
Consistency

470410-1
Spring 2016
5/26/2016

Kyoung Shin Park
Multimedia Engineering

Dankook University

Consistency & Replication

 Consistency & Replication:
 What are the reasons for replicating, data, objects, or code? 
 How can we make sure that this replicated data is consistent? 
 What do we do we mean by the term consistency? 

And is there more than one type of consistency? 
 What do we mean by client-centric consistency models? 
 How can we implement the replication of data? 

And what are the advantages and disadvantages of 
different methods? 

 How can we replicate data and still have it be consistent? 
 Examples of consistent systems with replicated data 

Replication

 Replication
 "A notable latency avoidance technique is replication. 

Normally, when several processes need access to the same 
data, the data are transferred back and forth, which is 
inefficient. With replication, multiple copies of the data are 
held in different locations, and different processes work with 
different copies. The idea of replication can be extended to 
computations; in this case the same computation is run on 
multiple nodes, which saves the communication of results. A 
well-known example of replication is caching, the insertion of 
an additional fast memory level that holds frequently used 
data. Caching is not only used in the design of basic 
computer architectures, it is also a technique for speeding up 
the web. The drawback of any form of replication is the 
necessity to maintain consistency of the replicated 
data." (Leopol01)

Replication

 Replication
 "A common requirement when data are replicated is for 

replication transparency. That is, clients should not normally 
have to be aware that multiple physical copies of data exist. 
As far as clients are concerned, data are organized as 
individual logical objects (or objects) and they identify only 
one item in each case when they request an operation to be 
performed. Furthermore, clients expect operations to return 
only one set of values. This is despite the fact that operations 
may be performed upon more than one physical copy in 
concert. (CoDoKi01)

 "The other general requirement for replicated data -- one that 
can vary in strength between applications -- is that of 
consistency. This concerns whether or not the operations 
performed upon a collection of replicated objects produce 
results that meet the specification of correctness for those 
objects." (CoDoKi01)



Replication

 Replication
 "The fundamental problem in managing replicated data is to 

maintain the consistency of the data. In a local sense, a query 
on the data should return the data value that was 'most 
recently written'. In a global sense, the interaction of a 
program with the collection of all global data should obey a 
global consistency constraint. "A primary motivation for 
replicating data is fault tolerance." (ChoJoh97)

Advantages of Replication

 The advantages of replication include the following 
(Sinha97): 
 "Increased availability" 
 "Increased reliability" 
 "Improved response time" 
 "Reduced network traffic" 
 "Improved system throughput" 
 "Better scalability" 
 "Autonomous operation" 

Replication versus Caching

 "Replication is often confused with caching, probably 
because they both deal with multiple copies of a data. 
However, the two concepts have the following basic 
differences: 
1. "A replica is associated with a server, whereas a cached copy 

is normally associated with a client. 
2. "The existence of a cached copy is primarily dependent on 

the locality in file access patterns, whereas the existence of a 
replica normally depends on availability and performance 
requirements. 

3. "As compared to a cached copy, a replica is more persistent, 
widely known, secure, available, complete, and accurate. 

4. "A cached copy is contingent upon a replica. Only by 
periodic revalidation with respect to a replica can a cached 
copy be useful." (Sinha97)

Consistency

 Consistency
 "Consistency is more difficult to achieve in a distributed 

system. The lack of global information, potential replication 
and partitioning of data, the possibility of component failures, 
and the complexity of interaction among modules all 
contribute to the problem of inconsistency in the system. A 
system is consistent from the user's perspective if there is 
uniformity in using the system and the system behavior is 
predictable. In addition, the system must be capable of 
maintaining its integrity with proper concurrency control 
mechanisms and failure handling and recovery procedures. 
Consistency control in data and files (or database in a 
transaction-oriented system) is a crucial issue in distributed 
file systems." (ChoJoh97)



Consistency

 Consistency
 "Consistency is a term used to describe the function of 

ensuring all data copies are the same and correct. There are 
three popular methods for realizing cache consistency. The 
first employs software to enforce critical regions, protected 
regions of code where a given process is changing shared 
data ... . The second utilizes software to prevent a processor 
from ever caching shared memory. The third method for 
maintaining cache consistency is referred to as snoopy cache
... every processor constantly snoops or monitors the shared 
bus, relying on the fact that all processors are connected via a 
common bus." (Galli00)

Consistency

 Consistency
 "A consistency model basically refers to the degree of 

consistency that has to be maintained for the shared-memory 
data for the memory to work correctly for a certain set of 
applications. It is defined as a set of rules that applications 
must obey if they want the DSM system to provide the 
degree of consistency guaranteed by the consistency 
model." (Sinha97)

Type of Consistency

 Strict Consistency Model: 
 "The strict consistency model is the strongest form of memory 

coherence, having the most stringent consistency 
requirements. A shared-memory system is said to support the 
strict consistency model if the value returned by a read 
operation on a memory address is always the same as the 
value written by the most recent write operation to that 
address, irrespective of the locations of the processes 
performing the read and write operations. That is, all writes 
instantaneously become visible to all processes." 

(Sinha97)

Type of Consistency

 Sequential Consistency Model: 
 "The sequential consistency model was proposed by Lamport

... . A shared-memory system is said to support the sequential 
consistency model if all processes see the same order of all 
memory access operations on the shared memory. The exact 
order in which the memory access operations are interleaved 
does not matter. ... If one process sees one of the orderings of 
... three operations and another process sees a different one, 
the memory is not a sequentially consistent memory." 

(Sinha97)



Type of Consistency

 Casual Consistency Model: 
 "The causal consistency model ... relaxes the requirement of 

the sequential model for better concurrency. Unlike the 
sequential consistency model, in the causal consistency model, 
all processes see only those memory reference operations in 
the same (correct) order that are potentially causally related. 
Memory reference operations that are not potentially causally 
related may be seen by different processes in different 
orders." 

(Sinha97)

Type of Consistency

 FIFO Consistency Model: 
 For FIFO consistency, "Writes done by a single process are 

seen by all other processes in the order in which they were 
issued, but writes from different processes may be seen in a 
different order by different processes. 
"FIFO consistency is called PRAM consistency in the case of 
distributed shared memory systems." 

(Tanvan02)

Type of Consistency

 Pipelined Random-Access Memory (PRAM)
Consistency Model: 
 "The pipelined random-access memory (PRAM) consistency 

model ... provides a weaker consistency semantics than the 
(first three) consistency models described so far. It only 
ensures that all write operations performed by a single 
process are seen by all other processes in the order in which 
they were performed as if all the write operations performed 
by a single process are in a pipeline. Write operations 
performed by different processes may be seen by different 
processes in different orders." 

(Sinha97)

Type of Consistency

 Weak Consistency Model: 
 "Synchronization accesses (accesses required to perform 

synchronization operations) are sequentially consistent. Before 
a synchronization access can be performed, all previous 
regular data accesses must be completed. Before a regular 
data access can be performed, all previous synchronization 
accesses must be completed. This essentially leaves the 
problem of consistency up to the programmer. The memory 
will only be consistent immediately after a synchronization 
operation." 

(SinShi94)



Type of Consistency

 Release Consistency Model: 
 "Release consistency is essentially the same as weak 

consistency, but synchronization accesses must only be 
processor consistent with respect to each other. 
Synchronization operations are broken down into acquire and 
release operations. All pending acquires (e.g., a lock 
operation) must be done before a release (e.g., an unlock 
operation) is done. Local dependencies within the same 
processor must still be respected. 
"Release consistency is a further relaxation of weak 
consistency without a significant loss of coherence." 

(SinShi94)

Type of Consistency

 Entry Consistency Model: 
 "Like ... variants of release consistency, it requires the 

programmer (or compiler) to use acquire and release at the 
start and end of each critical section, respectively. However, 
unlike release consistency, entry consistency requires each 
ordinary shared data item to be associated with some 
synchronization variable, such as a lock or barrier. If it is 
desired that elements of an array be accessed independently 
in parallel, then different array elements must be associated 
with different locks. When an acquire is done on a 
synchronization variable, only those data guarded by that 
synchronization variable are made consistent." 

(Tanvan02)

Type of Consistency

 Processor Consistency Model: 
 "Writes issued by a processor are observed in the same order 

in which they were issued. However, the order in which writes 
from two processors occur, as observed by themselves or a 
third processor, need not be identical. That is, two 
simultaneous reads of the same location from different 
processors may yield different results." 

(SinShi94)

 General Consistency Model: 
 "A system supports general consistency if all the copies of a 

memory location eventually contain the same data when all 
the writes issued by every processor have completed." 

(SinShi94)

ACID (Atomicity, Consistency, Isolation, 
Durability) 

 Related to the consistency of a distributed system (or 
database system) are the ACID properties 

 The ACID (Atomicity, Consistency, Isolation, 
Durability) properties are primarily concerned with 
achieving the concurrency transparency goal of a 
distributed system 
 a property that allows sharing of objects without interference. 
 In a sense, the execution of a transaction appears to take place 

in a critical section. However, operations from different 
transactions are interleaved (in some 'safe' way) to gain more 
concurrency. 



ACID (Atomicity, Consistency, Isolation, 
Durability) 

 Atomicity: 
 Either all of the operations in a transaction are performed or 

none of them are, in spite of failures. 

 Consistency: 
 The execution of interleaved transactions is equivalent to a 

serial execution of the transactions in some order. 

 Isolation: 
 Partial results of an incomplete transaction are not visible to 

others before the transaction is successfully committed. 

 Durability: 
 The system guarantees that the results of a committed 

transaction will be made permanent even if a failure occurs 
after the commitment. 

References

 http://www.cs.colostate.edu/~cs551/CourseNotes/Consis
tency/ReplIndex.html


