
Clock Synchronization

527950-1
Fall 2019

11/21/2019
Kyoung Shin Park

Applied Computer Engineering
Dankook University

Physical Clocks vs Logical Clocks

 Physical clocks keep time of day
 Consistent across systems

 Logical clocks keeps track of event ordering
 Among related (casual) events

Global Clocks

 Distributed systems have no global clock
 Each processor in the system is autonomous
 Each processor has its own clock
 Impossible to have the processes across the system

synchronized exactly
 Cannot know the true time order of any two events

Ordering of Events

 It is impossible to know which of two events
happens first

 This has an impact on scheduling
 This makes the distributed system harder to debug

Global Time via Shared Memory?

 Distributed systems have no shared memory
 Thus it is hard (impossible) to get an up-to-date state

of the entire system
 A global state would give us

 A view of all local states
 The contents of all messages currently in transit

Definitions

 Drifting:
 “the gradual misalignment of once synchronized clocks caused

by the slight inaccuracies of the time-keeping mechanisms”
 Clock tick at different rates; create ever-widening gap in

perceived time

 Drift rate:
 “the change in offset (difference in reading) between the clock

and a nominal perfect reference clock per unit time measured
by the reference clock.”

 For clocks based on a quartz crystal, this is about 10-6, giving
a difference of one second every 1,000,000 seconds, or 11.6
days.

 Clock Skew:
 “the difference in time between two clocks due to drifting”

Global Time via Physical Clocks?

 Problem: Sometimes we simply need the exact time
 Solution: Universal coordinated time (UTC)

 Universal Time Coordinator (UTC)
 Based on the number of 9,192,631,770 transitions per second

of the cesium 133 atom (pretty accurate)
 Accurate to +/- 1 second per 20,000,000 years

 about 1 part in 1012

 Sources:
 Geostationary Operational Environmental Satellites (GEOS)
 Global Positioning System (GPS) devices
 WWV: a Fort Collins radio station
 MSF: a British radio station

Global Time via WWV

 A Fort Collins shortwave radio station
 Transmits UTC signal
 Low-frequency => less atmospheric disturbance
 2000 mile radius
 Sends signals once a day to clocks/watches
 Transmission delay is 24000 microseconds at the extreme

range
 Less than 0.1 second
 Can be corrected for

UTC Time Providers

 Time Provider:
 “a commercial device that is capable of directly receiving

information from a UTC server and making appropriate
adjustments due to communication delays”

 Such devices are currently installed in watches, clocks,
and computers

Network Delays when Communicating
Time

Correcting for Transmitted Time

 A UTC signal is sent out
 Transmit time varies depending on

 Atmospheric conditions
 Humidity

 Receiving clock must make compensation for
transmit time

 However, once reset, clock will start drifting again

Forward Adjustment of a Clock

Clock Skew Clock Skew

Perfect Clock

=

Drift with Slow Clock

<

Drift with Fast Clock

>

Problem with Clock Skew

 Problem:
 Suppose we have a distributed system with a UTC-receiver

somewhere in it => we still have to distribute its time to each
machine

 Basic principle
 Every machine has a timer that generates an interrupt H times per

second.
 There is a clock in machine p that ticks on each timer interrupt.

Denote the value of that clock by Cp(t), where t is UTC time.
 Ideally, we have that for each machine p, Cp(t)=t, in other words,

dC/dt = 1
 UTC clock t=3.0 second, Clock started at 0 second.
 For machine 1, C1(t)=C1(3.0 s) = 3.3 s. dC1/dt = 1.1 – Fast clock
 For machine 2, C2(t)=C2(3.0 s) = 3.0 s. dC2/dt = 1.0 – Exact clock
 For machine 3, C3(t)=C3(3.0 s) = 2.7 s. dC3/dt = 0.9 – Slow clock

Dealing with Clock Skew

 Go for gradual clock correction
 If fast:

 Make the clock run slower until it synchronizes

 If slow:
 Make the clock run faster until it synchronizes

Dealing with Clock Skew

 The OS can do this:
 Change the rate at which it requests interrupts:

 E.g. if system requests interrupts every 17 ms but clock is too
slow, then request interrupts at (e.g.) 15 ms

 Not practical: we may not have enough precision

 Easier (software-only) solutions
1. Redefine the rate at which system time is advanced with

each interrupt
2. Read the counter but compensate for drift

 Adjustment changes slope of system time:
 Linear compensation function

Compensating for a Fast Clock Compensating for a Fast Clock

Resynchronizing

 After synchronization period is reached
 Resynchronize periodically
 Successive application of a second linear compensating

function can bring us closer to true slope
 Long-term stability is not guaranteed – the system clock can

still drift based on changes in temperature, pressure, humidity,
and age of the crystal

 Keep track of adjustments and apply continuously
 E.g. POSIX adjtime system call and hwclock command

Going to Sleep

 RTC keeps on ticking when the system is off (or
sleeping)

 OS cannot apply correction continually
 Estimate drift on wake-up and apply a correct factor

Getting Accurate Time

 Attach GPS receiver to each computer
 +/- 100 nanosecond to 1 microsecond of UTC

 Attach WWV radio receiver
 Obtain time broadcasts from Boulder or DC
 +/- 3 millisecond of UTC (depending on distance)

 Not practical solution for every machine
 Cost, power, convenience, environment

Getting Accurate Time

 Synchronize from another machine
 One with a more accurate clock

 Time server:
 Machine/service that provides time information

Physical Time Services

 Centralized
 Broadcast-based

 UTC (Universal Time Coordinator)
 Berkeley Unix Algorithm by Gusella & Zatti (1989)

 Request-driven
 Cristian (1989)

 Distributed

 Notice: Clocks cannot be moved backward. Why?
 Because illusion of time moving backwards can confuse

message ordering and software development environments

Request-Driven Physical Clock
Synchronization

Cristian’s Algorithm

 UTC compensate for network delay, by Cristian (1989)
 Centralized time server has access to UTC
 A process may request the current time
 The processor receives the time TC and sets its time

to TC + RTT/2 to adjust for transmission time
 Uses a threshold to remove bad times caused by

slow/faulty message transmission
 Threshold matched against difference of times in

current processor and received from server
 Considers transmit time and interrupt time

 Request sent T0 and Reply received T1
 Assume network delays are symmetric

 Client sets time to: Tclient = Tserver+ (T1-T0)/2

Cristian’s Algorithm

-

 If the minimum message transit time Tmin is known:

Cristian’s Algorithm

-
-



Cristian’s Algorithm

The Berkeley Algorithm for Physical
Clock Synchronization Berkeley Algorithm

 Gusella & Zatti (1989)
 Synchronizes clocks for processors running Berkeley

Unix 4.3
 Does not require UTC
 Centralized server broadcasts time periodically

Berkeley Algorithm

 Machines run time daemon
 Process that implements protocol

 One machine is designated as the server (master)
 Others are slaves

 Master polls each machine periodically
 Ask each machine for time - Can use Cristian’s algorithm to

compensate for network latency

 When results are in, compute average
 Including master’s time

 We hope: an average cancels out individual clock’s
tendencies to run fast or slow

 Send offset by which each clock needs adjustment to
each slave
 Avoid problems with network delays if we send a timestamp

Berkeley Algorithm

 Algorithm has provisions for ignoring readings from
clocks whose skew is too great
 Compute a fault-tolerant average

 If master fails
 Any slave can take over via an election algorithm

Berkeley Algorithm

 Request timestamps from all slaves

Berkeley Algorithm

 Compute fault-tolerant average:
 Suppose max  = 0:45

Berkeley Algorithm

 Send offset to each client

Distributed Physical Time Services

 Each processor broadcasts its current time at regular
intervals

 Then starts a timer
 Timestamps each response
 Does so until timer runs out
 Then adjusts its own time accordingly

Fault-Tolerant Threshold Method Discard m Highest and Lowest Values

Network Time Protocol (NTP)

 1991, 1992
 Internet Standard, version 3, RFC 1305

 June 2010
 Internet Standard, version 4, RFC 5905-5908
 IPv6 support
 Improve accuracy to tens of microseconds
 Dynamic server discovery

NTP Goals

 Enable clients across Internet to be accurately
synchronized to UTC despite message delays
 Use statistical techniques to filter data and gauge quality of

results

 Provide reliable service
 Survive lengthy losses of connectivity
 Redundant paths
 Redundant servers

 Provide scalable service
 Enable clients to synchronize frequently
 Offset effects of clock drift

 Provide protection against interference
 Authenticate source of data

Strata in the NTP Architecture NTP Servers

 Arranged in strata
 Stratum 0: machines connected directly to accurate time

source
 Stratum 1: machines synchronized from stratum-0 machines
 Stratum 2: machines synchronized from stratum-1 machines
 …

Synchronization Subnet

NTP Synchronization Modes

 Multicast mode
 For high speed LANS
 Lower accuracy but efficient

 Procedure call mode
 Similar to Cristian’s algorithm

 Symmetric mode
 Intended for master servers

 A probes B; B probes A -> A adjusts its clock only if A’s stratum
> B’s

 Peer servers can synchronize with each other to provide
mutual backup
 Pair of servers retain data to improve synchronization over time

All message are delivered unreliably with UDP

NTP Clock Quality

 Precision
 Smallest increase of time that can be read from the clock

 Jitter
 Difference in successive measurements
 Due to network delays, OS delays, and wander – clock

oscillator instability

 Accuracy
 How close it the clock to UTC?

NTP Messages

 Procedure call and symmetric mode
 Messages exchanged in pairs: request and response

 Time encoded as a 64 bit value
 Divide by 232 to get the number of seconds since Jan 1 1900 UTC

 NTP calculates
 Offset for each pair of messages ()

 Estimate of time offset between two clocks

 Delay ()
 Travel time : ½ of total delay minus remote processing time

 Jitter/Dispersion
 Maximum offset error

 Use this data to find preferred server
 Probe multiple servers – each several times
 Pick lowest total dispersion & lowest stratum

NTP Message Structure

 Leap second indicator
 Last minute has 59, 60, 61 seconds

 Version number
 Mode (symmetric, unicast, broadcast)
 Stratum (1=primary reference, 2-15)
 Poll interval

 Maximum interval between 2 successive messages, nearest power
of 2

 Precision of local clock
 Nearest power of 2

NTP Message Structure

 Root delay
 Total roundtrip delay to primary source
 16 bits seconds, 16 bits decimal

 Root dispersion
 Nominal error relative to primary source

 Reference clock ID
 Atomic, NIST dial-up, radio, LORAN-C navigation system, GPS, ..

 Reference timestamp
 Time at which clock was last set (64 bit)

 Authenticator (key ID, digest)
 Signature (ignored in SNTP)

NTP Message Structure

 T1: originate timestamp
 Time request departed client (client’s time)

 T2: receive timestamp
 Time request arrived at server (server’s time)

 T3: transmit timestamp
 Time request left server (server’s time)

NTP Validation Tests

 Timestamp provided ≠ last timestamp received
 Duplicate message?

 Originating timestamp in message consistent with sent
data
 Messages arriving in order?

 Timestamp within range?
 Originating and received timestamps ≠ 0?
 Authentication disabled? Else authenticate
 Peer clock is synchronized?
 Don’t sync with clock of higher stratum #
 Reasonable data for delay & dispersion

Simple Network Time Protocol (SNTP)

 Ver3 RFC 2030, Oct 1996
 Ver4 RFC 5905, June 2010
 An adaptation of NTP

 Subset of NTP, not new protocol

 Simplifies access to an NTP server
 Involves stateless remote computer calls

 Operates in multicast or procedure call mode

 Clients located only at the highest strata
 Recommended for environments where server is root node

and client is leaf of synchronization subnet

 SNTP servers do not implement fault tolerance
 Root delay, root dispersion, reference timestamp ignored

Simple Network Time Protocol (SNTP) Simple Network Time Protocol (SNTP)

Cristian’s Algorithm Key Points: Physical Clocks

 Cristian’s algorithm & SNTP
 Set clock from server
 But account for network delays
 Error: uncertainty due to network/processor latency

 Errors are additive
 Example: ±10 ms and ±20 ms = ±30 ms

 Adjust for local clock skew
 Linear compensating function

Logical Time

 Because of clock skew, physical clocks do not
provide absolute time ordering of events

 Instead we use the concept of virtual time to order
certain events

 There are a great number of algorithms that attempt
to provide logical time and some event ordering
 E.g. Lamport’s logical clock

Ordering Events

 What is an event?
 Sending a message
 Receiving a message
 Execution within a process

 Most events happen asynchronously
 Non-instantaneous communication
 Interruptions

 There is no global state

Assumptions

 Assume all processes are sequential
 Assume that the sending of a message always

precedes the receiving of said message
 Need to define a relationship that combine this

information
 Lamport’s  “happens before” relation

Properties of 

1. a  b is defined as
i. If a and b are in the same process, then a happens before

b happens
ii. If a is sending a message, then b is receiving the same

message

2. Transitive: If a b and b  c, then a  c
3. If there is no ordering between a and b, !(a  b)

and !(b  a), then a and b are concurrent (disjoint)

Happen-Before(HR) Relationship Examples Properties of a Logical Clock

 Let Ci be associated with the process Pi, for all
processes Pi

 Clock condition:
 if a  b, then C(a)  C(b)

 Subconditions:
 If a  b in process Pi, then Ci(a) < Ci(b)
 If a sends message m and b receives m, then Ci(a) < Cj(b)

Logical Clock Conditions

 In order to achieve these conditions,
 Pi increments Ci between any two events related to Pi
 If a is sending message m from Pi, put a timestamp, Tm =

Ci(a), on the message m
 When m is received by b in Pj, Pj sets Cj to be the maximum

value of Cj + d or Tm + d for some increment d

Definition of precede

 Definition: Event a in Pi precedes event b in Pj if and
only if (system-wide)
 1. Ci(a) < Cj(b) OR
 2. Ci(a) = Cj(b) and Pi < Pj

 Assume that each process Pi is ordered by a unique
value of i

 This relation is written as a  b

Example

t

P1 P2 P3

e1

e8

e4

e5

e3

e2

e6

e7

e1  e4  e8 (P1)

e1  e3 (m)

e5  e7 (m)

e6  e8 (m)

A partial ordering

e2  e4 (m)

e2  e3  e5 (P2)

e6  e7 (P3)

Example

t

P1 P2 P3

e1

e8

e4

e5

e3

e2

e6

e7

1.1

2.2

2.3

2.1

3.1

3.2

1.2

1.3

A DAG

Becomes a
total ordering
on events

Total Ordering of Events

 Any total ordering on events must be consistent with
the existent partial order

 One solution: a topological sort on the partial order –
after the fact

 Lamport: Uses an event number and a timestamp
on all events

 Further, a timestamp is attached to all messages

Logical Ordering of Events Using Counters

Logical Ordering of Events Using
Physical Clocks Causal Events

 Causal:
 “1. Expressing or indicting cause;
 2. Relating to or acting as cause”

 (Merriam-Webster)

 Causal events:
 If e1  e2, then C(e1)  C(e2)
 Two events may have the same timestamp

 Just include the i of Pi as part of the timestamp

Lamport’s Algorithm

 Each message carries a timestamp of the sender’s
clock

 When a message arrives:
 If receiver’s clock < message_timestamp,
 Then set system clock to message_timestamp + 1
 Else do nothing

 Clock must be advanced between any two events in
the same process

 Lamport’s algorithm allows us to maintain time
ordering among related events – Partial ordering

Lamport’s Algorithm

 For each process p,
 Initialize the timestamp, p.TS, to zero
 On each event,

 If e is receipt of message m
 p.TS = max (m.TS, p.TS);

 p.TS ++;
 e.TS = p.TS;
 If e is sending message m

 m.TS = p.TS;

Lamport’s Algorithm

 Applying Lamport’s algorithm

Problem: Identical Timestamps

 a  b, b  c, c  d, … : local events sequenced
 j  c, g  d, e  h … : Lamport imposes a send-

>receive relationship
 Concurrent events (e.g., b & g; i& k) may have the

same timestamp or not

Unique Timestamps (Total Ordering)

 We can force each timestamp to be unique
 Define global logical timestamp (Ti, i)

 Ti represents local Lamport timestamp
 i represents process number (globally unique)

 e.g., (host address, process ID)

 Compare timestamps:
 (Ti, i) < (Tj, j)

if and only if
Ti < Tj or
Ti = Tj and i < j

 Does not necessarily relate to actual event ordering

Unique Timestamps (Total Ordering)

Limitation of Lamport’s Clocks

 If a  b , then C(a) < C(b)
 But the reverse is not necessarily true – if the events

occur in different processes
 I.e., if C(a) < C(b), we cannot conclude that b  a
 We can’t tell how a and b are related
 Each clock can independently advance based on its local

events
 We need messages exchanges to synchronize between a pair

of processes

Concurrent Events

 There is an arbitrary ordering of concurrent events
 This can lead to a causality violation:

 When distributed objects are mobile, i.e. they can move freely
among processes

 This may happen when load balancing occurs

P1 P2 P3
Migrate
T to P2

On P2

I don’t know

Where is T?

Error?

Not transitive

Where is T?

m1

m3

m4

m2

m0

Casuality Violation

1 1

2

3 4
5

8

6
7

8

3

T on P2

Causality Violation

 Message m0 arrives late to P2
 Message m3 arrives at P2 before P2 knows that T is

migrating there
 To fulfill the transitivity condition, m3 should have

arrived at P2 after m0 arrived at P2

Causality Violation

 s(m) = the event of sending message m
 r(m) = the event of receiving message m
 m1 <c m2 if s(m1)  s(m2)
 A causality violation happens if m1 <c m2, but r(m2)

<p r(m1)
 Need a comparison function f such that

 e  e’ iff f(e) < f(e’)
 Idea – vector timestamps

Causality Violation, relabelled

P1 P2 P3Migrate
T to P2

(1,0,0)

On P2

I don’t know

m3

Where is T?

Error?

Not transitive

Where is T?
(3,0,3)

(3,0,2)

(3,2,3)

(0,0,1)

(2,0,1)

(3,0,1)
(3,1,3)

(3,3,3) (3,2,4)

m2

m1

m4

Vector Clocks

 Each Pi keeps a clock vector Ci[k], k=1,..,n
 The kth entry is Pi’s best guess of what process Pk has

for its clock values
 A message carries a timestamp vector of the clock

vector of the sender
 A receiver updates its clock vector using the

timestamp vector from the message

Vector Clocks

 The vector clocks provide a partial ordering of the
timestamps
 Using a vector comparison (all elements must be =, <, or >

pairwise
 If ta < tb or ta > tb , then a and b are causally related

 If a->b then C(a) < C(b)
 If C(a) < C(b) then a->b

 Otherwise a and b must be concurrent
 C(a) < C(b) nor C(b) < C(a)

Vector Clocks

 For M processes,
 Initialize p.VT = [0, 0, … 0]
 On event e,

 If e is receipt of message m
 For i=1 to M

 P.VT[i] = max (p.VT[i], m.VT[i])

 p.VT(self) ++ ;
 e.VT = p.VT ;
 If e is sending message m

 m.VT = p.VT;

Lamport vs Vector Clock Timestamps

 4 processes (p1, P2, P3, P4) with events a,b,c,d,e,f,g,…

Lamport vs Vector Clock Timestamps

 Lamport Timestamps

Lamport vs Vector Clock Timestamps

 Vector Clock Timestamps

References

 http://www.cs.colostate.edu/~cs551/CourseNotes/Synch
ronization/SynchTOC.html

 https://www.cs.rutgers.edu/~pxk/417/notes/content/05-
clock-synchronization-slides.pdf

 https://www.cs.rutgers.edu/~pxk/417/notes/content/06-
logical-clocks-slides.pdf

