Model

Overview

305890
Spring 2011
5/9/2011
Kyoung Shin Park

o Model class

m represents a 3D model composed of multiple ModelMesh
objects which may be moved independently.

o ModelMesh class

m represents a mesh that is part of a Model.

o ModelMeshPart class

m represents a batch of geometry information to submit to the
graphics device during rendering. Each ModelMeshPart is a
subdivision of a ModelMesh object.

0O To learn how to load the data of an .X file into a
Model object and render a 3D model.

Model Class

O Bones property

m Gets a collection of objects which describe how
each mesh in the collection for this model relates to
its parent mesh.

o Meshes property

m Gets a collection of objects which compose the
model. Each in a model may be moved
independently and may be composed of multiple materials
identified as objects.

Model Class

o CopyAbsoluteBoneTransformsTo method

m Copies a transform of each bone in a model relative to all
parent bones of the bone into a given array.

= When using more complicated models, which often use
hierarchical structure (where mesh positions, scales, and
rotations are controlled by “bones”), this method ensures that
any mesh is first transformed by the bone that controls it, if
such a bone exists. The mesh is then transformed relative to
the bone transformation.

SimpleModel

Draw a Model

O Load a model using the XNA Framework Content
Pipeline
= You need some art assets (i.e, a 3D model and an associated

texture files), and extract its contents to the project Content
directory.

Add a model "pl_wedge.fbx" in the Content
To load the model by using the Content Pipeline
Model model = Content.Load <Model>("Models##pl_wedge");

This function can load any of the following model formats:
FBX and X.

Draw a Model

O Render a model using the XNA Framework Content
Pipeline
m Create a new private method called DrawModel(Model m)
private void DrawModel(Model m) {
Matrix[] transforms = new Matrix[m.Bones.Count];
m.CopyAbsoluteBoneTransformsTo(transforms);
// Draw the model. A model can have multiple meshes, so loop.
foreach (ModelMesh mesh in m.Meshes) {
foreach (BasicEffect effect in mesh.Effects) {
effect.EnableDefaultLighting();
// ... world, view, projection matrix S 74 &f
}
// Draw the mesh, using the effects set above.
mesh.Draw();

Draw a Model with a Custom Effect

o Load and render a model using a custom effect without
modifying the Content Pipeline.
= Add a model “Terrain.fbx” in the Content
= Load the model, typically using the Content Pipeline
Model terrain = Content.Load<Model>("Terrain");
Matrix terrainWorld = Matrix.Identity;
Texture2D terrainTex = Content.Load<Texture2D>(“TerrainTex");
= Load the effect, typically using the ContentManager
Effect effect = Content.Load <Effect>("CustomEffect");

Draw a Model with a Custom Effect

Make a Model Move Using Input

m Iterate through each ModelMeshPart in the model, and assign
the effect to the Effect property of the ModelMeshPart
public static void RemapModel(Model model, Effect effect)
{
foreach (ModelMesh mesh in model.Meshes) {
foreach (ModelMeshPart part in mesh.MeshParts) {
part.Effect = effect;

}

}
= Draw a model
foreach (ModelMesh mesh in terrain.Meshes) {
foreach (Effect effect in mesh.Effects) {
mesh.Draw();

o Connect Xbox360 controller or Use keyboard
o Create variables to turn and move the model

o Take input from the user to control the model

Make a Model Move Using Input

Draw Models

o Handlelnput
private void CheckKeyboardInput(GameTime gameTime) {
/B2
if (currentKeyboardState.IsKeyDown(Keys.Left))
modelRotation += elapsedTime * 3.0f;
else if (currentKeyboardState IskeyDown(Keys.Right))
modelRotation -= elapsedTime * 3.0f;
else if (currentKeyboardState.IsKeyDown(Keys.Up)) {
modelVelocity = Vector3.Forward * 3.0f;
modelPosition += modelVelocity;
}
else if (currentKeyboardState IskeyDown(Keys.Down)) {
modelVelocity = Vector3.Backward * 3.0f;
modelPosition += modelVelocity;

o Load and render various models
models[0] = Content.Load <Model>("airplane2");
models[1] = Content.Load<Model>("starfish");

models[2] = Content.Load<Model>(“cactus");

ey

