Naming

470410-1 Spring 2016 4/7/2016 Kyoung Shin Park Multimedia Engineering Dankook University

Name

- Name
 - Identifies what you want
- Address
 - Identifies where it is
- Route
 - Identifies how to get there
- Binding
 - The association of a name with the object
 - "choose a lower-level implementation for a higher-level semantic construct"

Outline

- Naming
- Approaches to naming
- Other naming issues
- □ Alternative references on naming

Naming

- Naming
 - Process of mapping a name to an object
- Examples
 - User name: used for system login, email, chat
 - Machine name: used for ssh, email, web
 - Filename/Pathname
 - Device name
 - Objects, functions, variables in programs
 - Network services

Naming

- Name Resolution
 - "The process of mapping a name to an object, or in the case of replication, multiple objects"
- Name Space
 - "A collection of names which may or may not share an identical resolution mechanism"
- Location Independent
 - A file can be moved without changing the filename
- Location Transparent
 - Filename does not tell where the file is located

File Naming

- □ On a PC, the filename consists of a drive letter followed by a pathname
 - G:₩MM₩courses₩DistributedMultimediaService2016₩lecture4.p df
- □ In Unix, the filename does not contain a drive letter, but the mount table enables the OS to discover on what drive the file is located
 - /home/park/test.txt
 - File pathname changes if you move the object

Location Transparency

- Must be provided via global naming
- Dependent on a name being location independent, (i.e., a universal name)
- **■** E.g. phone number (+82-42-550-3469)
 - Routing +82-(42)-550-3469
 - 82 = country code
 - □ 042 = area code
 - □ 550 = exchange
- E.g. home street address (Multimedia Engineering, Dankook University, 119, Dandae-ro, Dongnam-gu, Cheonan-si, Chungnam, 31116, S. Korea)

Process Naming

- □ Processes that want to communicate must have a way to refer to each other.
- Direct
 - send (P, message) send a message to process P
 - receive (Q, message) receive a message from process Q
 - receive (id, message) receive a message from any process
- Indirect
 - send (A, message) send a message to mailbox A
 - receive (A, message) receive a message from mailbox A

System Naming

- The first component of network communication is the naming of the systems in the network.
- Connected set of context of the same type (same naming convention) along with a common set of operations
- E.g. system that implements **DNS** (**Domain Name System**)
- E.g. system that implements LDAP (Lightweight Directory Access Protocol)

Namespace

- □ A container for a set of names in the naming system
- A namespace has a scope
 - Scope = region where the name exists & refers to the object
 - E.g. Names of all files in a directory
 - E.g. All domain names within dankook.ac.kr
 - E.g. Java package, local variables
- A namespace may be tree structured (hierarchical)
 - Fully-qualified or hierarchical names may be used to identify names outside the local namespace
 - Global namespace = root of the hierarchical tree

Naming Convention

- □ Naming system determines syntax for names
- □ Naming convention can take any format
 - Ideally one that will suit the application and user
 - UNIX file names:
 - Parse components from left to right separated by /
 - /home/park/test.txt
 - Internet domain names
 - Ordered right to left and delimited by .
 - dis.dankook.ac.kr
 - LDAP names
 - Attribute/value pairs ordered right to left, delimited by ,
 - cn=Kyoung Park, o=dankook, c=kr

Name Resolution

- Resolution = name lookup
 - Return the underlying representation of the name
 - Look up the binding of the name to its object
- E.g. dis.dankook.ac.kr -> 203.237.220.128

~>nslookup dis.dankook.ac.kr

Server: 164.124.101.2 Address: 164.124.101.2#53

Name: dis.dankook.ac.kr Address: 203.237.220.128

Name Service

- □ The service that performs name resolution
- □ Allows you to resolve names
 - Looking up a name gives the corresponding address as a response
- Can be implemented as
 - Search through file
 - Database query
 - Client-server program (name server) may be distributed
 - **...**

Global Naming Considerations

- □ A global name space requires
 - Name resolution
 - Location resolution
- Name resolution
 - Maps symbolic filenames to computer filenames
- Location resolution
 - Involves mapping global names to a location
- □ This can be difficult if name transparency and location transparency are both supported

Directory Service

- Extension of name service
 - Associates names with objects
 - Allows objects to have attributes
 - Can search based on attributes
- E.g. LDAP (Lightweight Directory Access Protocol)
 - Directory can be an object store

Naming Approaches

- Add hostname to names of files on that host
 - Provides unique names
 - Loses network transparency
 - Loses location transparency
 - Moving file to a different host causes change of filename
 - Possible changes to applications using that file
 - Easy to find a file

Naming Approaches

- Mount remote directories onto local directories
 - To do the mount, need to know host
 - Once mounted, references are location transparent
 - Can resolve filenames easily
 - However, a difficult approach to do
 - Not fault tolerant
 - □ File migration requires lots of updates

Other Naming Issues

- Contexts
 - Used to partition a namespace
 - To avoid problems with system-wide unique names
 - □ Geographical, organizational, etc.
 - A name space in which to resolve a name
 - A filename has two parts
 - Context
 - Local filename
 - Almost like another level of directory
 - Used in X-Kernel logical file system

Naming Approaches

- Use a single global directory
 - Does not have disadvantages of previous approaches
 - Variations found in Sprite and Apollo
 - Need a single computing facility or a few with lots of cooperation
 - Need system-wide unique filenames
 - Not good on a heterogeneous system
 - Not good on a wide geographic system

Other Naming Issues

- Name Server
 - Maps names to files and directories
 - Centralized
 - Easy to use
 - A bottleneck
 - Not fault tolerant
 - Distributed
 - Servers deal with different domains
 - Several servers may be needed to deal with all the components in a filename

Removing Unreferenced Entities

- Problem of unreferenced objects
- Reference counting
- Reference listing
- Identifying unreachable entities

Case Study: DNS (Domain Name System)

- □ IP addresses are distributed hierarchically
- □ Internet Assigned Numbers Authority (IANA) at the top
 - IANA is currently run by ICANN (Internet Cooperation for Assigned Names and Numbers)
- □ RIR (Regional Internet Registry)
 - Manages the allocation and registration of Internet number resources within a particular region of the world

Domain Name Hierarchy

Top Level Domains (TLDs)

- □ There are currently 1097 top-level domains
- Each top-level domain has an administrator assigned to it
- Assignment is delegated to various organizations by the Internet Assigned Numbers Authority (IANA)
- □ IANA keeps track of the root servers
- □ http://www.iana.org/domains/root/db
- □ .kr -> Korea Internet & Security Agency (KISA)

Domain Name System (DNS)

- □ Distributed database: a hierarchy of name servers
- DNS is an application-layer protocol
 - Name-address resolution is handled at the edge
 - The network core is unaware of hostnames
 - There is no special relationship between names and addresses

Authoritative DNS Server

- An authoritative name server is responsible for answering queries about its zone
 - Provides real answers vs. cached answers
 - Configured by the administrator
- Zone
 - Group of machines under a node in the tree
 - E.g. dankook.ac.kr

Domain Name System (DNS)

- DNS provides
 - Name to IP address translation
 - Aliasing of names (called canonical names)
 - Identification of name servers
 - Mail server names
 - Load distribution
 - □ Multiple name servers may handle a query for a domain
 - Caching: store past lookups
 - □ Ability to provide a set of IP address for a name

Authoritative DNS Server

- DNS server returns answers to queries
- Key data that a DNS server maintains (partial list)

Information	Abbreviation	Description
Host	А	Host address (name to address) including name, IP address, time-to-live (TTL)
Canonical name	CNAME	Name for an alias
Mail exchanger	MX	Host that handles email for the domain
Name server	NS	Identifies the name server for the zone: tell other servers that yours is the authority for info within the domain
Start of Zone Authority	SOA	Specifies authoritative server for the zone. Identifies the zone, time-to-live, and primary name server for the zone

DNS Resolver

- The client side of DNS is called a DNS resolver.
 - Not really a part of DNS hierarchy
 - Acts as an intermediary between programs that need to resolve names and the name servers
 - A resolver is responsible for performing the full resolution of the query
- Where are DNS resolvers?
 - Each local system has one: that's what applications contact
 - Local cache; may be a process or a library
 - On Linux & Windows, these are limited DNS servers (called stub resolvers)
 - ISPs (and organizations) run them on behalf of their customers
- Resolvers cache past lookups they are not responsible for zones

DNS Query

- When a DNS client needs to look up a name used in a program, it queries DNS servers to resolve the name.
- DNS query process
 - 1. Local resolver: A name query begins at a client computer and is passed to a resolver (DNS client service) for resolution
 - 2. Query a DNS server: When the query cannot be resolved locally, DNS servers can be queried as needed to resolve the

DNS Resolver

References

the /etc/resolv.conf file

- www.cs.colostate.edu/~cs551/CourseNotes/Naming/NamingTOC.html
- https://www.cs.rutgers.edu/~pxk/417/notes/naming.html