keep a pool of threads and reuse them
� Memory space is shared and need not always be swapped

Process Management

� Process management controls process (or thread) and
its components

� PCB (Process Control Block) that holds the current
state of the process
� Process id
� Process state
� Process priority
� Process privileges
� Virtual memory address
� Recorded statistics for account

Process Management

� PCB operations include
� Create
� Delete
� Signal
� Wait
� Schedule
� change priority
� Suspend
� Resume

� This infers rules are needed for who can do what to
whom (a tree hierarchy)

� Synchronization of processes is one of our concerns in
distributed systems

Process Types in Distributed Systems

� Indivisible process (entire process must be assign to a
single processor)
� Independent
� Not divisible into smaller tasks

� Divisible process (a process may be subdivided into
smaller sub-processes, tasks, or threads)
� May be broken up into smaller processes (tasks)
� Subtasks may run on different nodes
� Helps to balance load of distributed system

� Task Interaction Graphs (TIG) represents relationships
between tasks of a divisible process

Load Distribution

� Goal
� To utilize resources in an efficient manner

� Load balancing
� To balance the load equally among resources

� Load sharing
� To relieve overloaded resources

� Process migration
� To move a process to another processor

Two Parts of Load Distribution
Algorithms

� Information-gathering
� Gather information about loads of other processors and select

a suitable migration partner
� E.g. Identifies idle processors, estimate cost of migration to

various sites
� Status states (site is overloaded/underutilized?)

� Process selection
� Select a process to migrate
� E.g. What is the communication delay for migrating a process,

how to accommodate differences in heterogeneous systems
� Which process/thread/task to migrate?
� Expected overhead for migration?
� Expected execution time?

Heterogeneous Environments

� May include different data representations
� Process migration may require data translation

� External data representation
� Common data representation between sites used in

heterogeneous systems.
� External data representation greatly reduces the amount of

time required to perform cross-platform process migration.

Threaded Applications

� Modern Applications & Systems
� Operating System Level

� Multitasking: Multiple applications running concurrently (i.e., there
are multiple processes on your system)

� Application Level
� Multithreading: Application performs multiple operations at the

same time (i.e., there are multiple threads within a single process)

� Bottom Line:
� Illusion of concurrency

A Single Threaded program

begin

body

end

void main(..)
{
…
…
…
…
}

A Multithreaded Program

Main Thread

Thread A Thread B Thread C

start start
start

Threads may switch or exchange data/results

Single vs Multithreaded Processes

Single-threaded Process

Single instruction stream Multiple instruction stream

Multi-threaded Process

Threads of
Execution

Common
Address Space

Threads are light-weight processes within a process

Threaded Applications

� Multithreaded web/FTP server for serving multiple
clients concurrently

Web/FTP

server

while <running>

{

<wait for request>

<create a new worker thread>

<start the thread>

}

Main Thread

<request 1>

Worker
Thread <request 2>

Worker
Thread

<request N>

Worker
Thread

E
x

ec
u

ti
o

n
 T

im
el

in
e

Threaded Applications

� Web browser for displaying and data retrieval

Video Streaming

Favorities, Share,

Comments Posting

Multithreaded/Parallel File Copy

reader()

{

- - - - - - - - -

-

lock(buff[i]);

read(src,buff[i]);

unlock(buff[i]);

- - - - - - - - -

-

}

writer()

{

- - - - - - - - - -

lock(buff[i]);

write(src,buff[i]);

unlock(buff[i]);

- - - - - - - - - -

}

buff[0]

buff[1]

Cooperative Parallel Synchronized Threads

Defining Threads

� Applications – Threads are used to perform:
� Parallelism and concurrent execution of independent tasks /

operations.
� Implementation of reactive user interfaces.
� Non blocking I/O operations.
� Asynchronous behavior.
� Timer and alarms implementation.

Defining Threads

� A Thread is a piece of code that runs in concurrent
with other threads.

� Each thread is a statically ordered sequence of
instructions.

� Threads are used to express concurrency on both
single and multiprocessors machines.

� Programming a task having multiple threads of control
– Multithreading or Multithreaded Programming.

Java Threads

� Java has built in support for Multithreading
� Synchronization
� Thread Scheduling
� Inter-Thread Communication:

� currentThread start setPriority
� yield run getPriority
� sleep stop suspend
� resume

� Java Garbage Collector is a low-priority thread

Thread

MyThread

Runnable

MyClass

Thread

(objects are threads) (objects with run() body)

[a] [b]

Java Threads

1. Create a class that extends the Thread class
2. Create a class that implements the Runnable interface

1. Extending the Thread Class

� Create a class by extending Thread class and override
run() method:
class MyThread extends Thread
{

public void run()
{

// thread body of execution
}

}
� Create a thread:

MyThread thr1 = new MyThread();
� Start Execution of threads:

thr1.start();
� Create and Execute:

new MyThread().start();

1. Extending the Thread Class
class MyThread extends Thread {

public void run() {
System.out.println(" this thread is running ... ");

}
}

class ThreadEx1 {
public static void main(String [] args) {

MyThread t = new MyThread();
t.start();

}
}

2. Threads by implementing Runnable
interface

� Create a class that implements the interface Runnable
and override run() method:
class MyThread implements Runnable
{
.....
public void run()
{

// thread body of execution
}

}
� Creating Object:

MyThread myObject = new MyThread();
� Creating Thread Object:

Thread thr1 = new Thread(myObject);
� Start Execution:

thr1.start();

2. Threads by implementing Runnable
interface

class MyThread implements Runnable {
public void run() {

System.out.println(" this thread is running ... ");
}

}

class ThreadEx2 {
public static void main(String [] args) {

Thread t = new Thread(new MyThread());
t.start();

}
}

Life Cycle of Thread

new

ready

start()

running

deadstop()

dispatch

completion

wait()

waiting
sleeping blocked

notify()

sleep()

Block on I/O

I/O completed

Time expired/
interrupted

suspend()

resume()

Three threads example
class A extends Thread
{

public void run()
{

for(int i=1;i<=5;i++)
{

System.out.println("\t From ThreadA: i= "+i);
}
System.out.println("Exit from A");

}
}
class B extends Thread
{

public void run()
{

for(int j=1;j<=5;j++)
{

System.out.println("\t From ThreadB: j= "+j);
}
System.out.println("Exit from B");

}
}

class C extends Thread
{

public void run()
{

for(int k=1;k<=5;k++)
{

System.out.println("\t From ThreadC: k= "+k);
}

System.out.println("Exit from C");
}

}
class ThreadTest
{

public static void main(String args[])
{

new A().start();
new B().start();
new C().start();

}
}

Three threads example Thread Priority

� In Java, each thread is assigned priority, which affects
the order in which it is scheduled for running. The
threads so far had same default priority
(NORM_PRIORITY) and they are served using FCFS
policy.
� Java allows users to change priority:

� ThreadName.setPriority(intNumber)
� MIN_PRIORITY = 1
� NORM_PRIORITY=5
� MAX_PRIORITY=10

Thread Priority Example
class A extends Thread {

public void run()
{

System.out.println("Thread A started");
for(int i=1;i<=4;i++) {

System.out.println("\t From ThreadA: i= "+i);
}
System.out.println("Exit from A");

}
}
class B extends Thread {

public void run()
{

System.out.println("Thread B started");
for(int j=1;j<=4;j++) {

System.out.println("\t From ThreadB: j= "+j);
}
System.out.println("Exit from B");

}
}

Thread Priority Example
class C extends Thread {

public void run()
{

System.out.println("Thread C started");
for(int k=1;k<=4;k++) {

System.out.println("\t From ThreadC: k= "+k);
}
System.out.println("Exit from C");

}
}
class ThreadPriority {

public static void main(String args[])
{

A threadA=new A(); B threadB=new B(); C threadC=new C();
threadC.setPriority(Thread.MAX_PRIORITY);
threadB.setPriority(threadA.getPriority()+1);
threadA.setPriority(Thread.MIN_PRIORITY);
System.out.println("Started Thread A"); threadA.start();
System.out.println("Started Thread B"); threadB.start();
System.out.println("Started Thread C"); threadC.start();
System.out.println("End of main thread");

}
}

Multithreaded Server

� Multithreaded Dictionary Server – Demonstrates the
use of Sockets and Threads

Multithreaded
Dictionary
Server

A Client Program
in Java
Meaning(“guru”)?

A Client Program
in Java
Meaning(“love”)?

A Client Program
in C/C++
Meaning(“channel”)?

A Client Program
in C/C++
Meaning(“java”)?

Meaning (“guru”)

“master or teacher”

Reference

� http://www.cs.colostate.edu/~cs551/CourseNotes/Proce
sses/ProcessTOC.html

� http://www.cs.colostate.edu/~cs551/CourseNotes/Proce
sses/LMNotes.html

� http://www.cloudbus.org/652/L3-Threads.ppt

