
Synchronization

527950-1
Fall 2019

11/14/2019
Kyoung Shin Park

Applied Computer Engineering
Dankook University

Mutual Exclusion

 Mutex = mutual exclusion
 “ensure that multiple process that share resources do

not attempt to share the same resource at the same
time”

 “The concurrent access to a shared resource by several
uncoordinated user-requests is serialized to secure the
integrity of the shared resource”

 How can this be accomplished for distributed system?

Critical Section

 A critical section (CS) is “a code segment in which a
shared resource is referenced” and “the portion of
code or program accessing a shared resource”

 We must prevent concurrent execution by more than
one process at a time
 Mutual exclusion is one part of the solution to this problem

 Requirements:
 If no process is in the critical section, any requesting process

may access it without delay
 When two or more process want the critical section, a section

of which process to enter the critical section cannot be
delayed indefinitely

 No process can prevent another process from entering the
critical section indefinitely

Critical Section Problem

 Consider a system consisting of n processes {P0, P1, P2,
.. Pn}
 Each process has a segment of code, called a critical section
 The important feature of the system is that, when one process

is executing in its critical section, no other process is to be
allowed to execute in its critical section

 The execution of critical sections is mutually exclusive in time

 Assume we have several sequential processors
 Let these processors share a common data area (i.e., data

within a shared memory)
 This is the same as multi-programmed processes or

cooperating sequential processes

Critical Section Problem

 Assume that each process has the following code:
P_i() {

while (true) {
criticalSection_i;
program_i; // remainder section

}
}
 Within criticalSection_i, the common data area is referenced

(i.e., data within the shared memory)
 Only one process can be in its critical section at any given

time
 Such processes may be called loosely connected processes.

They are almost independent.

Critical Section Problem

 Assumptions:
1. Only one process can access the shared memory at a time,

simultaneous references would result in sequential accesses
in an unknown order

2. There is no priority among the critical sections
3. Processors can be of different speeds (We don’t want to

depend on timing tricks)
4. A process can halt, only if it is not in its critical section

 Now assume that the process all begin at the same
time
begin

P_1 and P_2 and P_3 and … and P_n
end

Critical Section Solutions

 Critical Section Solutions
 The solution must ensure the two processes do not enter

critical regions at the same time
 The solution must prevent interference from processes not

attempting to enter their critical regions
 The solution must prevent starvation

 Critical Section Solutions, alternate statement
 A solution to the critical section problem must show that

 Mutual exclusion is preserved
 Progress requirement is satisfied
 Bounded-waiting requirement is met

Critical Section Solutions

 How is mutual exclusion preserved?
 If process P1 is executing in its critical section, then no other

processes can be executing in their critical sections

 How is the progress requirement satisfied?
 If no process is executing in its critical section and there exist

some processes that wish to enter their critical sections, then
only those processes that are not executing in their remainder
section can participate in the decision of which will enter its
critical section next, and this section cannot be postponed
indefinitely

 How is bounded waiting met?
 There exists a bound on the number of times that other

processes are allowed to enter their critical sections after a
process has made a request to enter its critical section and
before that request is granted.

Critical Section Hardware Solutions

 Hardware mechanism
 Needed are some atomic(i.e., non-interruptible) hardware

operations
 That atomically test if a critical section is currently occupied
 That can grab it if it not busy
 And otherwise will wait, while continuing to test it until it is not

busy

 Possible solutions include
 Atomic hardware operations
 Hardware locks
 Spin locks
 Mutex hardware operations
 Cache concurrency control

Critical Section Hardware Solutions

 In a uniprocessor,
 The CS can disable/enable interrupts whenever a process

enters/exits the CS

 In a multiprocessor or a distributed system,
 The uniprocessor solution won’t work since it can only affect

the machine on which the CS lives
 We need to use test-and-set mechanisms, busy-waiting,

atomic swaps or some software solutions

 While atomic operations are difficult to implement in
parallel computers (multiprocessors),
 They are possible (e.g. spinlocks in the Encore Multimax)

 However, for distributed systems
 The solutions need to done in software

Critical Section Hardware Solutions

 Lock mechanisms
 A lock is one form of hardware support for mutual exclusion
 If a shared resource has a locked hardware lock, it is already

in use by another process
 If it is not locked, a process may freely

 Lock it for itself
 Use it
 Unlock it when it finishes

 Problem: Race conditions struct lock {int held =0;}
void lock(struct lock *I) {

while (I -> held);
I->held =1;

}
void unlock (struct lock &I) {

I-> held =0;
}

lock(lock);
--critical section
unlock(lock);
--remainder section

만약 여기서 interrupt 되면

Critical Section Hardware Solutions

 Test-and-Set
 Is a hardware implementation for testing for the lock and

resetting it to locked
 If test shows unlocked, the process may proceed
 Acts as an atomic operation
 Permits

 Busy waits
 Spinning
 Spinlocks

int test_and_set(int *target) {
int rv = *target;
*target = 1;
return rv;

}

do {
while(test_and_set(&lock));
--critical section

lock = 0;
--remainder section

} while(true);

Critical Section Hardware Solutions

 Atomic Swap
 Performs three operations atomically

1. Swap current lock value with temp locked lock
2. Examine new value of temp lock
3. If locked, repeat

If unlocked, proceed into critical section

 Utilizes a temporary variable
int compare_and_swap(int *value, int expected, int new_value) {

int temp = *value;
if (*value = expected) {

*value = new_value;
}
return temp;

}

do{
while(compare_and_swap(&lock, 0, 1) !=0);
--critical section

lock = 0;
--remainder section

}while(true);

Critical Section Software Solutions

 Software mechanisms
 Possible software solutions include

 Software locks
 Programming language constructs

 Semaphores
 Critical regions
 Monitors

 System library support

 In distributed systems mechanisms for critical section software
solutions also include
 Centralized lock manager algorithms
 Distributed lock manager algorithms
 Token-passing algorithms
 Election algorithms

Critical Section Software Solutions

 Every algorithm used for software mutual exclusion
solutions must meet the following criteria
 Does mutual exclusion hold?
 Is interference from other processes not currently trying to

get into the critical section prevented?
 Are all processes waiting for the shared resource (or critical

section) protected against starvation? That is, will each
process eventually be scheduled?

Centralized Lock Manager
 A centralized lock manager maintains information on

 Which processes have requested access to critical section
 Which processes have been granted request

 A centralized lock manager algorithm:
 Request message (required)

 When a process needs to access CS, it sends a request message to
the centralized lock manager, requesting entry to CS

 Granted message (required)
 If CS is available, the lock manager returns a granted message to

the requesting process

 Queued message (optional)
 If CS is not available, the lock manager may return a queued

message (wait), in some versions of this type of algorithm

 Release message (required)
 When a process that has been granted access to a CS finishes CS,

it sends a release message back to the lock manager so that
another process can be granted access

Centralized Lock Manager

 Correctness of the algorithm
 Does the algorithm assure mutual exclusion?

 Yes, as only one process is granted access at a time, and not
other process can enter its critical section until the first process
finishes and sends a release message

 Can other processes not in competition for the critical section
interfere with access to the critical section?
 No, as only processes requesting or using the critical section

communicate with the lock manager

 Is starvation possible?
 No, as unfulfilled requests are queued until granted access

Centralized Lock Manager

 Problems/Disadvantages
 The lock manager is a single critical component

 There is no redundancy. The single lock manager may crash and
bring down entire system.

 If it goes down, all processes dependent on it may go down as
well

 This means there is a single point of failure
 This would be unusable for real-time systems

 Since all messages are sent to the lock manager or received
from the manager
 There is increased traffic to/from that node
 This creates a possible bottleneck in the network

Centralized Lock Manager

 Example
 Now consider a distributed system with three running process,

Process1, Process2, Process3
 Each of the processes has access to a shared data
 Each process has a critical section
 Assume the mutual exclusion is controlled by a centralized

lock manager

Centralized Lock Manager

 Initially no processes are in their critical section
a. Process 3 request its CS and
b. Process 3 granted access to its CS
c. Process 1 requests its CS but the CS is locked, so
d. Process 1 is placed on a queue waiting for the lock
e. Process 2 requests its CS but the CS is locked, so
f. Process 2 is queued
g. Process 3 finishes its CS, releasing access to the CS and opening the

lock
h. The central manager checks the lock, finding it unlocked and Process 1

is granted access to it CS by the central manager
i. Process 1 finishes it CS releasing access to the CS and opening the

lock
j. The central manager checks the lock, finding it unlocked and Process 2

is granted access to its critical section by the central manager
k. Process 2 finishes its CS releasing access to the CS and opening the

lock

Distributed Lock Manager

 A distributed lock manager avoids both the central point
of failure and the network traffic hotspot problems

 A distributed lock manager algorithm:
 Request message (required)

 When a process needs to access its critical section, it sends a
request message with its current timestamp to all the other
processes, requesting entry to the critical section. This may be done
as a broadcast message or as a set of individual messages.

 Queued message (optional)
 If another process is in the critical section, that process queues the

request and may return a queued message, in some versions of this
type of algorithm. This optional message helps distinguish between
those processes that are very busy with other requests and those
that have died.

Distributed Lock Manager

 Granted message (required)
 If any of the other processes are not in the critical section and have

no other request with an earlier timestamp waiting in their queue,
they return a granted message to the requesting process

 If another process is in its critical section, it queues the requests of
all other processes until it is done. Then it sends out a granted
message to every process in its queue, much like a release
message.

 This means that a process may enter its critical section only if it has
received granted messages (or votes) from the majority of the
other processes. (Not absolute permission - Note that it is not
necessary to receive an unanimous vote.)

Distributed Lock Manager

 Correctness of the algorithm
 Does the algorithm assure mutual exclusion?

 Yes, as only one process is granted access at a time by the
majority of all other process.

 Two or more processes cannot receive a majority of the votes at
the same time

 Can other processes not in competition for the critical section
interfere with access to the critical section?
 No, as it only requests a vote from a majority of the other

processes.
 However, without the queued message, it is possible that a large

number of failed processes could prevent a process from
proceeding into its critical section.

 Is starvation possible?
 No, as unfulfilled requests are queued in order of timestamp

until granted access.

Distributed Lock Manager

 Problems/Disadvantages
 While the lock manager is no longer a single critical component,

all processes now take part in granting a critical section request.
If a majority of the processes fail, the other processes could
deadlock waiting for a decision.

 This is one reason the queued messages are used. If a process
never receives a queued message from another given process
(perhaps after several request), it knows that process must be
dead. Thus the number of processes needed for a majority vote
may be reduced.

 Furthermore, far more messages are generated by this
algorithm. As a process leaves its critical section, it sends out
granted messages to all process quests in its queue. These same
processes may send out queued messages as responses to all
request messages as well.

 This means we have far more traffic on the network as a
whole, instead of just one network hotspot.

Lamport’s Mutual Exclusion Algorithm

 Each process maintains request queue
 Queue contains mutual exclusion requests
 Messages are sent reliably and in FIFO order
 Each message is timestamped with totally ordered Lamport

timestamps
 Ensures that each timestamp is unique
 Every node can make the same decision by comparing

timestamps

 Queues are sorted by message timestamps

Process Timestamp

P4 1021

P8 1022

P1 3944

P6 8201

P12 9638

Lamport’s Mutual Exclusion Algorithm

 Request a critical section
 Process Pi sends request(i, Ti) to all nodes

 And places request on its own queue

 When a process Pj receives a request
 It returns a timestamped ACK
 Places the request on its request queue

 Enter a critical section (accessing resource)
 Pi has received ACKs from everyone
 Pi’s request has the earliest timestamp in its queue

 Release a critical section
 Process Pi removes its request from its queue
 Sends release(i, Ti) to all nodes
 Each process now checks if its quest is the earliest in its

queue – It so, that process now has the critical section.

Lamport’s Mutual Exclusion Algorithm

 N points of failure
 A lot of messaging traffic

 Requests & releases are sent to the entire group

Ricart & Agrawala’s Algorithm

 Distributed mutual exclusion algorithm using reliable
multicast and logical clocks (Ricart & Agrawala 1981)

 When a process wants to enter critical section,
1. Compose message containing

 Identifier (machine ID, process ID)
 Name of resources
 Timestamp (e.g., totally-ordered Lamport)

2. Reliably multicast request to all processes in group
3. Wait until everyone gives permission
4. Enter critical section & use resources

Ricart & Agrawala’s Algorithm

 When a process receives request,
 If receiver not interested

 Send OK to sender

 If receiver is in critical section
 Do not reply, add request to queue

 If receiver just sent a request as well (potential race
condition)
 Compare timestamps on received & sent messages
 Earliest wins
 If receiver is loser, send OK
 If receiver is winner, do not reply, queue it

 When done with critical section
 Send OK to all queued requests

Ricart & Agrawala’s Algorithm

 Not great either
 N points of failure
 A lot of messaging traffic
 Also, demonstrates that a fully distributed algorithm is

possible

Lamport vs Ricart & Agrawala Algorithm

 Lamport
 Everyone responds (ACKs) always – no hold-back
 3(N-1) message

 Request – ACK – Release

 Process decides to go based on whether its request is the
earliest in its queue

 Ricart & Agrawala
 If you are in the critical section (or won a tie)

 Don’t respond with an ACK until you are done with the critical
section

 2(N-1) message
 Request - ACK

 Process decides to go if it gets ACKs from everyone

Token-Passing Mutual Exclusion

 There are many token-passing algorithms that may be
used on parallel or distributed systems

 The network of processors must be logically arranged as
a ring of processors.

 There is only one unidirectional path through the ring.
 Only one token is active in a logical ring of processes.
 When a process holds the token,

it may enter its critical section.
Otherwise, it passes the token onto
the next logical process in the ring.

 When the process is done
with its critical section, it passes
the token onto the next process.

Token-Passing Mutual Exclusion

 Correctness of the algorithm
 Assure mutual exclusion?

 Yes, there is only one token.
 Only one process can hold the token at a time.

 No interference from processes not needing mutex?
 Yes, if a process does not need mutual exclusion, it simply passes

the token on.

 Possible starvation?
 No, a process holding the token may enter mutual exclusion only

once.
 Then, it must pass the token on to the next process.

Token-Passing Mutual Exclusion

 Complications
 What if the token gets lost?

 How might that happen?
 How can you tell if that happens?
 How do you know that the token is not just being used for a

long time?

 What if the process holding token crashes?
 What if some other process crashes?

 Is the ring destroyed?

 How can we add (and identify) other processes to the ring?
 How can we remove some processes from the ring?

Token-Passing Mutual Exclusion

 Possible Solutions
 Make one centralized node be a monitor (synchronized

object) and/or make the token a monitor
 Send messages to request the current location of the token
 If the token is missing, start a new token
 All new nodes (and recovered nodes) should check in with the

monitor
 Lost nodes can be recorded in the monitor via the neighbors of

the lost nodes

 Make all nodes be monitors

Tree-Based Token Algorithm for Mutual
Exclusion

 This algorithm is a distributed algorithm, implemented
with a global FIFO queue.
 Local FIFO queues are linked to form a global queue using a

tree topology.
 Recall in the Token-Ring algorithm that the token was passing

along around the ring even when no node wanted or needed it.

 An alternate approach would be as follows
 A process requests the token whenever it needs it
 The token only moves to another node when it is requested.
 The process’s request message must find the node on which

the token is located.

 In the topology of a tree, other nodes can always find
the root by traveling back up through their ancestors.

Tree-Based Token Algorithm for Mutual
Exclusion

 The rules are quite simple.
 The token is always located at the root of the tree.
 The tree is considered a directed graph with the arcs all

pointing toward the root.
 Each node of the tree represents the current logical location of

a process.

Tree-Based Token Algorithm for Mutual
Exclusion
 The algorithm works as follows

1. Whenever a node’s process wants mutual exclusion (the
token) it sends the request to the root of the tree.

2. When the token is acquired, it must first move to the
requesting node. In doing so, it reshapes the tree so that the
requesting node becomes the root of the tree.

3. Each process maintains, a FIFO queue of requests and a
pointer to its parent in the tree.

4. Whenever a request is made, it is appended to the FIFO
queue at that node.

5. If the node does not currently have the token and the queue is
empty, then node (process) must send the request to its
parent node.

6. If the node does have the token and the FIFO queue is not
empty, the process removes the top entry in the queue and
sends the token to that node (process), while changing the
direction of its own pointer to point toward the process when
the token is sent.

Tree-Based Token Algorithm for Mutual
Exclusion

 Correctness of the algorithm
 Assure mutual exclusion?

 Yes, there is only one token.
 Only one process can hold the token at a time.

 No interference from processes not needing mutex?
 Yes, a token only moves to those nodes that request it (mutual

exclusion).

 Possible starvation?
 No, a process wanting the token will be placed in a FIFO queue,

and it will eventually be granted the token.

Recall that a tree is just a acyclic graph, meaning that not possible
to form a cyclic wait. This prohibits deadlock.

Tree-Based Token Algorithm for Mutual
Exclusion

 Example
1. Initially, P0 holds the token. Also, P0 is the

current root.

2. P3 wants the token to get into its critical
section. So, P3 adds itself to its own FIFO
queue and sends a request message to its
parent P2.

3. P2 receives the request from P3. It adds P3
to its FIFO queue and passes the request
message to its parent P1.

4. P1 receives the request from P2. It adds P3
into its FIFO queue and passes the request
message to its parent P0.

Tree-Based Token Algorithm for Mutual
Exclusion

5. At this point, P2 also wants the token.
Since its FIFO queue is not empty, it adds
itself to its own FIFO queue.

6. P0 receives the request from P3 through
P1. P0 surrenders the token and passes it
on to P1. It also changes the direction of
the arrow between them, making P1 the
root, temporarily.

7. P1 removes the top element of its FIFO
queue to see which node requested the
token. Since the token needs to go to P3,
P1 surrenders the token and passes it onto
P2. It also changes the direction of the
arrow between them, making P2 the root,
temporarily.

Tree-Based Token Algorithm for Mutual
Exclusion

8. P2 removes the top element of its FIFO
queue to see which node requested the
token. Since the token needs to go to P3,
P2 surrenders the token and passes it onto
P3. It also changes the direction of the
arrow between them, making P3 the root.

9. Now, P3 holds the token and can execute
its critical section. It is able to clear the
top (and only) elements of its FIFO queue.
Note that P3 is the current root.

10. In the meantime, P2 checks the top
element of its FIFO queue and realizes that
is also needs to request the token. So, P2
sends a request message to its current
parent, P3, who appends the request to
its FIFO queue.

Tree-Based Token Algorithm for Mutual
Exclusion

11. As soon as P3 completes its critical section,
it checks the top element of its FIFO queue
to see if it is needed elsewhere. In this case,
P2 has requested it, so P3 sends it back to
P2. It also changes the direction of the arrow
between them, making P2 the new root.

12. P2 holds the token and is able to complete
its critical section. Then it checks it FIFO
queue, which is empty. So it waits until
some other node request the token.

Election Algorithms

 Many of the algorithms for distributed systems require
some centralization, some site with
leader/coordinator activities.

 All other sites need to recognize this leader; often
there is accomplished by an initial
agreement/election.

 When the site of the leader fails or goes down for
some reason, it is necessary to elect a new leader.

 This is the purpose of election or agreement
algorithms.

Election Algorithms

 There are two basic criteria for an election algorithm.
 One way to decide the leader is to use some global priority.

 The Bully algorithm by Garcia-Molina (1982)

 The second is a more general, preference-based algorithm,
that permits some nodes to have heavier votes.
 Token-Ring election algorithm by Chang & Robert (1979)

Election Algorithms

 Assumptions for most election algorithms
 A complete topology, i.e., one message hop between any two

processes
 All process IDs are unique and known to all other processes.
 All communication networks are reliable, i.e., only

communicating processes may fail.
 This assures that no messages are

 Lost
 Duplicated
 Corrupted

 A recovering process is aware that it failed
 Failure is reliably detected by setting the time-out interval to be a

little larger than the sum of the round-trip message delay and the
message processing time.

 A failed process can rely on the coordinator to poll periodically for
recovered process so that they may rejoin the pool of processes.

Bully Election Algorithm

 The Bully Election Algorithm (Garcia-Molina)
 One process notices that the leader/server is missing and

 Sends messages to all other processes
 Requests to be appointed leader
 Includes his processor number

 Processes with higher (lower) process numbers can bully the
first process.

 The process with highest ID wins the election and sends out
a message to that effect.

 The process that initiates the election need only send
messages about election to higher numbered processes.

 Any processes that respond effectively tell the first process
that they overrule him and that he is out of the running as
they have higher IDs.

 These processes then start sending election messages to the
other high-number processes.

Bully Election Algorithm

1. We start with 6 processes, all directly
connected to each other. P6 is the
leader, as it has the highest number.

2. P6 fails

3. P3 notices that P6 does not respond.
So it starts an election, notifying
those processes with IDs grater than
3.

Bully Election Algorithm

4. Both P4 and P5 respond, telling P3
that they’ll take over from here.

5. P4 sends election messages to both
P5 and P6.

6. Only P5 answers and takes over the
election.

Bully Election Algorithm

7. P5 sends out only one election
message to P6.

8. When P6 does not respond, P5
declares itself the winner.

Token-Ring Election Algorithm
 Token-Ring Election Algorithm (Chang & Roberts)

 Each process has a unique ID. Each process knows its
successor in the ring.

 When a process notices the leader is down, it sends an
election message to its successor.

 If the successor is down, the originating process sends the
message to the next process in the logical ring.

 Each process that receives an election message, passes it on
to the next process in the ring. Each sender appends its own
ID to the message.

 The election message eventually returns to the originating
process and contains its ID.

 At this point, the election message is changed to a
coordinator (new leader) message and sent around ring.
The process with the highest ID in the circulated election
message becomes the new leader.

 When the coordinator message comes back to the
originating process, it is deleted.

Token-Ring Election Algorithm

1. We start with 6 processes, connected
in a logical ring. P6 is the leader, as it
has the highest number.

2. P6 fails

3. P3 notices that P6 does not respond.
So it starts an election, sending a
message containing its ID to the next
node in the ring.

Token-Ring Election Algorithm

4. P5 passes the message on, adding its
own ID to the message.

5. P0 passes the message on, adding its
own ID to the message.

6. P1 passes the message on, adding its
own ID to the message.

Token-Ring Election Algorithm

7. P4 passes the message on, adding its
own ID to the message.

8. When P3 receives the message back,
it knows the message has done
around the ring, as it own ID is in the
list. Picking the highest ID in the list,
it starts the coordinator message “5
is the leader” around the ring.

9. P5 passes on the coordinator message.

Token-Ring Election Algorithm

10. P0 passes on the coordinator message.

11. P1 passes on the coordinator message.

12. P4 passes on the coordinator message.

13. P3 receives the coordinator message,
and stop it.

References

 http://www.cs.colostate.edu/~cs551/CourseNotes/Synch
ronization/SynchTOC.html

 https://www.cs.rutgers.edu/~pxk/417/notes/10-
mutex.html

