Introduction to

istri h 1.1 '
Distributed Systems Chapter 1. Introduction

From Andrew S Tanenbaum, Maarten Van Steen
Distributed Systems: Principles and Paradigms

527950-1 Edition 2, © Prentice Hall 2007

Fall 2019 [~ o = P
9/19/2019 B 7 D T

Kyoung Shin Park
Applied Computer Engineering
Dankook University

Overview Definition of a Distributed System
o Definition of a Distributed System o A distributed system is a collection of independent
o Goals of a Distributed System computers that appears to its users as a single
= Making Resources Accessible coherent system.
= Transparency
= Openness o Differences between the various computers and the
- ii‘:ﬁzi“ty ways in which they communicate are mostly hidden from
u

users.

- Thre.e Types of D'St.”bUted Systems o Users and applications can interact with a distributed
= Distributed computing systems

Cluster computing, Grid computing, Cloud computing system in a Con3|_5tent ar.‘d uniform way, regardless of
= Distributed information systems where and when interaction takes place.
Transaction processing system

= Distributed systems for pervasive computing
Ubiquitous computing, Mobile computing, sensor network

Definition of a Distributed System

Goals of a Distributed System

Computer 1 Computer 2 Computer 3 Computer 4
1 L

Appl. A Application B Appl.C
-
‘ Distributed system layer (middleware) ‘

| Local OS 1 | | Local OS 2 | | Local OS 3 | | Local OS 4 |
N I I 1
Network

Figure 1-1. A distributed system organized as middleware. The
middleware layer extends over multiple machines, and offers
each application the same interface.

o Goals of a distributed system (Tanenbaum & van
Steen)
= Making Resources Accessible
= Transparency
= Openness
m Scalability

Making Resource Accessible

Making Resource Accessible

O The main goal of a distributed system is to make it
easy for the users (and applications) to access remote
resources, and to share them in a controlled and
efficient way.

o Resources can be things like printers, computers,
storage facilities, data, files, Web pages, and networks,
etc.

O Main goal of a distributed system is to make it easy for
the users (and applications) to access remote resources,
and to share them in a controlled and efficient way.

m Printers, computers, storage facilities, data, files, web pages, etc.
It is cheaper to let a printer be shared by several users in a small
office than having to buy and maintain a separate printer for each
user.

It makes economic sense to share costly resources such as
supercomputers, high-performance storage systems, image setters,
and other expensive peripherals.

o Connecting users and resources also makes it easier to
collaborate and exchange information.

m Exchanging files, mail. documents, audio, and video

m Geographically widely-dispersed groups of people work together

m Electronic commerce

O As connectivity and sharing increase, security is
becoming increasingly important.

Transparency

Openness

Transparency Description

Access Hide differences in data representation and how a resource is accessed
Location Hide where a resource is located

Migration Hide that a resource may move to another location

Relocation Hide that a resource may be moved to another location while in use
Replication Hide that a resource is replicated - L,
Concurrency Hide that a resource may be shared by several %gmélusers
Failure Hide the failure and recovery of a resource

Figure 1-2. Different forms of transparency in a
distributed system (ISO, 1995).

o An open distributed system is a system that offers
services according to standard rules that describe the
syntax and semantics of those services.

o In distributed systems, services are generally specified
through interfaces, which are often described in an
Interface Definition Language (IDL).

= Interfaces specify precisely the names of the functions that are
available together with types of the parameters, return values,
possible exceptions that can be raised, and so on.

o An open distributed system should also be extensible.

m It should be easy to add new components or replace existing
ones without affecting those components that stay in place.

Scalability

o If more users or resources need to be supported,
m The server can become a bottleneck
and will eventually prohibit further growth
m A single database would saturate all the communication lines
into and out of it
= An enormous number of messages have to be routed.

Collecting and transporting all the information would be a
bad idea because message would overload part of the

network.
Concept Example
Centralized services A single server for all users
Centralized data A single on-line telephone book
Centralized algorithms | Doing routing based on complete information

Figure 1-3. Examples of scalability limitations.

Scalability

o Characteristics of decentralized algorithms:
= No machine has complete information about the system state.
m Machines make decisions based only on local information.
= Failure of one machine does not ruin the algorithm.
m There is no implicit assumption that a global clock exists.

Scalability

O At least three components
m Number of users and/or processes(size scalability)
= Maximum distance between nodes(geographical scalability)
= Number of administrative domains(administrative scalability)

Observation

Most systems account only, to a certain extent, for size
scalability. Often solution : multiple powerful servers
operating independently in parallel. Today, the challenge
still lies in geographical and administrative scalability.

Pitfalls when Developing Distributed
Systems

O False assumptions made by first time developer:
= The network is reliable.

The network is secure.

The network is homogeneous.

The topology does not change.

Latency is zero.

Bandwidth is infinite.

Transport cost is zero.

There is one administrator.

Three Types of Distributed Systems

o High performance distributed computing systems
= Parallel computing, Distributed shared memory systems
m Cluster computing, Grid computing, Cloud computing
o Distributed information systems
m Transaction Processing System
o Distributed systems for pervasive computing
m Ubiquitous Systems
= Mobile Computing

Cluster Computing Systems

Master node Compute node Compute node Compute node
Management Component Component Component
application of of of
parallel parallel R R R parallel
| Parallel libs application application application
| Local OS | | Local OS | | Local OS | Local 0S

| L | [R k 1
Remote access r r Standard network
network embe—— - —

High-speed network

Figure 1-6. An example of a cluster computing system.

Cluster Computing Systems

Grid Computing Systems

O Characteristic feature of Cluster Computing :
homogeneity
= Same or similar Computers, same OS, same network

o0 The underlying hardware consists of a collection of
similar workstations or PCs, closely connected by
means of a high-speed LAN. Each node runs the same
Os.

| Applications |

A 4
| Collective layer |

Y A
Connectivity layer }—{ Resource layer

Y A
| Fabric layer |

Figure 1-6. A layered architecture for grid

Cluster Computing Systems

Transaction Processing System

o Characteristic feature of Grid Computing :
heterogeneity

= No assumptions are made concerning hardware, OSs,
networks, administrative domains, policies, etc

o Database applications
m Operations on a database are usually carried out in the form
of transactions.
m BEGIN_TRANSACTION and END_TRANSACTION are used to
delimit the scope of a transaction.
m The operations between them form the body of the
transactions.

m The characteristic feature of a transaction is either all of these
operations are executed or none are executed

Primitive Description
I BEGIN_TRANSACTION Mark the start of a transaction
END_TRANSACTION Terminate the transaction and try to commit
' ABORT_TRANSACTION | Kill the transaction and restore the old values I
. READ Read data from a file, a table,_ or otherwise
| WRITE Write data to a file, a table, or otherwise

Figure 1-8. Example primitives for transactions.

Transaction Processing System

o Characteristic properties of transactions(ACID):

m Atomic: To the outside world, the transaction happens indivisibly.

Each transaction either happens completely or not at all

While a transaction is in progress, other processes cannot see any
of the intermediate states

m Consistent: The transaction does not violate system invariants.

m |solated: Concurrent transactions do not interfere with each
other.
Transactions are isolated or serializable.
If two ore more transactions are running at the same time, the final
result looks at though all transactions ran sequentially in some
(system dependent) order
m Durable: Once a transaction commits, the changes are
permanent.

No failure after the commit can undo the results or cause them to
be lost.

Transaction Processing System

o A Nested Transaction

m The top-level transaction may fork off children that run in
parallel with one another, on different machines, to gain
performance or simplify programming.

m Can be nested arbitrarily deeply
Nested transaction

Subtransaction Subtransaction

Airline databa;% ﬂotel database

Two different (independent) databases
Figure 1-9. A nested transaction.

Transaction Processing System

O Transaction Processing(TP) Monitor in enterprise
middleware system

= Allows an application to access multiple server/databases by
offering it a transactional programming model

Server
nepr

Transaction Request
Requests

] M Request
Client () TP monitar Server
application N

E Reply

Request

Reply Server 4@

Figure 1-10. The role of a TP monitor in distributed systems.

Enterprise Application Integration

o Communication Middleware
= Applications are decoupled(independent) from the databases

= Applications components should be able to communicate directly
with each other
= This need for inter-application communication lead to many
different communication models
Remote Procedure Call(RPC) — operates on applications
Remote Method Invocation(RMI) — operates on objects

Enterprise Application Integration

Distributed Pervasive Systems

Client Client
application application

| Communication middleware |

l I l

Server-side Server-side Server-side
application application application

= = =

Figure 1-11. Middleware as a communication facilitator in enterprise
application integration.

o Three (overlapping) subtypes

= Ubiquitous computing systems : pervasive and continuously
present, i.e., there is a continuous interaction between system
and user.

= Mobile computing systems : pervasive, but emphasis is on the
fact that devices are inherently mobile.

= Sensor (and actuator) networks : pervasive, with emphasis on
the actual (collaborative) sensing and actuation of the
environment.

Distributed Pervasive Systems

Ubiquitous Computing Systems

o Introducing mobile and embedded computing devices

o Requirements for pervasive systems
m Embrace contextual changes.

A device must be continuously be aware of the fact that its
environment may change all the time

m Encourage ad hoc composition.

Should be easy to configure the suite of applications running on a
device

m Recognize sharing as the default.
Should be easily read, store, manage, and share information

o Core Elements for Ubiquitous Systems

= (Distribution) Devices are networked, distributed and accessible
in a transparent manner

= (Interaction) Interaction between users and devices is highly
unobtrusive

= (Context awareness) The system is aware of a user’s context in
order to optimize interaction

= (Autonomy) Devices operate autonomously without human
intervention, and are thus highly self-managed

= (Intelligence) The system as a whole can handle a wide range of
dynamic actions and interactions

