
Introduction to
Distributed Systems

527950-1
Fall 2019
9/19/2019

Kyoung Shin Park
Applied Computer Engineering

Dankook University

Chapter 1. Introduction

From Andrew S Tanenbaum, Maarten Van Steen
Distributed Systems: Principles and Paradigms

Edition 2, © Prentice Hall 2007

Overview

 Definition of a Distributed System
 Goals of a Distributed System

 Making Resources Accessible
 Transparency
 Openness
 Scalability
 Pitfalls

 Three Types of Distributed Systems
 Distributed computing systems

 Cluster computing, Grid computing, Cloud computing
 Distributed information systems

 Transaction processing system
 Distributed systems for pervasive computing

 Ubiquitous computing, Mobile computing, sensor network

Definition of a Distributed System

 A distributed system is a collection of independent
computers that appears to its users as a single
coherent system.

 Differences between the various computers and the
ways in which they communicate are mostly hidden from
users.

 Users and applications can interact with a distributed
system in a consistent and uniform way, regardless of
where and when interaction takes place.

Definition of a Distributed System

Figure 1-1. A distributed system organized as middleware. The
middleware layer extends over multiple machines, and offers

each application the same interface.

Goals of a Distributed System

 Goals of a distributed system (Tanenbaum & van
Steen)
 Making Resources Accessible
 Transparency
 Openness
 Scalability

Making Resource Accessible

 The main goal of a distributed system is to make it
easy for the users (and applications) to access remote
resources, and to share them in a controlled and
efficient way.

 Resources can be things like printers, computers,
storage facilities, data, files, Web pages, and networks,
etc.

Making Resource Accessible
 Main goal of a distributed system is to make it easy for

the users (and applications) to access remote resources,
and to share them in a controlled and efficient way.
 Printers, computers, storage facilities, data, files, web pages, etc.

 It is cheaper to let a printer be shared by several users in a small
office than having to buy and maintain a separate printer for each
user.

 It makes economic sense to share costly resources such as
supercomputers, high-performance storage systems, image setters,
and other expensive peripherals.

 Connecting users and resources also makes it easier to
collaborate and exchange information.
 Exchanging files, mail. documents, audio, and video
 Geographically widely-dispersed groups of people work together
 Electronic commerce

 As connectivity and sharing increase, security is
becoming increasingly important.

Transparency

Figure 1-2. Different forms of transparency in a
distributed system (ISO, 1995).

independent

Openness

 An open distributed system is a system that offers
services according to standard rules that describe the
syntax and semantics of those services.

 In distributed systems, services are generally specified
through interfaces, which are often described in an
Interface Definition Language (IDL).
 Interfaces specify precisely the names of the functions that are

available together with types of the parameters, return values,
possible exceptions that can be raised, and so on.

 An open distributed system should also be extensible.
 It should be easy to add new components or replace existing

ones without affecting those components that stay in place.

Scalability

 If more users or resources need to be supported,
 The server can become a bottleneck

and will eventually prohibit further growth
 A single database would saturate all the communication lines

into and out of it
 An enormous number of messages have to be routed.

Collecting and transporting all the information would be a
bad idea because message would overload part of the
network.

Figure 1-3. Examples of scalability limitations.

Scalability

 Characteristics of decentralized algorithms:
 No machine has complete information about the system state.
 Machines make decisions based only on local information.
 Failure of one machine does not ruin the algorithm.
 There is no implicit assumption that a global clock exists.

Scalability

 At least three components
 Number of users and/or processes(size scalability)
 Maximum distance between nodes(geographical scalability)
 Number of administrative domains(administrative scalability)

Observation
Most systems account only, to a certain extent, for size
scalability. Often solution : multiple powerful servers
operating independently in parallel. Today, the challenge
still lies in geographical and administrative scalability.

Pitfalls when Developing Distributed
Systems

 False assumptions made by first time developer:
 The network is reliable.
 The network is secure.
 The network is homogeneous.
 The topology does not change.
 Latency is zero.
 Bandwidth is infinite.
 Transport cost is zero.
 There is one administrator.

Three Types of Distributed Systems

 High performance distributed computing systems
 Parallel computing, Distributed shared memory systems
 Cluster computing, Grid computing, Cloud computing

 Distributed information systems
 Transaction Processing System

 Distributed systems for pervasive computing
 Ubiquitous Systems
 Mobile Computing

Cluster Computing Systems

Figure 1-6. An example of a cluster computing system.

Cluster Computing Systems

 Characteristic feature of Cluster Computing :
homogeneity
 Same or similar Computers, same OS, same network

 The underlying hardware consists of a collection of
similar workstations or PCs, closely connected by
means of a high-speed LAN. Each node runs the same
OS.

Grid Computing Systems

Figure 1-6. A layered architecture for grid

Cluster Computing Systems

 Characteristic feature of Grid Computing :
heterogeneity
 No assumptions are made concerning hardware, OSs,

networks, administrative domains, policies, etc

Transaction Processing System

 Database applications
 Operations on a database are usually carried out in the form

of transactions.
 BEGIN_TRANSACTION and END_TRANSACTION are used to

delimit the scope of a transaction.
 The operations between them form the body of the

transactions.
 The characteristic feature of a transaction is either all of these

operations are executed or none are executed

Figure 1-8. Example primitives for transactions.

Transaction Processing System

 Characteristic properties of transactions(ACID):
 Atomic: To the outside world, the transaction happens indivisibly.

 Each transaction either happens completely or not at all
 While a transaction is in progress, other processes cannot see any

of the intermediate states

 Consistent: The transaction does not violate system invariants.
 Isolated: Concurrent transactions do not interfere with each

other.
 Transactions are isolated or serializable.
 If two ore more transactions are running at the same time, the final

result looks at though all transactions ran sequentially in some
(system dependent) order

 Durable: Once a transaction commits, the changes are
permanent.
 No failure after the commit can undo the results or cause them to

be lost.

Transaction Processing System

 A Nested Transaction
 The top-level transaction may fork off children that run in

parallel with one another, on different machines, to gain
performance or simplify programming.

 Can be nested arbitrarily deeply

Figure 1-9. A nested transaction.

Transaction Processing System

 Transaction Processing(TP) Monitor in enterprise
middleware system
 Allows an application to access multiple server/databases by

offering it a transactional programming model

Figure 1-10. The role of a TP monitor in distributed systems.

Enterprise Application Integration

 Communication Middleware
 Applications are decoupled(independent) from the databases
 Applications components should be able to communicate directly

with each other
 This need for inter-application communication lead to many

different communication models
 Remote Procedure Call(RPC) – operates on applications
 Remote Method Invocation(RMI) – operates on objects

Enterprise Application Integration

Figure 1-11. Middleware as a communication facilitator in enterprise
application integration.

Distributed Pervasive Systems

 Three (overlapping) subtypes
 Ubiquitous computing systems : pervasive and continuously

present, i.e., there is a continuous interaction between system
and user.

 Mobile computing systems : pervasive, but emphasis is on the
fact that devices are inherently mobile.

 Sensor (and actuator) networks : pervasive, with emphasis on
the actual (collaborative) sensing and actuation of the
environment.

Distributed Pervasive Systems

 Introducing mobile and embedded computing devices
 Requirements for pervasive systems

 Embrace contextual changes.
 A device must be continuously be aware of the fact that its

environment may change all the time

 Encourage ad hoc composition.
 Should be easy to configure the suite of applications running on a

device

 Recognize sharing as the default.
 Should be easily read, store, manage, and share information

Ubiquitous Computing Systems

 Core Elements for Ubiquitous Systems
 (Distribution) Devices are networked, distributed and accessible

in a transparent manner
 (Interaction) Interaction between users and devices is highly

unobtrusive
 (Context awareness) The system is aware of a user’s context in

order to optimize interaction
 (Autonomy) Devices operate autonomously without human

intervention, and are thus highly self-managed
 (Intelligence) The system as a whole can handle a wide range of

dynamic actions and interactions

