Clock Synchronization

Physical Clocks vs Logical Clocks

527950-1
Fall 2019
11/21/2019
Kyoung Shin Park
Applied Computer Engineering
Dankook University

o Physical clocks keep time of day
m Consistent across systems

O Logical clocks keeps track of event ordering
m Among related (casual) events

Global Clocks

o Distributed systems have no global clock
O Each processor in the system is autonomous
o Each processor has its own clock

O Impossible to have the processes across the system
synchronized exactly

o Cannot know the true time order of any two events

Ordering of Events

o It is impossible to know which of two events
happens first

o This has an impact on scheduling
o This makes the distributed system harder to debug

Global Time via Shared Memory?

Definitions

o Distributed systems have no shared memory
O Thus it is hard (impossible) to get an up-to-date state
of the entire system

o A global state would give us
= A view of all local states
m The contents of all messages currently in transit

o Drifting:
= “the gradual misalignment of once synchronized clocks caused
by the slight inaccuracies of the time-keeping mechanisms”
m Clock tick at different rates; create ever-widening gap in
perceived time
o Drift rate:

m “the change in offset (difference in reading) between the clock
and a nominal perfect reference clock per unit time measured
by the reference clock.”

m For clocks based on a quartz crystal, this is about 106, giving
a difference of one second every 1,000,000 seconds, or 11.6

days.
o Clock Skew:

= “the difference in time between two clocks due to drifting”

Global Time via Physical Clocks?

Global Time via WWV

O Problem: Sometimes we simply need the exact time
= Solution: Universal coordinated time (UTC)

o Universal Time Coordinator (UTC)
m Based on the number of 9,192,631,770 transitions per second
of the cesium 133 atom (pretty accurate)

m Accurate to +/- 1 second per 20,000,000 years
about 1 part in 1012

= Sources:
Geostationary Operational Environmental Satellites (GEOS)
Global Positioning System (GPS) devices
WWV: a Fort Collins radio station
MSF: a British radio station

0O A Fort Collins shortwave radio station
m Transmits UTC signal
u Low-frequency => less atmospheric disturbance
m 2000 mile radius
m Sends signals once a day to clocks/watches
m Transmission delay is 24000 microseconds at the extreme
range
Less than 0.1 second
Can be corrected for

UTC Time Providers

O Time Provider:
= "a commercial device that is capable of directly receiving
information from a UTC server and making appropriate
adjustments due to communication delays”
o Such devices are currently installed in watches, clocks,
and computers

Network Delays when Communicating
Time

Client Time Service

Request for time

Current time

Variable network
delay

Correcting for Transmitted Time

o A UTC signal is sent out

o Transmit time varies depending on
= Atmospheric conditions
= Humidity

O Receiving clock must make compensation for
transmit time

O However, once reset, clock will start drifting again

Forward Adjustment of a Clock

A. Time server broadcasts current time

Location A Time server
Current time = 720 i
Current time = 740 Broadcast
-—
based
Delay of 10
B. Locations update clock I]
Location A

Current time = 720
Adjusted current time = 750
New current time = 750

Clock Skew

8:00:00 8:00:00
Sept 18 8:00:00

Clock Skew

8:01:24

Skew = +84 seconds Oct23 8:00:00
+84 seconds/35 days
Drift = +2 .4 sec/day

8:01:48
Skew = +108 seconds

+108 seconds/35 days
Drift = +3.1 sec/day

Perfect Clock

Computer’s time, C
=3

UTC time, t

Drift with Slow Clock

© # | 8K
GJ //I

E s

' /;e&vf'

m /,

e . dC

o} — <1
S5 i at

=¥

£

o i

Q| 2

UTC time, t

Drift with Fast Clock

Problem with Clock Skew

©l ac sket
o| - i
= dt o ®
i e
g
=)
Q.
£
Q 5
O/
UTC time, t

o Problem:

m Suppose we have a distributed system with a UTC-receiver
somewhere in it => we still have to distribute its time to each
machine

o Basic principle

m Every machine has a timer that generates an interrupt H times per
second.

m There is a clock in machine p that ticks on each timer interrupt.
Denote the value of that clock by (1), where t is UTC time.

m ldeally, we have that for each machine p, =t in other words,
dc/dt = 1

UTC clock t=3.0 second, Clock started at 0 second.

For machine 1, C,()=C;(3.0 s) = 3.3 s. dC,/dt = 1.1 — Fast clock

For machine 2, C,()=C,(3.0 s) = 3.0 s. dC/dt = 1.0 — Exact clock
For machine 3, G5(t)=C;5(3.0 s) = 2.7 s. dC,/dt = 0.9 — Slow clock

Dealing with Clock Skew

Dealing with Clock Skew

o Go for gradual clock correction

m If fast:
Make the clock run slower until it synchronizes

m If slow:
Make the clock run faster until it synchronizes

o The OS can do this:
= Change the rate at which it requests interrupts:

E.g. if system requests interrupts every 17 ms but clock is too
slow, then request interrupts at (e.g.) 15 ms

= Not practical: we may not have enough precision
o Easier (software-only) solutions
1. Redefine the rate at which system time is advanced with
each interrupt
2. Read the counter but compensate for drift
o Adjustment changes slope of system time:
m Linear compensation function

Compensating for a Fast Clock

Compensating for a Fast Clock

Fl
#

o - o é
q).. - ,I, " - - .
E g ’ r, Now we're drifting again!
..E Linear compensation :u_; ’
Q function applied o} 4%
2 o =
E| /. 2| /.
(@] > Q?; o ”'Qc'b
O/ O/
Resynchronizing Going to Sleep

o After synchronization period is reached
= Resynchronize periodically

m Successive application of a second linear compensating
function can bring us closer to true slope

= Long-term stability is not guaranteed — the system clock can
still drift based on changes in temperature, pressure, humidity,
and age of the crystal

o Keep track of adjustments and apply continuously
m E.g. POSIX adjtime system call and Awclock command

o RTC keeps on ticking when the system is off (or
sleeping)

o OS cannot apply correction continually
o Estimate drift on wake-up and apply a correct factor

Getting Accurate Time

Getting Accurate Time

o Attach GPS receiver to each computer

= +/- 100 nanosecond to 1 microsecond of UTC
o Attach WWV radio receiver

= Obtain time broadcasts from Boulder or DC

m +/- 3 millisecond of UTC (depending on distance)
o Not practical solution for every machine

m Cost, power, convenience, environment

o Synchronize from another machine
= One with a more accurate clock
o Time server:
m Machine/service that provides time information

Physical Time Services

Request-Driven Physical Clock
Synchronization

o Centralized

» Broadcast-based

UTC (Universal Time Coordinator)

Berkeley Unix Algorithm by Gusella & Zatti (1989)
= Request-driven

Cristian (1989)

o Distributed

o Notice: Clocks cannot be moved backward. Why?

m Because illusion of time moving backwards can confuse
message ordering and software development environments

Location A Time Server

Currenttime =737
RCV =740
Adjusted time = 750

Request for
current time

Current time
=740

New current time = 750

Cristian’s Algorithm

Cristian’s Algorithm

o UTC compensate for network delay, by Cristian (1989)
o Centralized time server has access to UTC
O A process may request the current time

O The processor receives the time 7, and sets its time
to T.+ RTT/2 to adjust for transmission time

o Uses a threshold to remove bad times caused by
slow/faulty message transmission

o Threshold matched against difference of times in
current processor and received from server

o Considers transmit time and interrupt time

o Request sent T, and Reply received T,

= Assume network delays are symmetric
TS fofofo

server l
reques/ &pﬁy
client
To T

o Client sets time t0: T ient = Teervert (T1-To)/2

TMI‘\’.
!
0) 1

time

server

reque
client

S

i time

T,-T0 _ estimated overhead
2 in each direction

Cristian’s Algorithm

Cristian’s Algorithm

o If the minimum message transit time T,,;, is known:

T

server
server ‘ >
request reply
client *
[T,
T rnin T rmin
: " (/ afest time me 1
ves

range = T,- Ty~ 2T n

T,-T,
accuracy of result =% T" T

O Sent request at 5:08:15.100 (Ty)
o Received response at 5:08:15.900 (T,)
= Response contains 5:09:25.300 (T,.....)
o Elapsed time is T;-T,
= 5:08:15.900 (T,) - 5:08:15.100 (T,) = 800 ms
o Best guess:
= Timestamp was generated 400 ms ago
o Set ime to T+ elapsed time
= 5:09:25.300 + 400 ms = 5:09:25.700
o If best-base message time = 200 ms (T,;,=200)

eI _ 200 = +200

n Error= % 2

The Berkeley Algorithm for Physical
Clock Synchronization

Berkeley Algorithm

Location A Time Server Location B

1 1
Current time = 720 N Current time = 740 | Current time = 742

2| Adustedlocation A=730 3

Network | Agiusted location B = 742 Network
delay =10 delay =5
Average and new current
4 time = 737 5

Move clock forward = 7 Slow clock down

L i

-~

1. Current fime = 740

2. My current time is 720
3. My current time is 742
4, Adjust forward 7

5. Adjust slowdown fo accommodate 5

o Gusella & Zatti (1989)

o Synchronizes clocks for processors running Berkeley
Unix 4.3

o Does not require UTC
o0 Centralized server broadcasts time periodically

Berkeley Algorithm

Berkeley Algorithm

o Machines run time daemon
= Process that implements protocol

o One machine is designated as the server (master)
m Others are slaves

O Master polls each machine periodically

m Ask each machine for time - Can use Cristian’s algorithm to
compensate for network latency

o When results are in, compute average
® Including master’s time

O We hope: an average cancels out individual clock’s
tendencies to run fast or slow

o Send offset by which each clock needs adjustment to

each slave
m Avoid problems with network delays if we send a timestamp

o Algorithm has provisions for ignoring readings from
clocks whose skew is too great
m Compute a fault-tolerant average

o If master fails
= Any slave can take over via an election algorithm

Berkeley Algorithm Berkeley Algorithm

O Request timestamps from all slaves o Compute fault-tolerant average:
= Suppose max & = 0:45

3:254-2:504-3:10
3 =3:05

Berkeley Algorithm Distributed Physical Time Services

o Send offset to each client o Each processor broadcasts its current time at regular
intervals

o Then starts a timer

o Timestamps each response

o Does so until timer runs out

o Then adjusts its own time accordingly

Fault-Tolerant Threshold Method Discard m Highest and Lowest Values

Current time = 740 Current time = 740
m=2
Adjusted Received Valves

Adjusted Received Valves

701 X x = discard
737
742 701 x
706 X 737
7486 Average and new 742
742 current time = 743 7086
744 746 X Average and new
750 742 current time = 741
739 744
750 X
x indicates beyond 739
threshold
Network Time Protocol (NTP) NTP Goals
o 1991, 1992 o Enable clients across Internet to be accurately
= Internet Standard, version 3, RFC 1305 synchronized to UTC despite message delays
o June 2010 = Use statistical techniques to filter data and gauge quality of
= Internet Standard, version 4, RFC 5905-5908 re‘sults) .
= IPv6 support o Provide reliable service
= Improve accuracy to tens of microseconds = Survive lengthy losses of connectivity
= Dynamic server discovery = Redundant paths

= Redundant servers

O Provide scalable service
= Enable clients to synchronize frequently
= Offset effects of clock drift

o Provide protection against interference
= Authenticate source of data

Strata in the NTP Architecture

NTP Servers

Primary
server

-
TR L

Secondary
[servers

Stratum
number @ e J

o Arranged in strata

m Stratum 0: machines connected directly to accurate time
source

m Stratum 1: machines synchronized from stratum-0 machines
m Stratum 2: machines synchronized from stratum-1 machines

Synchronization Subnet

NTP Synchronization Modes

NTP Clock Quality

o Multicast mode

= For high speed LANS

m Lower accuracy but efficient
O Procedure call mode

= Similar to Cristian’s algorithm

O Symmetric mode

® Intended for master servers
A probes B; B probes A -> A adjusts its clock only if A’s stratum
> B’s
m Peer servers can synchronize with each other to provide
mutual backup
Pair of servers retain data to improve synchronization over time

All message are delivered unreliably with UDP

o Precision
= Smallest increase of time that can be read from the clock
o Jitter

m Difference in successive measurements
= Due to network delays, OS delays, and wander — clock
oscillator instability
o Accuracy
m How close it the clock to UTC?

NTP Messages

NTP Message Structure

o Procedure call and symmetric mode
m Messages exchanged in pairs: request and response
o Time encoded as a 64 bit value
m Divide by 232 to get the number of seconds since Jan 1 1900 UTC

o NTP calculates
m Offset for each pair of messages (0)
Estimate of time offset between two clocks
m Delay (6)
Travel time : ¥2 of total delay minus remote processing time
m Jitter/Dispersion
Maximum offset error
o Use this data to find preferred server
m Probe multiple servers — each several times
= Pick lowest total dispersion & lowest stratum

o Leap second indicator
m Last minute has 59, 60, 61 seconds

o Version number

o Mode (symmetric, unicast, broadcast)
o Stratum (1=primary reference, 2-15)
o Poll interval

= Maximum interval between 2 successive messages, nearest power
of 2

o Precision of local clock
m Nearest power of 2

NTP Message Structure

NTP Message Structure

o Root delay

= Total roundtrip delay to primary source

= 16 bits seconds, 16 bits decimal
o Root dispersion

= Nominal error relative to primary source
o Reference clock ID

= Atomic, NIST dial-up, radio, LORAN-C navigation system, GPS, ..
o Reference timestamp

= Time at which clock was last set (64 bit)
o Authenticator (key ID, digest)

= Signature (ignored in SNTP)

o T;: originate timestamp

= Time request departed client (client’s time)
o T,: receive timestamp

m Time request arrived at server (server's time)
o T transmit timestamp

m Time request left server (server's time)

NTP Validation Tests

o Timestamp provided # last timestamp received
= Duplicate message?

o Originating timestamp in message consistent with sent

data
= Messages arriving in order?

Timestamp within range?

Originating and received timestamps # 07
Authentication disabled? Else authenticate
Peer clock is synchronized?

Don't sync with clock of higher stratum #
Reasonable data for delay & dispersion

O OO0o0OoOo Qg

Simple Network Time Protocol (SNTP)

o Ver3 RFC 2030, Oct 1996

o Ver4 RFC 5905, June 2010

o An adaptation of NTP
= Subset of NTP, not new protocol

o Simplifies access to an NTP server

o Involves stateless remote computer calls
= Operates in multicast or procedure call mode

O Clients located only at the highest strata

= Recommended for environments where server is root node
and client is leaf of synchronization subnet

o SNTP servers do not implement fault tolerance
= Root delay, root dispersion, reference timestamp ignored

Simple Network Time Protocol (SNTP)

T, Ts
server
reques/' \aply
client >
time
T, T,

Round-trip delay: Time offset:

d=(TeT)- (T, Ty ¢ =010, 7T,

2

Simple Network Time Protocol (SNTP)

T,=800 T,=850
server >
reque.% \:—Jply
time
client >
T,=1100 T,=1200

Offset =
((800 - 1100) + (850 - 1200)) / 2
= ((-300) + (-350))/ 2
= -650/2=-325 Time offset:

t = (Tz _T1)+(T3 _T4)
Settimeto T,+1t 2
=1200 - 325 =875

Cristian’s Algorithm

Key Points: Physical Clocks

T,=800 T5=850
server T >
reqa:es/ T.=825 \fp!y ime
client >
T.=1100 T,=1200

Offset = (1200 - 1100) /2 = 50

Settime to T + offset =825+ 50 =875

o Cristian’s algorithm & SNTP
m Set clock from server
m But account for network delays
m Error: uncertainty due to network/processor latency
Errors are additive
Example: £10 ms and £20 ms = £30 ms
o Adjust for local clock skew
m Linear compensating function

Logical Time

Ordering Events

o Because of clock skew, physical clocks do not
provide absolute time ordering of events

O Instead we use the concept of virtual time to order
certain events

O There are a great number of algorithms that attempt
to provide logical time and some event ordering
m E.g. Lamport’s logical clock

o What is an event?
= Sending a message
m Receiving a message
m Execution within a process
O Most events happen asynchronously
= Non-instantaneous communication
= Interruptions

o There is no global state

Assumptions

Properties of >

o Assume all processes are sequential
o Assume that the sending of a message always
precedes the receiving of said message

O Need to define a relationship that combine this
information
m Lamport’'s > “happens before” relation

1. a = b is defined as
. If a and b are in the same process, then a happens before
b happens
i. If ais sending a message, then b is receiving the same
message

2. Transitive: Ifa=>band b 2> ¢, thena 2> ¢

3. If there is no ordering between a and b, I(a = b)
and !(b = a), then a and b are concurrent (disjoint)

Happen-Before(HR) Relationship Examples

Properties of a Logical Clock

o Let Ci be associated with the process Pi, for all
processes Pi
o Clock condition:
m if a 2> b, then C(a) > C(b)
o Subconditions:
m If a 2> b in process Pi, then Ci(a) < Ci(b)
= If a sends message m and b receives m, then Ci(a) < Cj(b)

Logical Clock Conditions

o In order to achieve these conditions,
= Pi increments Ci between any two events related to Pi
m If a is sending message m from Pi, put a timestamp, Tm =

Ci(a), on the message m

= When m is received by b in Pj, Pj sets Cj to be the maximum
value of Cj + d or Tm + d for some increment d

Definition of precede

o Definition: Event a in Pi precedes event b in Pj if and

only if (system-wide)
= 1.Ci(a) < Cj(b) OR
= 2. Ci(a) = Cj(b) and Pi < Pj

o Assume that each process Pi is ordered by a unique

value of i
o This relation is written as a = b
Example Example
P1 P2 P3 el > e4 > e8 (P1) P3
: e2 > e3>e5 (P2 A DAG
€ e2 e6 > e7 (P3)
t el > e3 (m) t
Becomes a
od e3 ez >e4 (m) total ordering
e5 6 e5 > e7 (m) 73 o on events
e6 > e8 (m)
€8 / e8 37
7 7
(I) (I) e / 3 ﬁ) e

A partial ordering

Total Ordering of Events

O Any total ordering on events must be consistent with
the existent partial order

O One solution: a topological sort on the partial order —
after the fact

O Lamport: Uses an event number and a timestamp
on all events

o Further, a timestamp is attached to all messages

Logical Ordering of Events Using Counters

Process 1 Process 2 Process 3

Counter Event Counter Event Counter Event

a
b

1 &
.4—25 f

-1

¢ is the event of receiving b
f is the event of receiving d

Each requires a counter adjustment to preserve the happens-before relationship.

Logical Ordering of Events Using
Physical Clocks

Process 1 Process 2 Process 3

Causal Events

Physical Events Physical Events Physical Events
clock clock clock
10 a 10 10 e

20 20,21 c =20, 41
40 d — —I_

¢ is the event of receiving b
fis the event of receiving d

Each required a clock adjustment to preserve the happens-before relationship.

o Causal:
= “1. Expressing or indicting cause;
= 2. Relating to or acting as cause”
(Merriam-Webster)
o Causal events:
= If el > e2, then C(e1) > C(e2)
= Two events may have the same timestamp
Just include the i of Pi as part of the timestamp

Lamport’s Algorithm

Lamport’s Algorithm

O Each message carries a timestamp of the sender’s
clock

o When a message arrives:
m If receiver's clock < message_timestamp,
m Then set system clock to message_timestamp + 1
= Else do nothing

o Clock must be advanced between any two events in
the same process

O Lamport’s algorithm allows us to maintain time
ordering among related events — Partial ordering

o For each process p,
= Initialize the timestamp, p.TS, to zero
= On each event,
If e is receipt of message m
= p.TS = max (M.TS, p.TS);
p.TS ++;
eTS = p.TS;
If e is sending message m
= mTS = pTS;

Lamport’s Algorithm

Problem: Identical Timestamps

Y

Y

a b c d e f
P] & O O0—0
1 2 3 j 5\ 6
g h i
P, o—Q
. / 1 2 3 \
k

Ps O O >
1 2

o0 Applying Lamport's algorithm

a f
P, —@ >

o—o——o0©
1 2 7 ﬁ 5 \ 6
g h [
P o)
: . 1 2 3
j 6 k
P O >
’ 1 297

v

(D5 5 3D

IR
AT NS

AN &

oa=>b b-=>c¢c>d .. :local events sequenced

Oj->c¢g—>d e>h.. :Lamport imposes a send-
>receive relationship

o Concurrent events (e.g., b & g; i& k) may have the
same timestamp or not

Y

v

Y

Unique Timestamps (Total Ordering)

Unique Timestamps (Total Ordering)

o We can force each timestamp to be unique

m Define global logical timestamp (77 i)
Ti represents local Lamport timestamp
i represents process number (globally unique)

= e.g, (host address, process ID)

m Compare timestamps:
(T, i) < (T}, J)
if and only if
Ti < Tjor
Ti=Tjand j < j

o0 Does not necessarily relate to actual event ordering

a b c d e f
Py © © © O—0
1.1 249 2 -4 5M 6.
g h i
P, O O >
j 12 b2 12
1.3 73

Limitation of Lamport’s Clocks

Concurrent Events

olfa-=>b,then C(a) < C(b)

O But the reverse is not necessarily true — if the events
occur in different processes
= le, if C(a) < C(b), we cannot conclude that b = a
m We can’t tell how a and b are related
m Each clock can independently advance based on its local
events
= We need messages exchanges to synchronize between a pair
of processes

O There is an arbitrary ordering of concurrent events

o This can lead to a causality violation:

m When distributed objects are mobile, i.e. they can move freely
among processes

= This may happen when load balancing occurs

Casuality Violation

P1 P2 P3
Migrate
T to P2 ! /(1)1 Where is T?
2
3
5 5Where is T?
| don't know
7
g Error?
8 T on P2

Not transitive

Causality Violation

o Message mO arrives late to P2
0 Message m3 arrives at P2 before P2 knows that T is

migrating there

o To fulfill the transitivity condition, m3 should have

arrived at P2 after mQ arrived at P2

Causality Violation

o s(m) = the event of sending message m

o r(m) = the event of receiving message m

oml <c m2 if s(ml1) 2 s(m2)

O A causality violation happens if m1 <c m2, but r(m2)
<p r(m1)

o Need a comparison function f such that
e > e iff fle)<f(e)
m |dea — vector timestamps

Causality Violation, relabelled

Migrate
TtoP
© 00

2071)
On P2
3071)

P1

P2

| don't know

P3
©0.7)

/$ Where is T?

(302)
Where is T?
303)

Error?
324

Not transitive

Vector Clocks

o Each Pi keeps a clock vector Cifk], k=1,..,n

O The kth entry is Pi's best guess of what process Pk has
for its clock values

O A message carries a timestamp vector of the clock
vector of the sender

O A receiver updates its clock vector using the
timestamp vector from the message

Vector Clocks

o The vector clocks provide a partial ordering of the
timestamps
m Using a vector comparison (all elements must be =, <, or >
pairwise
m If ta <tb or ta > tb, then a and b are causally related
If a->b then C(a) < C(b)
If C(a) < C(b) then a->b
m Otherwise a and b must be concurrent
C(a) < C(b) nor C(b) < C(a)

Vector Clocks

O For M processes,
= Initialize p.VT = [0, O, ... 0]
= On event g,
If e is receipt of message m
= Fori=1toM
= P.VT[i] = max (p.VT[i], m.VT[i])
p.VT(self) ++ ;
eVT = pVT;
If e is sending message m
= mVT = pVT;

Lamport vs Vector Clock Timestamps

O 4 processes (p1, P2, P3, P4) with events a,b,c,defg...

ATV A SV R
P3 o/ N [\ g/ \a
P4 \r‘ s/ t\ / u/

Lamport vs Vector Clock Timestamps

o Lamport Timestamps

Lamport vs Vector Clock Timestamps

S N S N S AN

i
BN N 7

P4 F 55

o Vector Clock Timestamps

P1
P2
P3
P4

7(1000) pR1eg g@E10e 4100 (5,5,1,2) f5-5-5--bl?.5.5.-‘-|

a'
0100 15
10,2.1,0) j(0.3.1.0)]r1 1,2) |ia.6,1.5)

s T N St A N

3,0.1.0) 0,3,20) \ / 43.4.4) (43 7 (7.5,64)
1.04)

Ii000 Si1002) Ta103) U105

References

o http://www.cs.colostate.edu/~cs551/CourseNotes/Synch
ronization/SynchTOC.html

O https://www.cs.rutgers.edu/~pxk/417/notes/content/05-
clock-synchronization-slides.pdf

O https://www.cs.rutgers.edu/~pxk/417/notes/content/06-
logical-clocks-slides.pdf

