Direct Sound

DirectSound

305890
Spring 2010
5/28/2010
Kyoung Shin Park
kpark@dankook.ac.kr

o DirectSound

= Links d3d9.lib, d3dx9.lib, winmm.lib, dsound.lib, dxerr9.lib,
dxguid.lib

DirectSound

o DirectSound
= Provides a single Application Programming Interface (API) for
the playback of sounds and music
o How does DirectSound work?

m DirectSound manages the sound data through the use of
buffers

m Possible to have multiple buffers that hold any sound data
= The buffers can be manipulated or played by DirectSound or
even mix them up to construct a new buffered data
o Sound buffers
= The areas that hold the sound data

= Eg, if a WAV file is loaded to a sound buffer, the sound data
within the file would be placed into a sound buffer, which can
be manipulated or played

Direct Sound

o Types of buffers DirectSound provides
= Primary buffer

All sounds ﬁlayed are mlxed into the primary buffer, which will be
played by the sound card

= Secondary buffer
The buffer that holds all the sound data that our application needs

DirectSound can play multiple sounds by accessing more than one
secondary buffer simultaneously

= Static buffer
When sound data is of limited size, use the static buffer

This buffer allows for the complete loading of a particular sound into
memory

= Streaming buffer
When sound data may be too large to fit into memory at one time
Allows for only a portion of a sound to be loaded into it before being
send of to be played

iAs (tjh% sound within the streaming buffer is played, new sound data is
oade

Direct Sound Interface

o IDirectSound8

o IDirectSoundBuffer8

o [DirectSound3DBuffer8

o IDirectSound3DListener8

o IDirectSoundCapture8

o IDirectSoundCaptureBuffer8
o IDirectSoundNotify8

O IKsPropertySet8

DirectSound Setup

o DirectSound Setup
1. Create a DirectSound device using DirectSoundCreate8()

2. Set the cooperative level using
IDirectSound8::SetCooperativelLevel()

Create a secondary buffer using
IDirectSound8::CreateSoundBuffer()

4. Read the sound data into the secondary buffer
5. Play/Pause/Stop sound in a buffer
6. Release all the instances after uses

w

Using DirectSound

o DirectSound
= Must be initialized to be used
m The first step is to use the DirectSound device, which is
represented by the IDirectSound8 interface
o DirectSound device

m Represents an interface to a specific piece of sound hardware
with a computer.

= To make DirectSound work, select a sound card and create a
DirectSound device.

m Create a DirectSound device using DirectSoundCreate8

Using DirectSound

HRESULT DirectSoundCreate8(LPCGUID IpcGuidDevice,
LPDIRECTSOUNDS8 *ppDS8, // LPDIRECTSOUNDS pointer
LPUNKNOWN pUnkOuter); // always NULL

o IpcGuidDevice
= The GUID that represents the sound device to use
= Use either DSDEVID_DefaultPlayback or NULL
= Use NULL to use the default sound device

o ppDS8

= The address to the variable that will hold the newly created DirectSound
device

o pUnkOuter
= The controlling object’s IUnknown interface, should be NULL

Using DirectSound

// variable that will hold the return code
HRESULT hr;

// variable that will hold the created DirectSound device
LPDIRECTSOUND8 m_pDS = NULL;

// Attempt to create the DirectSound device
hr = DirectSoundCreate8(NULL, &m_pDS, NULL);

// Check the return value to confirm that a valid device was created
if (FAILED(hr)) return false;

Setting the Cooperative Level

o Because DirectSound provides an access to a hardware
device, it needs to have a cooperative level set.

o In DirectSound, it's not possible to gain exclusive access to
the sound device

o But it's possible to ask OS to set the highest priority to our
application, but other applications can still trigger sounds
to be played

Setting the Cooperative Level

o 4 Cooperative Levels
= DSSCL_NORMAL

This level works best with other applications that still allow other
events

Cannot change the format of the primary buffer because the device
is shared with other applications
= DSSCL_PRIORITY

If an application requires more control over the primary buffer and
your sounds, you should use this cooperative level

Most games should use this level
= DSSCL_EXCLUSIVE
Exclusive access to sound device

= DSSCL_WRITEPRIMARY
This level gives an application write access to the primary buffer

Setting the Cooperative Level

o The cooperative level is set using SetCooperativeLevel()

HRESULT SetCooperativeLevelHWND hWnd, DWORD dwLevel);
= hWnd

The handle of the application window requesting the change in
cooperative level

= dwlevel
The cooperative level

Setting the Cooperative Level

Sound Files

HRESULT hr;

// Create the DirectSound device
LPDIRECTSOUNDS g_pDS = NULL;

hr = DirectSoundCreate8(NULL, &g_pDS, NULL);

// Set the DirectSound cooperative level
hr = g_pDS->SetCooperativeLevel(hWnd, DSSCL_PRIORITY);

if (FAILED(hr)) return false;

o Should load sound data within DirectSound into
secondary buffers before using it

o Sound data should be loaded into either a static or
streaming buffer

o Static buffer
m A fixed-length buffer that has full sound loaded into it

o Streaming buffer

m Needed when the sound being loaded is larger than what the
buffer can accommodate

m A small buffer is used
m Parts of the sound data are continuously loaded in and played

The Secondary Buffer

WAVEFORMATEX structure

O Steps to play a sound data
= DirectSound uses buffers to store the audio data that it needs

m Should create a secondary buffer storing the audio data to play a
sound

m After the buffer is created, the sound is loaded into it fully (or
partially for a streaming sound)

= Then, play the sound

o DirectSound allows for any number of secondary
buffers to be played simultaneously all being mixed
into the primary buffer.

o Before creating a secondary buffer, needs to know the
format of the sound that will reside in it

o DirectSound requires that the buffers you create are of
the same format as the sound within them

m E.g., if a 16-bit WAV file with two channels of sound, the
secondary buffer must be created by this format

o The formats of the buffers in DirectSound are described
using the WAVEFORMATEX structure

= Create a standard WAVEFORMATEX structure if the format of the
WAV file data is known

= If the file format is not known, create this structure and fill it in
after opening the audio file

typedef struct {
WORD wFormatTag;
WORD nChannels;
DWORD nSamplesPerSec;
DWORD nAvgBytesPerSec;
WORD nBlockAlign;
WORD wBitsPerSample;
WORD cbSize;

} WAVEFORMATEX;

WAVEFORMATEX structure

wFormatTag
The type of waveform audio

For one- or two-channel PCM data, this value should be
WAVE_FORMAT_PCM

nChannels

The number of channels needed (1: MONO, 2: STEREO)
nSamplesPerSec

Sampling rate (Mhz). 8.0 kHz, 11.025 kHz, 22.05 kHz, 44.1 kHz
nAvgBytesPerSec

Average data-transfer rate (in bytes per second)
nBlockAlign

Alignment (in bytes).

nChannels * wBitsPerSample / 8
wBitsPerSample

The number of bits per sample (either 8 or 16)
cbSize

Extra number of bytes to append to this structure. Always 0.

The Secondary Buffer

o Needs a second structure to finish describing the
secondary buffer to DirectSound: DSBUFFERDESC

typedef struct {

DWORD dwSize;

DWORD dwfFlags;

DWORD dwBufferBytes;

DWORD dwReserved;
DLPWAVEFORMATEX IpwfxFormat;
GUID guid3DAlgorithm;

} DSBUFFERDESC, *LPDSBUFFERDESC;

DSBUFFERDESC structure

dwsSize

The size of the DSBUFFERDESC structure (in bytes)
dwfFlags

Set of flags specifying the capabilities of the buffer
dwBufferBytes

The size of the new buffer (in bytes)

Number of bytes of sound data that this buffer can hold
dwReserved

Must be 0, Not used
lpwfxFormat

An address to a WAVEFORMATEX structure
guid3DAlgorithm

GUID identifier to the two-speaker virtualization algorithm to use

DSBUFFERDESC structure

o dwFlags

DSBCAPS_CTRLALL: B{TH= B E ®|0f 7|58 7}FICH
DSBCAPS_CTRLDEFAULT: H{IH= 7|2 M|o| &M< J}AIC} o] Zte
DSBCAPS_CTRLVOLUME, DSBCAPS_CTRLFREQUENCYZ X|X3}=
ZAD} = US|, DirectX6.00| S = E Q10K C}.
DSBCAPS_CTRLFREQUENCY: H{I{ 7} Z=1}&= H|O| 7| =S 7}zIC
DSBCAPS_CTRLPAN: H{TH 7} T (pan) 7|5S J}7ICH
DSBCAPS_CTRLVOLUME: H{IHJ} 22 /0] 7|5< 7+RICH
DSBCAPS_STATIC: H{I{ 7} &% AFSE HO|E{0] AFRE 7S
LZCH & SIEY O (AAREZLE) T2 2|0f g otot
DSBCAPS_LOCHARDWARE: B @ 2| 7} AFR7HS &HCHH 8}
HE2|0f AF2E HIHE 4d5tH SLEQ0] HdS AME ST
DSBCAPS_LOCSOFTWARE: A| A&l 0 2 2| (RAM)Of| AFR = K Z
AHESH 2T EQI0 S AT
DSBCAPS_PRIMARYBUFFER: = AL = H{IH{Z MAM3iC} Of
EY0E FX| UOH J|2UCE HX ARE HIHZE MMEIC

[

Ao

Creating a Secondary Buffer

O After creating the DSBUFFERDESC structure, create the
secondary buffer using CreateSoundBuffer().

HRESULT CreateSoundBuffer(LPCDSBUFFERDESC pcDSBufferDesc,
LPDIRECTSOUNDBUFFER *ppDSBuffer,

LPUNKNOWN pUnkOuter);

m pcDSBufferDesc

Address to an already-defined DSBUFFERDESC structure
= ppDSBuffer

Address to the variable that will hold the newly created buffer
= pUnkOuter

Address to the controlling object’s IlUnknown interface

Should be NULL

Creating a Secondary Buffer

// Define a WAVEFORMATEX structure
WAVEFORMATEX wfx;

// Clear the structure to all zeros
ZeroMemory(&wfx, sizeof(WAVEFORMATEX));

// Set the format to WAVE_FORMAT_PCM

wfx.wFormatTag = (WORD) WAVE_FORMAT_PCM;

wfx.nChannels = 2; // set channels by 2

wfx.nSamplesPerSec = 22050;

wfx.wBitsPerSample = 16;

wfx.nBlockAlign = (WORD) (wfx.wBitsPerSample / 8 * wfx.nChannels);
wfx.nAvgByPerSec = (DWORD) (wfx.nSamplesPerSec * wfxnBlockAlign);

Creating a Secondary Buffer

DSBUFFERDESC dsbd;

ZeroMemory(&dsbd, sizeof(DSBUFFERDESQ));
dsbd.dwSize = sizeof(DSBUFFERDESC);
dsbd.dwFlags = 0;

dsbd.dwBufferBytes = 64000;
dsbd.guid3DAlgorithm = GUID_NULL;
dsbd.lpwfxFormat = &wfx;

LPDIRECTSOUNDBUFFER DSBuffer = NULL;
hr = g_pDS->CreateSoundBuffer(&dsbd, &DSBuffer, NULL);
if (FAILED(hr)) return NULL;

Locking the Sound Buffer

o Locking the sound buffer

m Locking the sound buffer gives us a chance to manipulate and
change the sound data within a buffer

m After locking, sound data can be loaded into the buffer
m Make sure to unlock the buffer after loading data

HRESULT Lock(

DWORD dwOffset,

DWORD dwBytes,

LPVOID *ppvAudioPtrl,
LPDWORD pdwAudioBytesl,
LPVOID *ppvAudioPtr2,
DPDWORD pdwAudioBytes2,
DWORD dwfFlags);

Locking the Sound Buffer

= dwOffset

Specifies where in the buffer the lock should begin
dwBytes

The number of bytes within the buffer to lock (in bytes)
ppAudioPtrl

Receives a pointer to the first part of the locked buffer
pdwAudioBytesl

Receives the number of bytes in the block of bytes in the block
pointer by ppvAudioPtrl (in bytes)

pdwAudioPtr2

Receives a pointer to the second part of the locked buffer

If filling the whole buffer with sound data, this must be NULL
pdwAudioBytes2

Receives the number of bytes in the block pointed by ppvAudioPtr2
(in bytes)
Should be NULL if pdwAudioPtr2 is NULL.

Locking the Sound Buffer

= dwfFlags
Specifies how the lock should occur
DSBLOCK_FROMWRITECURSOR: start the lock from the write cursor

DSBLOCK_ENTIREBUFFER: Lock the entire buffer. If this flag is set, the
dwBytes variable is ignored

A HM HIo| A=
A2 EE X d5t= St
= Hol|= LIHX
1000 bytes i g
Jd2|3, X R B
Second part A AFZE Tfd0o| ELIH
(100 bytes) ZHE £ A B
MEE AFZEE THd5HA
. ElT}
pdwAudioPtrl O|ZA SHA, Ab
=L E WEA 5t
ol B7|X| ¥
&= UA Btk

pdwAudioPtr2

Unlocking the Sound Buffer

o Unlock the Sound Buffer
m After loading sound data into the buffer, then unlock it

HRESULT Unlock(LPVOID pvAudioPtrl, DWORD dwAudioBytesl,
LPVOID pvAudioPtr2, DWORD dwAudioBytes?2);
= pvAudioPtrl
The address of the value from ppvAudioPtrl used in Lock
= dwAudioBytesl
The number of bytes written to pvAudioPtrl (in bytes)
= pvAudioPtr2
The address of the value from ppvAudioPtr2 used in Lock
= dwAudioBytes2
The number of bytes written to pvAudioPtr2 (in bytes)

Reading the Sound Data into the Buffer

o Loading sound data
= Will use the sample file, dsutil.cpp, included in the DirectX
Sound.
o Loading sound data process
1. Create CWaveFile object
2. Use Open() method of CWaveFile to gain access to the WAV
file
Create the secondary sound buffer to hold the WAV data
Lock the buffer
Read and copy sound data
Unlock the buffer

o vk~ w

Reading the Sound Data into the Buffer

1. Create a CWaveFile object
CWaveFile wavFile = new CWaveFile();

2. Use Open() of CWaveFild to gain access to the WAV file

m The following example shows opening a file called test.wav for
reading.

m If the file doesn't have any data in it (size=0), then stop.

// open “test.wav”

wavFile->Open(“test.wav”’, NULL, WAVEFILE_READ);

// Check to make sure that the size of data within the wave file is valid
if (wavFile->GetSize() == 0) return false;

3. Create the secondary sound buffer to hold the WAV data

Reading the Sound Data into the Buffer

4. Lock the buffer

HRESULT hr;
VOID *pDSLockedBuffer = NULL; // pointer to locked buffer memory
DWOR dwDSLockedBufferSize = 0; // size of the locked buffer
// Start the beginning of the buffer
hr = DSBuffer->Lock(0,
// This assumes a buffer of 64000 bytes
64000,
// The variable holds a pointer to the start of the buffer
&pDSLockedBuffer,
// holds the size of the locked buffer
&dwDSLockedBufferSize,
NULL, // No secondary is needed
NULL, // No secondary is needed
DSBLOCK_ENTIREBUFFER); // Lock the entire buffer
if (FAILED(hr)) return NULL;

Reading the Sound Data into the Buffer

5. Read and copy sound data

m Before reading data from the opened wave file, need to reset
the WAV data to the beginning using ResetFile of CWaveFile

m Then, read data using Read method

HRESULT hr; // variable to hold the return code

// the amount of data read from the wav file

DWORD dwWaveDataRead = O;

// reset the WAV file to the beginning

wavFile->ResetFile();

// read the WAV file

hr = wavFile->Read((BYTE *) pDSLockedBuffer,
dwDSLockedBufferSize, &dwWaveDataRead);

if (FAILED(hr)) return NULL;

Reading the Sound Data into the Buffer

6. Unlock the sound buffer

DSBuffer->Unlock(pDSLockedBuffer, dwDSLockedBufferSize, NULL,
NULL);

Playing Sound in a Buffer

o Playing sound in a buffer

m After loading data into the DirectSoundBuffer, it is possible to play

it using Play function

HRESULT Play(DWORD dwReservedl, DWORD dwpPriority,
DWORD dwfFlags);
= dwReservedl
Must be 0
= dwPriority
The priority level to play the sound
Any value from 0 to OxFFFFFFFF

Must set to 0 if the DSBCAPS_LOCDEFER flag was not set when the
buffer was created.

= dwFlags

Specifying the how the sound should be played, e.g.
DSBPLAY_LOOPING

DSBuffer->Play(0, 0, DSBPLAY_LOOPING); // background loop sound

Stopping a Sound

o Stopping a sound

HRESULT Stop();

HRESULT hr;

hr = DSBuffer->Stop();

if (FAILED(hr)) return false;

Controling the Volume

o Changing the volume

m Can adjust the volume of a sound through the buffer in which it

resides

= The volume must be in between DSBVOLUME_MIN (silence) and
DSBVOLUME_MAX (original volume of the sound)

HRESULT SetVolume(LONG IVolume);

= [Volume

Any value between 0 (DSBVOLUME_MAX) and -10000
(DSBVOLUME_MIN)

O Get the current volume at which a sound is playing
HRESULT GetVolume(LPLONG plVolume);

Panning the Sound

o Panning a sound between the left and right speakers
= Lowering the volume of a sound in one speaker and increasing it
in the opposite speaker
= Sounds seem to move around

HRESULT SetPan(LONG I[Pan);
= |Pan
Takes any value between DSBPAN_LEFT and DSBPAN_RIGHT

DSBPAN_LEFT (-10000) increase the volume of sound in the left
speaker to full while silencing the sound in the right speaker.

DSBPAN_RIGHT (10000) does the opposite.

DSBPAN_CENTER (0) defined as 0, resets both speakers to full
volume.

Panning the Sound

Reference

o Get the current pan value

HRESULT GetPan(LPLONG plPan);

O Before using SetPan or GetPan functions, you must set
the buffer to use these controls

O Need to set DSBCAPS_CTRLPAN flag in the
DSBUFFERDESC structure when you create the
secondary buffer

o DirectSound Overview
http://telnet.or.kr/directx/htm/directsound.htm

o DirectSound C/C++ Reference
http://telnet.or.kr/directx/htm/directsoundccreference.ht
m

