Texturing

Overview

305890
Spring 2011
4/25/2011
Kyoung Shin Park

o Texture coordinates

o Create and enable textures
o Texture filters

o Mipmaps

o Address Modes

o Tiled Ground

Texture Coordinates

o Texture Coordinates
= (u, v): normalized to (0, 1)

u
0,0 (1,0
0,1) 1,1)

\'%
= Mapping
(x1,y1,z1)
(x2,y2,22)
(u2,v2)
3D space
(uo,v0)

(x0,y0,z0)

Texture Coordinates

o Vertex structure include texture coordinates

VertexPositionNormalTexture[] vertices; W

vertices[0].Position = Lowerleft; m""
vertices[0].TextureCoordinate = textureLowerLeft; .,/7 0, 1)
vertices[1].Position = UpperLeft;
vertices[1].TextureCoordinate = textureUpperLeft; // (0, 0)
vertices[2].Position = LowerRight;
vertices[2].TextureCoordinate = textureLowerRight; // (1, 1)
vertices[3].Position = UpperRight;
vertices[3].TextureCoordinate = textureUpperRight; // (1, 0)

-
fl

Corresponudinng Textume Triangle

Creating and Enabling Textures

O Load an image file into Texture2D object.
m To create a texture from an image “crate jpg”
m Texture2D texture = Content.Load<Texture2D>("crate");

= This function can load any of the following image formats:

BMP, DDS, DIB, HDR, JPG, PFM, PNG, PPM, and TGA.

Creating and Enabling Textures

O To set a created Texture2D object to texture effect
parameter, call effect.Parameters[’key"].SetValue("value”).

// TextureEffect.fx file

texture DiffuseTexture;

sampler2D DiffuseSampler = sampler_state {
Texture = <DiffuseTexture>;

%

// texture mappping program

Texture2D texture = Content.Load <Texture2D>("xna_logo");
effect.Parameters["DiffuseTexture"].SetValue(texture);
drawTriangleUsingTex();

Creating and Enabling Textures

O To use different textures but are drawn using the
same effect:
// using BasicEffect
effect.Begin(SaveStateMode.SaveState);
foreach (EffectPass pass in effect.CurrentTechnique.Passes) {
pass.Begin();
effect.Texture = mTexO;
drawTrisUsingTex0();
pass.End();
pass.Begin();
effect.Texture = mTex1;
drawTrisUsingTex1();
pass.End();

}
effect.End();

Filters

o When the texture triangle is smaller than the screen
triangle, the texture triangle is magnified to fit.

o When the texture triangle is large than the screen
triangle, the texture triangle is minified to fit.

o Mapping filter
= MAGFILTER
= MINFILTER

texture gTex;

sampler TexS = sampler_state {
Texture = <gTex>;
MinFilter = LINEAR;
MagFilter = LINEAR;

Filters

Mipmaps

O 3 types of filters
m Nearest point sampling: POINT, poor quality, faster (default)
m Linear filtering: LINEAR, high quality, relatively fast (recommended)
m Anisotropic filtering: Anisotropic, higher quality, relatively slow.

Must also set D3DSAMP_MAXANISOTROPY level (to determine the
quality of the anisotropic filtering). (Default is 1)

texture gTex0;

sampler Tex0S = sampler_state {
Texture = <gTex0>;
MinFilter = Anisotropic;
MagFilter = LINEAR;
MaxAnisotropy = 4;

o We can create a chain of mipmaps for a texture.

= The idea is to take a texture and create a series of smaller,
lower-resolution textures, but customizing the filtering for each
of these levels.

256 x 256

Microsoft

RECT X

128 x 128

"“DIRECTX

x 64 x 64
’
- x a 32 x 32

Mipmap

Address Modes

o Mipmap filter:

= NONE: disable mipmapping

= POINT: Direct3D chooses the mipmap level that is closest in
size to the screen triangle. Once that level is chosen, Direct3D
filters that level based on the specified min and mag filters.

= LINEAR: Direct3D takes the two mipmap levels that are closest
in size to the screen triangle, filters each level with the min
and mag filters, and finally linearly combines these two levels
to form the final color values.

MipFilter = Filter;

o The texture coordinates that go outside [0, 1] range is
defined by XNA address mode:

= Address mode:
Wrap
Border color (not supported in XNA 4.0)
Clamp
mirror
m TextureAddressMode enum type
WRAP: repeat the texture on every integer junction

MIRROR: every other row and column is a mirrors image of the
preceding row or column

CLAMP: smear the color of edge pixels

BORDER: use the border color, for any texture coordinates outside
the range

Address Modes

// wrap
sampler TexS = sampler_state {
Texture = <gTex>;
MinFilter = LINEAR; MagFilter = LINEAR; MipFilter = LINEAR;
AddressU = WRAP; AddressV = WRAP; };
// border color
sampler TexS = sampler_state {
Texture = <gTex>;
MinFilter = LINEAR; MagFilter = LINEAR; MipFilter = LINEAR;
AddressU = BORDER; AddressV = BORDER; BorderColor = 0xff0000ff; };
// clamp
sampler TexS = sampler_state {
Texture = <gTex>;

MinFilter = LINEAR; MagFilter = LINEAR; MipFilter = LINEAR;
AddressU = CLAMP; AddressV = CLAMP; };
// mirror
sampler TexS = sampler_state {
Texture = <gTex>;
MinFilter = LINEAR; MagFilter = LINEAR; MipFilter = LINEAR;

AddressU = MIRROR; AddressV = MIRROR; };

Address Modes

o Quad (0,0),(0,3),(3,0),(3,3):

“DIRECTX “DIRECTX ~ DIRECTX

“DIRECTX XT03nAid DIRECTX

S S N Wwrap S S
DlRE(‘.‘TX DlREC‘TX DlRE(‘.‘TX T
XXX * R
border
color

mirror

clamp

TextureBox Demo

O Add a texture to a cube.
1. Specifying the texture coordinates.

Creating the texture using Content.Load <Texture2D>(“filename”).

2
3. Sampling the Texture.
4. Setting the Effect Texture

v[1] (0,0) v[2] (1,0)

Vv[1]

Vo] 01) VB)

V[O] V[3]

TextureBox Demo

// Define the vertices of our box

Vector3 topLeftFront = new Vector3(-1.0f, 1.0f, -1.0f);
Vector3 bottomLeftFront = new Vector3(-1.0f, -1.0f, -1.0f);
Vector3 topRightFront = new Vector3(1.0f, 1.0f, -1.0f);
Vector3 bottomRightFront = new Vector3(1.0f, -1.0f, -1.0f);
Vector3 topLeftBack = new Vector3(-1.0f, 1.0f, 1.0f);
Vector3 topRightBack = new Vector3(1.0f, 1.0f, 1.0f);
Vector3 bottomLeftBack = new Vector3(-1.0f, -1.0f, 1.0f);
Vector3 bottomRightBack = new Vector3(1.0f, -1.0f, 1.0f);

// Define our normals so we can use directional lighting
Vector3 frontNormal = new Vector3(0.0f, 0.0f, -1.0f);
Vector3 backNormal = new Vector3(0.0f, 0.0f, 1.0f);
Vector3 topNormal = new Vector3(0.0f, 1.0f, 0.0f);
Vector3 bottomNormal = new Vector3(0.0f, -1.0f, 0.0f);
Vector3 leftNormal = new Vector3(-1.0f, 0.0f, 0.0f);
Vector3 rightNormal = new Vector3(1.0f, 0.0f, 0.0f);

TextureBox Demo

Tiled Ground Demo

// Define our texture coordinates
Vector2 textureTopLeft = new Vector2(0.0f, 0.0f);
Vector2 textureTopRight = new Vector2(1.0f, 0.0f);
Vector2 textureBottomLeft = new Vector2(0.0f, 1.0f);
Vector2 textureBottomRight = new Vector2(1.0f, 1.0f);
// Front face.
vertices[0] = new VertexPositionNormalTexture(
topLeftFront, frontNormal, textureTopLeft);
vertices[1] = new VertexPositionNormalTexture(
bottomLeftFront, frontNormal, textureBottomLeft);
vertices[2] = new VertexPositionNormalTexture(
topRightFront, frontNormal, textureTopRight);
vertices[3] = new VertexPositionNormalTexture(
bottomLeftFront, frontNormal, textureBottomLeft);
vertices[4] = new VertexPositionNormalTexture(
bottomRightFront, frontNormal, textureBottomRight);
vertices[5] = new VertexPositionNormalTexture(
topRightFront, frontNormal, textureTopRight);

sampler TexS = sampler_state

{
Texture = <gTex>;
MinFilter = Anisotropic;
MagFilter = LINEAR;
MipFilter = LINEAR;
MaxAnisotropy = §;
AddressU = WRAP;
AddressV = WRAP;

%

Tiled Ground Demo

Tiled Ground Demo

o Tile a ground texture repeatedly over a grid to provide us
with a “ground” plane.

// tile a texture over a grid mesh
for (inti = 0; i < numVertRows; ++i) {
for (int j = 0; j < numVertCols; ++j) {
int index = i* numVertCols + j;
v[index].pos = verts[index]; // position
v[index].normal = new Vector3(0.0f, 1.0f, 0.0f); // normal
v[index].tex = new Vector2((float)j, (float)i) * texScale;// texture

sampler TexS = sampler_state

{
Texture = <gTex>;
MinFilter = Anisotropic;
MagFilter = LINEAR; :
MipFilter = LINEAR; AL
MaxAnisotropy = §; A L
AddressU = WRAP;

AddressV = WRAP;

Sprites

o In computer graphics or games, a sprite
is a 2D image or animation that is
integrated into a larger scene.

o Originally invented as a method of
quickly compositing several images
together in 2D video games.

o In general, 2D game figures are all

g

= 0 G

referred to as sprites. £19

& Q

O Uses ;E 3
= Main character, enemies, any living things, gh:;q-

projectiles (rockets, bullets, arrows, rocks, etc)
vehicles, etc :

Sprite-based graphics

o In the past, the way of doing game graphics
o Still commonly used

= Mobile phones

= Internet games

= Casual games

= Serious games
o Advantages

= No graphics hardware required

m High quality, also on low resolution

® Much detail

m Relatively easy to use and control
o Problems

= Animation speed difficult to control

m Lost of memory required

m Fixed viewpoint

22

Sprite Demo

o Drawing a Sprite.
1. Define a SpriteBatch object as a field on your game class.
2. Create the SpriteBatch object, passing the current graphics
device in LoadContent() method.
spriteBatch = new SpriteBatch(GraphicsDevice);
Load the texture using Content.Load <Texture2D>(“filename”).
texture = Content.Load <Texture2D> ("sprite_character”);
4. In Draw() method,
spriteBatch.Begin()
spriteBatch.Draw(texture, position, Color.White);
spriteBatch.End();

w

Animating Sprites

o "Animating Sprites” represents the different sprites on
the screen showing an image with the movement.

o Animation must be:

= Tied to timer
= Tied to movement (for main character)

Animating Sprites

AnimatingSprite Demo

o What kinds of data is needed for animating sprites on
the screen?

Position

Z-order

Velocity

Textures

Possible states of sprite — e.g. update position of a bullet
Current state of sprite

Animation sequences for different states

Current frame being displayed (an index)

Animation speed

o Drawing a AnimatingSprite.

AnimatingSprite demonstrates how to animate a sprite from a
texture using a custom class

AnimatedTexture class loads the m x n tiled image of equal-
sized sprite images

private AnimatedTexture texturel;
private AnimatedTexture texture2;
private AnimatedTexture texture3;
public Gamel() {

texturel = new AnimatedTexture(Vector2.Zero, 0.0f, 1.0f, 0.5f);
texture2 = new AnimatedTexture(Vector2.Zero, 30.0f, 3.0f, 0.5f);
texture3 = new AnimatedTexture(Vector2.Zero, 0.0f, 1.5f, 0.5f);

AnimatingSprite Demo

AnimatingSprite Demo

protected override void LoadContent() {

}

texturel.Load(Content, "goblintiles”, 3, 3, 2); // 3x3 gobline
texture2.Load(Content, “shipanimated”, 4, 2);// 4x1 ship
texture3.Load(Content, “cavemen”, 4, 4, 3); // 4x4 cavemen

protected override void Update(GameTime gameTime) {

float elapsed = (float)gameTime.ElapsedGameTime.TotalSeconds;
texturel.UpdateFrame(elapsed);
texture2.UpdateFrame(elapsed);
texture3.UpdateFrame(elapsed);

protected override void Draw(GameTime gameTime) {

spriteBatch.Begin();
texturel.DrawFrame(spriteBatch, positionl);
texture2.DrawFrame(spriteBatch, position2);
texture3.DrawFrame(spriteBatch, position3);
spriteBatch.End();

