
Direct SoundDirect Sound

305890
S i 2010Spring 2010
5/28/2010

Kyoung Shin Parky g
kpark@dankook.ac.kr

DirectSoundDirectSound

DirectSound
Links d3d9.lib, d3dx9.lib, winmm.lib, dsound.lib, dxerr9.lib,
dxguid.lib

DirectSoundDirectSound

DirectSound
Provides a single Application Programming Interface (API) for
the playback of sounds and music

How does DirectSound work?How does DirectSound work?
DirectSound manages the sound data through the use of
buffers
Possible to have multiple buffers that hold any sound data
The buffers can be manipulated or played by DirectSound or

i th t t t b ff d d teven mix them up to construct a new buffered data

Sound buffers
The areas that hold the sound dataThe areas that hold the sound data
E.g., if a WAV file is loaded to a sound buffer, the sound data
within the file would be placed into a sound buffer, which can
be manipulated or played

Direct SoundDirect Sound

Types of buffers DirectSound provides
P i b ffPrimary buffer

All sounds played are mixed into the primary buffer, which will be
played by the sound card

Secondary bufferSecondary buffer
The buffer that holds all the sound data that our application needs
DirectSound can play multiple sounds by accessing more than one
secondary buffer simultaneouslysecondary buffer simultaneously

Static buffer
When sound data is of limited size, use the static buffer
This buffer allows for the complete loading of a particular sound intoThis buffer allows for the complete loading of a particular sound into
memory

Streaming buffer
When sound data may be too large to fit into memory at one timey g y
Allows for only a portion of a sound to be loaded into it before being
send of to be played
As the sound within the streaming buffer is played, new sound data is
loadedloaded

Direct Sound InterfaceDirect Sound Interface

IDirectSound8
IDirectSoundBuffer8
IDirectSound3DBuffer8
IDirectSound3DListener8
IDirectSoundCapture8p
IDirectSoundCaptureBuffer8
IDirectSoundNotify8y
IKsPropertySet8

DirectSound SetupDirectSound Setup

DirectSound Setup
1. Create a DirectSound device using DirectSoundCreate8()
2. Set the cooperative level using

IDirectSound8::SetCooperativeLevel()IDirectSound8::SetCooperativeLevel()
3. Create a secondary buffer using

IDirectSound8::CreateSoundBuffer()
4. Read the sound data into the secondary buffer
5. Play/Pause/Stop sound in a buffer

R l ll th i t ft6. Release all the instances after uses

Using DirectSoundUsing DirectSound

DirectSound
Must be initialized to be used
The first step is to use the DirectSound device, which is
represented by the IDirectSound8 interfacerepresented by the IDirectSound8 interface

DirectSound device
Represents an interface to a specific piece of sound hardwareRepresents an interface to a specific piece of sound hardware
with a computer.
To make DirectSound work, select a sound card and create a
Di tS d d iDirectSound device.
Create a DirectSound device using DirectSoundCreate8

Using DirectSoundUsing DirectSound

HRESULT DirectSoundCreate8(LPCGUID lpcGuidDevice,
LPDIRECTSOUND8 * DS8 // LPDIRECTSOUND8 i tLPDIRECTSOUND8 *ppDS8, // LPDIRECTSOUND8 pointer
LPUNKNOWN pUnkOuter); // always NULL

lpcGuidDevice
The GUID that represents the sound device to use
Use either DSDEVID DefaultPlayback or NULLUse either DSDEVID_DefaultPlayback or NULL
Use NULL to use the default sound device

ppDS8
Th dd t th i bl th t ill h ld th l t d Di tS dThe address to the variable that will hold the newly created DirectSound
device

pUnkOuter
Th lli bj ’ IU k i f h ld b NULLThe controlling object’s IUnknown interface, should be NULL

Using DirectSoundUsing DirectSound

// variable that will hold the return code
HRESULT hr;

// variable that will hold the created DirectSound device// variable that will hold the created DirectSound device
LPDIRECTSOUND8 m_pDS = NULL;

// Attempt to create the DirectSound device
hr = DirectSoundCreate8(NULL, &m_pDS, NULL);

// Check the return value to confirm that a valid device was created
if (FAILED(hr)) return false;if (FAILED(hr)) return false;

Setting the Cooperative LevelSetting the Cooperative Level

Because DirectSound provides an access to a hardware
device, it needs to have a cooperative level set.
In DirectSound, it’s not possible to gain exclusive access to
the sound device
But it’s possible to ask OS to set the highest priority to our

li ti b t th li ti till t i dapplication, but other applications can still trigger sounds
to be played

Setting the Cooperative LevelSetting the Cooperative Level

4 Cooperative Levels
DSSCL_NORMAL

This level works best with other applications that still allow other
eventsevents
Cannot change the format of the primary buffer because the device
is shared with other applications

DSSCL PRIORITYDSSCL_PRIORITY
If an application requires more control over the primary buffer and
your sounds, you should use this cooperative level
M h ld hi l lMost games should use this level

DSSCL_EXCLUSIVE
Exclusive access to sound devicec us e access to sou d de ce

DSSCL_WRITEPRIMARY
This level gives an application write access to the primary buffer

Setting the Cooperative LevelSetting the Cooperative Level

The cooperative level is set using SetCooperativeLevel()

HRESULT SetCooperativeLevel(HWND hWnd, DWORD dwLevel);p

hWnd
The handle of the application window requesting the change in
cooperative levelcooperative level

dwLevel
The cooperative level

Setting the Cooperative LevelSetting the Cooperative Level

HRESULT hr;

// Create the DirectSound device
LPDIRECTSOUND8 g pDS = NULL;LPDIRECTSOUND8 g_pDS = NULL;
hr = DirectSoundCreate8(NULL, &g_pDS, NULL);

// Set the DirectSound cooperative level
hr = g_pDS->SetCooperativeLevel(hWnd, DSSCL_PRIORITY);

if (FAILED(hr)) return false;

Sound FilesSound Files

Should load sound data within DirectSound into
secondary buffers before using it
Sound data should be loaded into either a static or

i b ffstreaming buffer
Static buffer

A fi d l h b ff h h f ll d l d d i iA fixed-length buffer that has full sound loaded into it

Streaming buffer
Needed when the sound being loaded is larger than what theNeeded when the sound being loaded is larger than what the
buffer can accommodate
A small buffer is used
Parts of the sound data are continuously loaded in and played

The Secondary BufferThe Secondary Buffer

Steps to play a sound data
DirectSound uses buffers to store the audio data that it needs
Should create a secondary buffer storing the audio data to play a
sound
After the buffer is created, the sound is loaded into it fully (or
partially for a streaming sound)
Then play the soundThen, play the sound

DirectSound allows for any number of secondary
buffers to be played simultaneously all being mixed p y y g
into the primary buffer.
Before creating a secondary buffer, needs to know the
format of the sound that will reside in itformat of the sound that will reside in it
DirectSound requires that the buffers you create are of
the same format as the sound within themthe same format as the sound within them

E.g., if a 16-bit WAV file with two channels of sound, the
secondary buffer must be created by this format

WAVEFORMATEX structureWAVEFORMATEX structure

The formats of the buffers in DirectSound are described
i h WAVEFORMATEXusing the WAVEFORMATEX structure
Create a standard WAVEFORMATEX structure if the format of the
WAV file data is known
If the file format is not known, create this structure and fill it in
after opening the audio file

typedef struct {typedef struct {
WORD wFormatTag;
WORD nChannels;
DWORD nSamplesPerSec;
DWORD nAvgBytesPerSec;
WORD nBlockAlign;WORD nBlockAlign;
WORD wBitsPerSample;
WORD cbSize;

} WAVEFORMATEX} WAVEFORMATEX;

WAVEFORMATEX structureWAVEFORMATEX structure

wFormatTag
The type of waveform audioThe type of waveform audio
For one- or two-channel PCM data, this value should be
WAVE_FORMAT_PCM

nChannelsnChannels
The number of channels needed (1: MONO, 2: STEREO)

nSamplesPerSec
Sampling rate (Mh) 8 0 kH 11 025 kH 22 05 kH 44 1 kHSampling rate (Mhz). 8.0 kHz, 11.025 kHz, 22.05 kHz, 44.1 kHz

nAvgBytesPerSec
Average data-transfer rate (in bytes per second)

nBlockAlign
Alignment (in bytes).
nChannels * wBitsPerSample / 8p /

wBitsPerSample
The number of bits per sample (either 8 or 16)

cbSizecbSize
Extra number of bytes to append to this structure. Always 0.

The Secondary BufferThe Secondary Buffer

Needs a second structure to finish describing the
secondary buffer to DirectSound: DSBUFFERDESC

typedef struct {

DWORD dwSize;
DWORD d FlDWORD dwFlags;
DWORD dwBufferBytes;
DWORD dwReserved;DWORD dwReserved;
DLPWAVEFORMATEX lpwfxFormat;
GUID guid3DAlgorithm;

} DSBUFFERDESC, *LPDSBUFFERDESC;

DSBUFFERDESC structureDSBUFFERDESC structure

dwSize
The size of the DSBUFFERDESC structure (in bytes)

dwFlags
Set of flags specifying the capabilities of the bufferSet of flags specifying the capabilities of the buffer

dwBufferBytes
The size of the new buffer (in bytes)
Number of bytes of sound data that this buffer can hold

dwReserved
Must be 0 Not usedMust be 0, Not used

lpwfxFormat
An address to a WAVEFORMATEX structure

guid3DAlgorithm
GUID identifier to the two-speaker virtualization algorithm to use

DSBUFFERDESC structureDSBUFFERDESC structure

dwFlags
DSBCAPS_CTRLALL: 버퍼는 모든 제어 기능을 가진다.
DSBCAPS_CTRLDEFAULT: 버퍼는 기본 제어 옵션을 가진다. 이 값은
DSBCAPS CTRLVOLUME DSBCAPS CTRLFREQUENCY를 지정하는DSBCAPS_CTRLVOLUME, DSBCAPS_CTRLFREQUENCY를 지정하는
것과 동일하지만, DirectX6.0이후부터 없어졌다.
DSBCAPS_CTRLFREQUENCY: 버퍼가 주파수 제어 기능을 가진다.
DSBCAPS_CTRLPAN: 버퍼가 팬 (pan) 기능을 가진다.
DSBCAPS_CTRLVOLUME: 버퍼가 볼륨제어 기능을 가진다.
DSBCAPS STATIC 버퍼가 정적 사운드 데이터에 사용될 것임을DSBCAPS_STATIC: 버퍼가 정적 사운드 데이터에 사용될 것임을
알린다. 대부분 하드웨어 (사운드카드) 메모리에 생성한다.
DSBCAPS_LOCHARDWARE: 메모리가 사용가능 하다면 하드웨어
메모리에 사운드 버퍼를 생성하며 하드웨어 믹싱을 사용한다.
DSBCAPS_LOCSOFTWARE: 시스템 메모리(RAM)에 사운드 버퍼를
생성하며 소프트웨어 믹싱을 사용한다생성하며 소프트웨어 믹싱을 사용한다.
DSBCAPS_PRIMARYBUFFER: 주 사운드 버퍼로 생성한다. 이
플래그를 주지 않으면 기본값으로 보조 사운드 버퍼로 생성된다.

Creating a Secondary BufferCreating a Secondary Buffer

After creating the DSBUFFERDESC structure, create the
secondary buffer using CreateSoundBuffer().

HRESULT CreateSoundBuffer(LPCDSBUFFERDESC pcDSBufferDesc,
LPDIRECTSOUNDBUFFER *ppDSBuffer,

LPUNKNOWN U kO t)LPUNKNOWN pUnkOuter);
pcDSBufferDesc

Address to an already-defined DSBUFFERDESC structurey

ppDSBuffer
Address to the variable that will hold the newly created buffer

U kOpUnkOuter
Address to the controlling object’s IUnknown interface
Should be NULL

Creating a Secondary BufferCreating a Secondary Buffer

// Define a WAVEFORMATEX structure
WAVEFORMATEX wfx;

// Clear the structure to all zeros// Clear the structure to all zeros
ZeroMemory(&wfx, sizeof(WAVEFORMATEX));

// Set the format to WAVE_FORMAT_PCM
wfx.wFormatTag = (WORD) WAVE_FORMAT_PCM;
wfx.nChannels = 2; // set channels by 2
wfx.nSamplesPerSec = 22050;
wfx wBitsPerSample = 16;wfx.wBitsPerSample = 16;
wfx.nBlockAlign = (WORD) (wfx.wBitsPerSample / 8 * wfx.nChannels);
wfx.nAvgByPerSec = (DWORD) (wfx.nSamplesPerSec * wfxnBlockAlign);g y p g

Creating a Secondary BufferCreating a Secondary Buffer

DSBUFFERDESC dsbd;
ZeroMemory(&dsbd, sizeof(DSBUFFERDESC));
dsbd.dwSize = sizeof(DSBUFFERDESC);
dsbd dwFlags = 0;dsbd.dwFlags = 0;
dsbd.dwBufferBytes = 64000;
dsbd.guid3DAlgorithm = GUID_NULL;g g _
dsbd.lpwfxFormat = &wfx;

LPDIRECTSOUNDBUFFER DSBuffer = NULL;
hr = g_pDS->CreateSoundBuffer(&dsbd, &DSBuffer, NULL);
if (FAILED(hr)) return NULL;if (FAILED(hr)) return NULL;

Locking the Sound BufferLocking the Sound Buffer

Locking the sound buffer
Locking the sound buffer gives us a chance to manipulate and
change the sound data within a buffer
After locking, sound data can be loaded into the bufferg
Make sure to unlock the buffer after loading data

HRESULT L k(HRESULT Lock(
DWORD dwOffset,
DWORD dwBytes, y ,
LPVOID *ppvAudioPtr1,
LPDWORD pdwAudioBytes1,
LPVOID * A di Pt 2LPVOID *ppvAudioPtr2,
DPDWORD pdwAudioBytes2,
DWORD dwFlags);g

Locking the Sound BufferLocking the Sound Buffer

dwOffset
S ifi h i h b ff h l k h ld b iSpecifies where in the buffer the lock should begin

dwBytes
The number of bytes within the buffer to lock (in bytes)

ppAudioPtr1
Receives a pointer to the first part of the locked buffer

pdwAudioBytes1pdwAudioBytes1
Receives the number of bytes in the block of bytes in the block
pointer by ppvAudioPtr1 (in bytes)

pdwAudioPtr2pdwAudioPtr2
Receives a pointer to the second part of the locked buffer
If filling the whole buffer with sound data, this must be NULL

d A di B t 2pdwAudioBytes2
Receives the number of bytes in the block pointed by ppvAudioPtr2
(in bytes)
Sh ld b NULL if d A di Pt 2 i NULLShould be NULL if pdwAudioPtr2 is NULL.

Locking the Sound BufferLocking the Sound Buffer

dwFlags
S ifi h h l k h ldSpecifies how the lock should occur
DSBLOCK_FROMWRITECURSOR: start the lock from the write cursor
DSBLOCK_ENTIREBUFFER: Lock the entire buffer. If this flag is set, the
dwBytes variable is ignoreddwBytes variable is ignored

첫 번째 버퍼에 있는
사운드를 재생하는 동안에

1000 bytes

사운드를 재생하는 동안에
두 번째 버퍼에는 나머지
사운드 부분을 저장한다.
그리고 첫 번째 버퍼에

Second part
(100 bytes)

First part
(900 bytes)

그리고, 첫 번째 버퍼에
있는 사운드 재생이 끝나면
곧바로 두 번째 버퍼에
저장된 사운드를 재생하게

d A di Pt 2

pdwAudioPtr1

저장된 사운드를 재생하게
된다.
이렇게 해서, 사운드의 처리
속도를 빠르게 하고 사운드pdwAudioPtr2 속도를 빠르게 하고 사운드
재생이 끊기지 않고 반복될
수 있게 한다.

Unlocking the Sound BufferUnlocking the Sound Buffer

Unlock the Sound Buffer
After loading sound data into the buffer, then unlock it

HRESULT Unlock(LPVOID pvAudioPtr1, DWORD dwAudioBytes1,

LPVOID pvAudioPtr2, DWORD dwAudioBytes2);
pvAudioPtr1

The address of the value from ppvAudioPtr1 used in Lock

dwAudioBytes1dwAudioBytes1
The number of bytes written to pvAudioPtr1 (in bytes)

pvAudioPtr2
The address of the value from ppvAudioPtr2 used in Lock

dwAudioBytes2
The number of bytes written to pvAudioPtr2 (in bytes)The number of bytes written to pvAudioPtr2 (in bytes)

Reading the Sound Data into the BufferReading the Sound Data into the Buffer

Loading sound data
Will use the sample file, dsutil.cpp, included in the DirectX
Sound.

Loading sound data processLoading sound data process
1. Create CWaveFile object
2 Use Open() method of CWaveFile to gain access to the WAV2. Use Open() method of CWaveFile to gain access to the WAV

file
3. Create the secondary sound buffer to hold the WAV data
4. Lock the buffer
5. Read and copy sound data
6 Unlock the buffer6. Unlock the buffer

Reading the Sound Data into the BufferReading the Sound Data into the Buffer

1. Create a CWaveFile object
CWaveFile wavFile = new CWaveFile();

2 U O () f CW Fild t i t th WAV file2. Use Open() of CWaveFild to gain access to the WAV file
The following example shows opening a file called test.wav for
reading.
If the file doesn’t have any data in it (size=0), then stop.

// open “test.wav”
wavFile >Open(“test wav” NULL WAVEFILE READ);wavFile->Open(test.wav , NULL, WAVEFILE_READ);
// Check to make sure that the size of data within the wave file is valid
if (wavFile->GetSize() == 0) return false;

3. Create the secondary sound buffer to hold the WAV data

Reading the Sound Data into the BufferReading the Sound Data into the Buffer

4. Lock the buffer

HRESULT hr;
VOID *pDSLockedBuffer = NULL; // pointer to locked buffer memory
DWOR dwDSLockedBufferSize = 0; // size of the locked bufferDWOR dwDSLockedBufferSize = 0; // size of the locked buffer
// Start the beginning of the buffer
hr = DSBuffer->Lock(0,

// This assumes a buffer of 64000 bytes// This assumes a buffer of 64000 bytes
64000,
// The variable holds a pointer to the start of the buffer
& S k d ff&pDSLockedBuffer,
// holds the size of the locked buffer
&dwDSLockedBufferSize,
NULL, // No secondary is needed
NULL, // No secondary is needed
DSBLOCK ENTIREBUFFER); // Lock the entire buffer_); //

if (FAILED(hr)) return NULL;

Reading the Sound Data into the BufferReading the Sound Data into the Buffer

5. Read and copy sound data
Before reading data from the opened wave file, need to reset
the WAV data to the beginning using ResetFile of CWaveFile
Then read data using Read methodThen, read data using Read method

HRESULT hr; // variable to hold the return codeHRESULT hr; // variable to hold the return code

// the amount of data read from the wav file
DWORD dwWaveDataRead = 0;
// reset the WAV file to the beginning
wavFile->ResetFile();
// d h WAV fil// read the WAV file
hr = wavFile->Read((BYTE *) pDSLockedBuffer,

dwDSLockedBufferSize &dwWaveDataRead);dwDSLockedBufferSize, &dwWaveDataRead);
if (FAILED(hr)) return NULL;

Reading the Sound Data into the BufferReading the Sound Data into the Buffer

6. Unlock the sound buffer

DSBuffer->Unlock(pDSLockedBuffer, dwDSLockedBufferSize, NULL,
NULL);

Playing Sound in a BufferPlaying Sound in a Buffer

Playing sound in a buffer
After loading data into the DirectSoundBuffer, it is possible to play
it using Play function

HRESULT Play(DWORD dwReserved1, DWORD dwPriority,
DWORD dwFlags);

dwReserved1
Must be 0

dwPrioritydwPriority
The priority level to play the sound
Any value from 0 to 0xFFFFFFFF
Must set to 0 if the DSBCAPS LOCDEFER flag was not set when theMust set to 0 if the DSBCAPS_LOCDEFER flag was not set when the
buffer was created.

dwFlags
Specifying the how the sound should be played e gSpecifying the how the sound should be played, e.g.
DSBPLAY_LOOPING

DSBuffer->Play(0, 0, DSBPLAY_LOOPING); // background loop sound

Stopping a SoundStopping a Sound

Stopping a sound

HRESULT Stop();

HRESULT hr;
hr = DSBuffer->Stop();
if (FAILED(h)) f lif (FAILED(hr)) return false;

Controling the VolumeControling the Volume

Changing the volume
Can adjust the volume of a sound through the buffer in which it
resides
The volume must be in between DSBVOLUME MIN (silence) and e o u e ust be bet ee S O U _ (s e ce) a d
DSBVOLUME_MAX (original volume of the sound)

HRESULT SetVolume(LONG lVolume);
lV llVolume

Any value between 0 (DSBVOLUME_MAX) and -10000
(DSBVOLUME_MIN)

Get the current volume at which a sound is playing
HRESULT GetVolume(LPLONG plVolume);

Panning the SoundPanning the Sound

Panning a sound between the left and right speakers
Lowering the volume of a sound in one speaker and increasing it
in the opposite speaker
Sounds seem to move aroundSounds seem to move around

HRESULT SetPan(LONG lPan);HRESULT SetPan(LONG lPan);

lPan
Takes any value between DSBPAN_LEFT and DSBPAN_RIGHT
DSBPAN_LEFT (-10000) increase the volume of sound in the left
speaker to full while silencing the sound in the right speaker.
DSBPAN RIGHT (10000) does the opposite._ () pp
DSBPAN_CENTER (0) defined as 0, resets both speakers to full
volume.

Panning the SoundPanning the Sound

Get the current pan value

HRESULT GetPan(LPLONG plPan);

Before using SetPan or GetPan functions, you must set
the buffer to use these controlsthe buffer to use these controls
Need to set DSBCAPS_CTRLPAN flag in the
DSBUFFERDESC structure when you create theDSBUFFERDESC structure when you create the
secondary buffer

ReferenceReference

DirectSound Overview
http://telnet.or.kr/directx/htm/directsound.htm
DirectSound C/C++ Reference
h // l k /di /h /di d f hhttp://telnet.or.kr/directx/htm/directsoundccreference.ht
m

