
Introduction to
Distributed Systems

527950-1
Fall 2019
9/19/2019

Kyoung Shin Park
Applied Computer Engineering

Dankook University

Chapter 1. Introduction

From Andrew S Tanenbaum, Maarten Van Steen
Distributed Systems: Principles and Paradigms

Edition 2, © Prentice Hall 2007

Overview

 Definition of a Distributed System
 Goals of a Distributed System

 Making Resources Accessible
 Transparency
 Openness
 Scalability
 Pitfalls

 Three Types of Distributed Systems
 Distributed computing systems

 Cluster computing, Grid computing, Cloud computing
 Distributed information systems

 Transaction processing system
 Distributed systems for pervasive computing

 Ubiquitous computing, Mobile computing, sensor network

Definition of a Distributed System

 A distributed system is a collection of independent
computers that appears to its users as a single
coherent system.

 Differences between the various computers and the
ways in which they communicate are mostly hidden from
users.

 Users and applications can interact with a distributed
system in a consistent and uniform way, regardless of
where and when interaction takes place.

Definition of a Distributed System

Figure 1-1. A distributed system organized as middleware. The
middleware layer extends over multiple machines, and offers

each application the same interface.

Goals of a Distributed System

 Goals of a distributed system (Tanenbaum & van
Steen)
 Making Resources Accessible
 Transparency
 Openness
 Scalability

Making Resource Accessible

 The main goal of a distributed system is to make it
easy for the users (and applications) to access remote
resources, and to share them in a controlled and
efficient way.

 Resources can be things like printers, computers,
storage facilities, data, files, Web pages, and networks,
etc.

Making Resource Accessible
 Main goal of a distributed system is to make it easy for

the users (and applications) to access remote resources,
and to share them in a controlled and efficient way.
 Printers, computers, storage facilities, data, files, web pages, etc.

 It is cheaper to let a printer be shared by several users in a small
office than having to buy and maintain a separate printer for each
user.

 It makes economic sense to share costly resources such as
supercomputers, high-performance storage systems, image setters,
and other expensive peripherals.

 Connecting users and resources also makes it easier to
collaborate and exchange information.
 Exchanging files, mail. documents, audio, and video
 Geographically widely-dispersed groups of people work together
 Electronic commerce

 As connectivity and sharing increase, security is
becoming increasingly important.

Transparency

Figure 1-2. Different forms of transparency in a
distributed system (ISO, 1995).

independent

Openness

 An open distributed system is a system that offers
services according to standard rules that describe the
syntax and semantics of those services.

 In distributed systems, services are generally specified
through interfaces, which are often described in an
Interface Definition Language (IDL).
 Interfaces specify precisely the names of the functions that are

available together with types of the parameters, return values,
possible exceptions that can be raised, and so on.

 An open distributed system should also be extensible.
 It should be easy to add new components or replace existing

ones without affecting those components that stay in place.

Scalability

 If more users or resources need to be supported,
 The server can become a bottleneck

and will eventually prohibit further growth
 A single database would saturate all the communication lines

into and out of it
 An enormous number of messages have to be routed.

Collecting and transporting all the information would be a
bad idea because message would overload part of the
network.

Figure 1-3. Examples of scalability limitations.

Scalability

 Characteristics of decentralized algorithms:
 No machine has complete information about the system state.
 Machines make decisions based only on local information.
 Failure of one machine does not ruin the algorithm.
 There is no implicit assumption that a global clock exists.

Scalability

 At least three components
 Number of users and/or processes(size scalability)
 Maximum distance between nodes(geographical scalability)
 Number of administrative domains(administrative scalability)

Observation
Most systems account only, to a certain extent, for size
scalability. Often solution : multiple powerful servers
operating independently in parallel. Today, the challenge
still lies in geographical and administrative scalability.

Pitfalls when Developing Distributed
Systems

 False assumptions made by first time developer:
 The network is reliable.
 The network is secure.
 The network is homogeneous.
 The topology does not change.
 Latency is zero.
 Bandwidth is infinite.
 Transport cost is zero.
 There is one administrator.

Three Types of Distributed Systems

 High performance distributed computing systems
 Parallel computing, Distributed shared memory systems
 Cluster computing, Grid computing, Cloud computing

 Distributed information systems
 Transaction Processing System

 Distributed systems for pervasive computing
 Ubiquitous Systems
 Mobile Computing

Cluster Computing Systems

Figure 1-6. An example of a cluster computing system.

Cluster Computing Systems

 Characteristic feature of Cluster Computing :
homogeneity
 Same or similar Computers, same OS, same network

 The underlying hardware consists of a collection of
similar workstations or PCs, closely connected by
means of a high-speed LAN. Each node runs the same
OS.

Grid Computing Systems

Figure 1-6. A layered architecture for grid

Cluster Computing Systems

 Characteristic feature of Grid Computing :
heterogeneity
 No assumptions are made concerning hardware, OSs,

networks, administrative domains, policies, etc

Transaction Processing System

 Database applications
 Operations on a database are usually carried out in the form

of transactions.
 BEGIN_TRANSACTION and END_TRANSACTION are used to

delimit the scope of a transaction.
 The operations between them form the body of the

transactions.
 The characteristic feature of a transaction is either all of these

operations are executed or none are executed

Figure 1-8. Example primitives for transactions.

Transaction Processing System

 Characteristic properties of transactions(ACID):
 Atomic: To the outside world, the transaction happens indivisibly.

 Each transaction either happens completely or not at all
 While a transaction is in progress, other processes cannot see any

of the intermediate states

 Consistent: The transaction does not violate system invariants.
 Isolated: Concurrent transactions do not interfere with each

other.
 Transactions are isolated or serializable.
 If two ore more transactions are running at the same time, the final

result looks at though all transactions ran sequentially in some
(system dependent) order

 Durable: Once a transaction commits, the changes are
permanent.
 No failure after the commit can undo the results or cause them to

be lost.

Transaction Processing System

 A Nested Transaction
 The top-level transaction may fork off children that run in

parallel with one another, on different machines, to gain
performance or simplify programming.

 Can be nested arbitrarily deeply

Figure 1-9. A nested transaction.

Transaction Processing System

 Transaction Processing(TP) Monitor in enterprise
middleware system
 Allows an application to access multiple server/databases by

offering it a transactional programming model

Figure 1-10. The role of a TP monitor in distributed systems.

Enterprise Application Integration

 Communication Middleware
 Applications are decoupled(independent) from the databases
 Applications components should be able to communicate directly

with each other
 This need for inter-application communication lead to many

different communication models
 Remote Procedure Call(RPC) – operates on applications
 Remote Method Invocation(RMI) – operates on objects

Enterprise Application Integration

Figure 1-11. Middleware as a communication facilitator in enterprise
application integration.

Distributed Pervasive Systems

 Three (overlapping) subtypes
 Ubiquitous computing systems : pervasive and continuously

present, i.e., there is a continuous interaction between system
and user.

 Mobile computing systems : pervasive, but emphasis is on the
fact that devices are inherently mobile.

 Sensor (and actuator) networks : pervasive, with emphasis on
the actual (collaborative) sensing and actuation of the
environment.

Distributed Pervasive Systems

 Introducing mobile and embedded computing devices
 Requirements for pervasive systems

 Embrace contextual changes.
 A device must be continuously be aware of the fact that its

environment may change all the time

 Encourage ad hoc composition.
 Should be easy to configure the suite of applications running on a

device

 Recognize sharing as the default.
 Should be easily read, store, manage, and share information

Ubiquitous Computing Systems

 Core Elements for Ubiquitous Systems
 (Distribution) Devices are networked, distributed and accessible

in a transparent manner
 (Interaction) Interaction between users and devices is highly

unobtrusive
 (Context awareness) The system is aware of a user’s context in

order to optimize interaction
 (Autonomy) Devices operate autonomously without human

intervention, and are thus highly self-managed
 (Intelligence) The system as a whole can handle a wide range of

dynamic actions and interactions

