
Introduction to
Distributed Systems

527950-1
Fall 2019
9/19/2019

Kyoung Shin Park
Applied Computer Engineering

Dankook University

Chapter 1. Characterization of
Distributed Systems

From Coulouris, Dollimore, Kindberg and Blair
Distributed Systems: Concepts and Design

Edition 5, © Addison-Wesley 2012

Overview

 Definition of Distributed Systems
 Characteristics of Distributed Systems
 Motivation of Distributed Systems
 Examples of Distributed Systems
 Trends of Distributed Systems
 Challenges (Issues)

Definition of Distributed Systems

 "a collection of independent computers that appears to
its users as a single coherent system"(Tanenbaum)

 "a collection of autonomous computers linked by a
computer network with distributed system software"(CDK)

 "a collection of processors interconnected by a
communication network in which each processor has its
own local memory and other peripherals and the
communication between any two processors of the system
takes place by message passing over the communication
network"(Sinha)

 "one in which hardware or software components
located at networked computers communicate and
coordinate their actions only by passing messages"
(CDK)

Definition of Distributed Systems

 A collection of independent computers that appears to
users as a single system - a virtual uniprocessor
 Users do not know (or care) where (on what machine) files are

located and where a job is executed

 A distributed system is made of several computers
which
 Have no shared memory
 Have no shared clock
 Communicate with each other via messages
 Each computer has its own operating system

Definition of Distributed Systems

 Computer networks vs. Distributed systems
 Computer network - the autonomous computers are explicitly

visible
 Distributed system - existence of multiple autonomous

computers is transparent
 However, many problems in common

Characteristics of Distributed Systems

 Concurrency of components
 Concurrent program execution
 Coordination of concurrently executing programs that share

resources

 Independent failures of components
 Each component of the system can fail independently,

leaving the others still running
 Faults in the network result in the isolation of the computers

that are connected to it but that doesn’t mean that they stop
running

 Failure of a computer, or the unexpected termination of a
program (a crash), is not immediately made known to the
other components with which it communicates

Characteristics of Distributed Systems

 Lack of a global clock
 Close coordination often depends on a shared idea of the

time at which the programs’ actions occur
 There are limits to the accuracy with which the computers in

a network can synchronize their clocks
 There is no single global notion of the correct time

Motivation of Distributed Systems

 Resource sharing
 Hardware components such as disks and printers
 Software-defined entities such as files, DBs and data objects of

all kinds. It includes the stream of video frames and the audio
connection.

 Functional distribution - computers have different
functional capabilities
 Client/server
 Data gathering/data processing
 Sharing of resources with specific functionalities

 Load distribution/balancing
 Assign tasks to processors such that the overall system

performance is optimized

Motivation of Distributed Systems

 Replication of processing power
 Distributed systems consisting of collections of microcomputers

may have processing powers that no supercomputer will ever
achieve => Shorter response time; higher throughput

 Economics
 Collections of microprocessors offer a better price/performance

than large mainframes

 Improved reliability and availability
 If one component goes down, the system does not

 Modular expandability
 Inherently distributed applications

 Airline reservations; Bank ATMs

 Better flexibility

 Distributed systems encompass many of the most
significant technological developments of recent years

 An initial insight into the wide range of applications in
use today
 from relatively localized systems (as found, for example, in a

car or aircraft) to global scale systems involving millions of
nodes,

 from data-centric services to processor intensive tasks,
 from systems built from very small and relatively primitive

sensors to those incorporating powerful computational
elements,

 from embedded systems to ones that support a sophisticated
interactive user experience, and so on.

Examples of Distributed Systems Examples of Distributed Systems

 Selected range of key commercial or social application
sectors highlighting some of the associated established
or emerging uses of distributed systems technology

Finance and commerce eCommerce (e.g. Amazon and eBay, PayPal, Online banking
and trading)

The information society Web information and Search engines (ebooks, Wikipedia); Social
networking (Facebook and MySpace).

Creative industries and
entertainment

Online gaming, Music and film in the home, User-generated
content (e.g. YouTube, Flickr)

Healthcare Health informatics (online patient records, monitoring patients)

Education e-learning, Virtual learning environments; Distance learning

Transport and logistics
(location-aware service)

GPS in route finding systems, map services (Google Maps,
Google Earth)

Science The Grid as an enabling technology for collaboration between
scientists

Environmental management Sensor technology (to monitor earthquakes, floods or tsunamis)

13

 Web search
 Analyze the entire web content and then carry out sophisticated

processing on this enormous database
 Represents a major challenge for distributed systems design

 Google has put significant effort into the design of a
sophisticated distributed system infrastructure
 This represents one of the largest and most complex distributed

systems installations in the history of computing
 Highlights of this infrastructure include:

1. an underlying physical infrastructure consisting of very large numbers of
networked computers located at data centers all around the world;

2. a distributed file system designed to support very large files

3. an associated structured distributed storage system that offers fast
access to very large datasets;

4. a lock service that offers distributed system functions such as
distributed locking and agreement;

5. a programming model that supports the management of very large
parallel and distributed computations across the underlying physical
infrastructure.

Examples of Distributed Systems

 Massively Multiplayer Online Games (MMOGs)
 Very large numbers of users interact through the Internet with

a persistent virtual world
 Over 50,000 simultaneous online players (and the total number of

players perhaps ten times this figure)
 The need for fast response times to preserve the user experience

of the game
 The real-time propagation of events to the many players and

maintaining a consistent view of the shared world.

Examples of Distributed Systems

 Massively Multiplayer Online Games (MMOGs)
 A number of solutions

 A client-server architecture where a single copy of the state of
the world is maintained on a centralized server and accessed by
client programs

 More distributed architectures where the universe is partitioned
across a (potentially very large) number of servers that may also
be geographically distributed

 Looking at more radical architectures that are not based on
client-server principles but rather adopt completely
decentralized approaches based on peer-to-peer technology
where every participant contributes resources (storage and
processing) to accommodate the game

Examples of Distributed Systems

 Financial trading
 Real-time access to a wide range of information sources

 For example, current share prices and trends, economic and political
developments

 Emphasis is on
 The communication and processing of items of interest, known as

events,
 With the need also to deliver events reliably and in a timely manner
 To potentially very large numbers of clients who have a stated interest in

such information items.

 Distributed event-based systems

Examples of Distributed Systems

 The emergence of pervasive networking technology
 Internet is a vast interconnected collection of computer

networks of many different types, with the range of types
increasing all the time

 A wide range of wireless communication technologies such as
WiFi, Bluetooth and mobile phone networks

 A pervasive resource and devices can be connected at any
time and in any place

Trends in Distributed Systems

 The Internet is also a very large distributed system
 Make use of services such as the WWW, email and file transfer
 Intranets – subnetworks operated by companies and other

organizations and typically protected by firewalls
 Internet Service Providers (ISPs) are companies that provide

broadband links and other types of connection to individual users
and small organizations

 The intranets are linked together by backbones

Trends in Distributed Systems

intranet
ISP

desktop computer:

backbone

satellite link

server:

☎

network link:

☎

☎

☎

 The emergence of ubiquitous computing coupled
with the desire to support user mobility in distributed
systems
 Device miniaturization and wireless networking

 Laptop computers
 Handheld devices
 Wearable devices
 Devices embedded in appliances

 Mobile computing
 Computing tasks while the user is on the move
 Location-aware or context-aware computing

Trends in Distributed Systems

 Ubiquitous computing
 Harnessing of many small, cheap computational devices that are

present in users’ physical environments, including the home,
office and even natural settings.

 Devices will become so pervasive in everyday objects that are
scarcely noticed

 Ubiquitous and mobile computing overlap, but they are
distinct
 Ubiquitous but not mobile - Ubiquitous computing could benefit

users while they remain in a single environment such as the
home or a hospital

 Mobile but not ubiquitous - Mobile computing has advantages
even if it involves only conventional devices

Trends in Distributed Systems

Trends in Distributed Systems

 Portable and handheld devices in a distributed system

 Spontaneous interoperation
 Associations between devices are routinely created and destroyed

 Service discovery
 Associating the device with suitable local services

 The increasing demand for multimedia services
 Crucial characteristic of continuous media types

 Real-time relationships between elements of a media type

 A wide range of new (multimedia) services and applications
 Multimedia applications such as webcasting place

considerable demands on the underlying distributed
infrastructure in terms of
 Providing support for a range of encoding and encryption

formats
 Providing a range of mechanisms to ensure that the desired

quality of service(QoS) can be met
 Providing associated resource management strategies
 Providing adaptation strategies to deal with the inevitable

situation

Trends in Distributed Systems

 The view of distributed systems as a commodity or
utility
 Resources are provided by appropriate service suppliers and

effectively rented rather than owned by the end user
 Applies to both physical resources and more logical services
 Physical resources such as storage and processing

 From remote storage facility to data centers
 OS virtualization is a key enabling technology for this approach

 Software services
 Email and distributed calendars

Trends in Distributed Systems

 Cloud computing
 Defined as a set of Internet-based application, storage and

computing services
 A view of everything as a service
 Generally implemented on cluster computers to provide the

necessary scale and performance required by such services
 A cluster computer is a set of interconnected computers that

cooperate closely to provide a single, integrated high
performance computing capability

Trends in Distributed Systems

Cloud Computing

 Information technology (IT) paradigm
 enables ubiquitous access to shared pools of configurable

system resources and higher-level services
 can be rapidly provisioned with minimal management effort,

often over the Internet

 Infrastructure as a service (IaaS)
 Platform as a service(PaaS)
 Software as a service (SaaS)

Cloud Computing
 "Infrastructure as a service" (IaaS)

 refers to online services that provide high-level APIs used to
dereference various low-level details of underlying network
infrastructure like physical computing resources, location, data
partitioning, scaling, security, backup etc.

 Platform as a Service (PaaS)
 category of cloud computing services that provides a platform

allowing customers to develop, run, and manage applications
without the complexity of building and maintaining the
infrastructure typically associated with developing and launching
an app

 Software as a service (SaaS)
 access to application software
 use the provider's applications running on a cloud infrastructure
 The applications are accessible from various client devices

through either a thin client interface, such as a web browser (e.g.,
web-based email), or a program interface.

Cloud Computing

https://medium.com/@Albihany/true-cloud-story-about-iaas-paas-saas-47cfea883271

Cloud Computing

http://blog.webspecia.com/cloud/iaas-paas-saas-explained-examples-comparison

Cloud Computing

http://www.mazikglobal.com/blog/wp-content/uploads/2014/06/Cloud-Service-Models.png

Problems with Distributed Systems

 All communication is done by message passing -
i.e.
 All coordination is decentralized
 There is a lack of global information
 There may be replication of data

 How can failures be detected and recoveries made?

Goals of a Distributed System

 Goals of a distributed system (Tanenbaum & van
Steen)
 Connecting users and resources
 Transparency
 Openness
 Scalability

Goals of a Distributed System

 Characteristics of a distributed system (Galli)
 Shared resources
 Openness
 Concurrency
 Scalability
 Fault tolerance
 Transparency

Goals of a Distributed System

 Challenges of a distributed system (Coulouris,
Dollimore and Kindberg)
 Heterogeneity
 Openness
 Security
 Scalability
 Failure handling
 Concurrency
 Transparency
 Quality of Service

Heterogeneity
 A system is heterogeneous if it is composed of dissimilar

hardware and software.
1. Networks

 Their differences are masked by the fact that all of the computers
attached to them use the Internet protocols to communicate with one
another – IP-based networks

 The Internet protocols are implemented over a variety of different
networks

2. Computer hardware
 CPUs - byte ordering of integers(big-endian vs. little-endian)

3. Operating systems
 Do not necessarily all provide the same API to Internet protocols

4. Programming languages
 Use different representations for characters and data structures

5. Implementations by different developers
 Use common standards, for example, for network communication

and the representation of primitive data items and data structures in
messages

Heterogeneity

 Heterogeneity can be contrasted with portability:
 A program that works in a heterogeneous environment must

deal with various hardware and software components at the
same time,

 Whereas a portable program must run on different systems at
different times.

 A related notion is interoperability. It denotes the
ability of different components, possibly from different
vendors, to interact.

Heterogeneity

 The goal of heterogeneity is to have
 different operating systems

 different computer hardware

 different networks

 different programming languages

 All working together to form a single distributed system
 Communication protocols can be used to mask the

network differences
 Middleware, "an additional layer of software between

the applications and the network OS" (Tanvan02) can be
used to handle other differences

Heterogeneity

 Middleware
 A software layer that provides a programming abstraction as

well as masking the heterogeneity of the underlying networks,
hardware, operating systems and programming languages.

 Provides a uniform computational model for use by the
programmers of servers and distributed applications - remote
object invocation, remote event notification, remote SQL access
and distributed transaction processing

 Common Object Request Broker (CORBA)
 Java Remote Method Invocation (RMI)

 Mobile code
 Program code that can be transferred from one computer to

another and run at the destination
 Java applet, JavaScript
 Virtual machine approach provides a way of making code

executable on a variety of host computers

Openness

 A characteristic that enables systems to be extended
to meet new application requirements and user needs
 i.e., characteristic that determines whether the system can be

extended and re-implemented in various ways

 Determined primarily by
 The degree to which new resource-sharing services can be

added and
 Be made available for use by a variety of client programs

 Advantage
 Extensible at the hardware level by the addition of computers

to the network and at the software level by the introduction of
new services and the reimplementation of old ones, enabling
application programs to share resources

 Independent from individual vendors

Openness

 Characteristics
 Achieved by specifying and documenting the key software

interfaces of a system and making them available to software
developers; i.e. the interfaces should be publicly available to
ease inclusion of new components

 Based on the provision of a uniform communication mechanism
and published interfaces for access to shared resources.

 Can be constructed from heterogeneous hardware and software,
possibly from different vendors.

Security

 Confidentiality
 Protection against disclosure to unauthorized individuals
 Make sure the identity of the user

 Integrity
 Protection against alteration or corruption
 Send sensitive information in a message over a network in a

secure manner – encryption technique

 Availability
 Protection against interference with the means to access the

resources
 Denial of service(DoS) attacks - wish to disrupt a service for some

reason

Security

 Firewall
 A barrier around an intranet, restricting the traffic that can enter

and leave
 Not deal with ensuring the appropriate use of resources by users

within an intranet, or with the appropriate use of resources in the
Internet

 Security of mobile code
 Executable program, such as an electronic mail attachment

Scalability

 Scalability refers to the ability of a distributed system to
grow without users or applications knowing or being
affected

 How can this be done
 Without a global clock or memory?
 Without a global state?
 By avoiding any centralized components in the distributed system

 Software
 Hardware
 Algorithms

 By basing decisions
 Solely on locally-known information

 By recognizing that
 Any component could go down at any time
 And being able to continue anyway

Scalability
 Challenges for the design of scalable distributed system

 Controlling the cost of physical resources
 As the demand for a resource grows, it should be possible to extend

the system, at reasonable cost, to meet it
 Controlling the performance loss

 Algorithms that use hierarchic structures scale better than those that
use linear structures

 Preventing software resources running out
 IPv4(32 bit Internet address) vs IPv6(128 bit Internet address)
 It is difficult to predict the demand that will be put on a system years

ahead.
 Overcompensating for future growth may be worse than adapting to

a change when we are forced to
 Avoiding performance bottlenecks – load balancing

 Algorithms should be decentralized to avoid having performance
bottlenecks

 Caching and replication may be used to improve the performance of
resources that are very heavily used

Failure Handling

 Need fault tolerance if it is able to continue processing
when one or more components of the system fail

 For distributed system to be fault tolerant, it must be able
 To detect errors, faults, threats, or other failures
 To tolerate the failures (i.e., not stumble or crash)
 To mask the failures (i.e., hide them from the user)
 To recover from the failures

 Both redundancy and decentralization support fault
tolerance

 When faults occur
 May produce incorrect results or
 May stop before they have completed the intended computation

 Failures in a distributed system are partial
 some components fail while others continue to function

Failure Handling

 Techniques for dealing with failures
 Detecting failures

 Checksums to detect corrupted data; difficult to detect some other failures,
such as a remote crashed server in the Internet

 Masking failures - hidden or made less severe
 Messages can be retransmitted
 File data can be written to a pair of disks

 Recovery from failures
 The state of permanent data can be recovered or ‘rolled back’ after a server

has crashed
 The computations will be incomplete when a fault occurs, and the permanent

data that they update may not be in a consistent state

 Redundancy
 Tolerate failures by the use of redundant components
 Multiple routes in network – multiple disjoint paths
 A database may be replicated in several servers
 The design of effective techniques for keeping replicas of rapidly changing

data up-to-date without excessive loss of performance is a challenge

Concurrency
 Clearly one of the goals of a distributed system is to

share resources whether data, files, equipment, or
machine cycles.
 This is similar to what is expected of a time-sharing system.
 However, in a distributed system, there are many processors.

 This means that any user can be active at any time
and on any processor. This also means that any resource
can have more than one concurrent request
simultaneously.
 Several clients will attempt to access a shared resource at the

same time, producing inconsistent results
 Race condition

 All mutual exclusion and deadlock problems are more
to be considered, but with the caveat that more than one
processor can be requesting any given shared resource.
 For an object to be safe in a concurrent environment, its

operations must be synchronized in such a way that its data
remains consistent – achieved by techniques such as semaphores

Transparency

 Network, Access, Location Transparency
 Name Transparency
 Concurrency, Parallelism Transparency
 Replication Transparency
 Migration (or Relocation), Persistence Transparency
 Failure Transparency
 Performance, Scaling Transparency
 Revision, Size Transparency

Network, Access, Location Transparency

 Network transparency = access + location transparency
 Access transparency

 Enables local and remote information objects to be accessed
using identical operations, e.g. Distributed File Systems

 This means that whether some processors in the distributed
system are Windows machines, Unix machines, or Macs, whether
they are Big or Little Endian machines

 The user is able to access objects located on them in exactly
the same manner

 Location transparency
 Enables information objects to be accessed without knowledge

of their physical or network location, e.g. which building or IP
address

 URLs are location-transparent, but not mobility-transparent

Name Transparency

 Name transparency
 The distributed system incorporates a global naming scheme
 Objects (files, resources) are not tied to given nodes or sites by

name
 Name transparency assists migration, access, and location

transparencies

Concurrency, Parallelism Transparency

 Concurrency transparency
 Enables several processes to operate concurrently using shared

information objects without interference between them
 Permits efficient use of shared resources
 Allows no interference between processes sharing resources

 Parallelism transparency
 Permits parallel activities without users knowing how, where,

and when these activities are carried out in the system

Replication Transparency

 Replication transparency
 Enables multiple instances of information objects to be used to

increase reliability and performance without knowledge of the
replicas by users or application programmers

 This means that there may be multiple copies of files scattered
over the entire distributed system

Migration, Persistence Transparency

 Migration (or Relocation) transparency
 Allows the movement of information objects within a system

without affecting the operation of users or application programs
 This means that both resources and processes can migrate

without users knowing and be accessed while being relocated

 Persistence transparency
 Refers to the type of memory where files are located
 Specifically, whether or not that memory is stable or volatile

Failure Transparency

 Failure transparency
 Enables the concealment of faults, allowing users and

application programs to complete their tasks despite the failure
of hardware or software components

 This means if a site goes down, it should be unapparent to
other sites or users and work continues

Performance, Scaling Transparency

 Performance transparency
 Allows the system to be reconfigured to improve performance

as loads vary

 Scaling transparency
 Allows the system and applications to expand in scale without

change to the system structure or the application algorithms

Size, Revision Transparency

 Size transparency
 Allows incremental growth of a system without the user's

awareness
 Clearly, this is a form of scaling transparency

 Revision transparency
 Software revisions of the system are not visible to users
 This is also a form of scaling transparency

Quality of Service (QoS)

 Ability to meet service requirements for applications
 Its achievement depends upon the availability of the

necessary computing and network resources at the
appropriate times.
 A requirement for the system to provide guaranteed computing

and communication resources that are sufficient to enable
applications to complete each task on time

 Each critical resource must be reserved by the applications that
require QoS

 Guaranteed service vs. best-effort service
 The main nonfunctional properties of systems that affect

the QoS experienced by clients and users
 Reliability, security and performance
 Adaptability to meet changing system configurations and resource

availability

