
Rendering PipelineRendering Pipeline

305890
Spring 2011
3/14/2011

Kyoung Shin Park

OverviewOverview

 3D Illusion
 3D Object representations
 Understand the rendering pipeline

 The process of taking a geometric description of a 3D scene
and generating a 2D image from it

Coordinate SystemsCoordinate Systems

 2D Cartesian Coordination Systems
 3D Cartesian Coordination Systems

3D Coordinate Systems3D Coordinate Systems

 OpenGL p
coordinate system
is right-handed

 x+ to the right
 y+ up

y

 z+ coming out of
the screen

xx

z

3D Coordinate Systems3D Coordinate Systems

 Direct3D
coordinate system
is left-handed

 x+ to the right
 y+ up
 z+ forward

yy

z

x

3D Coordinate Systems3D Coordinate Systems

 XNA coordinate
system is right-
handed

 Same as OpenGLy

y xy

z
x

z

x

3D Illusion3D Illusion

 Linear perspective
Obj t t ll th f th th d ll l li Objects get smaller the further away they are and parallel line
converge in distance.

 Size of known objects
 We expect certain object to be smaller than others.

 Detail (texture gradient)
 Close objects appear in more detail, distant objects less.Close objects appear in more detail, distant objects less.

 Occlusion (hidden surfaces)
 An object that blocks another is assumed to be in the

foregroundforeground.
 Lighting and Shadows

 Closer objects are brighter, distant ones dimmer. Shadow is a
form of occlusionform of occlusion.

 Relative motion (motion parallax due to head motion)
 Objects further away seem to move more slowly than objects in

h f d
j y y j

the foreground.

3D Model Representation3D Model Representation

 A scene is composed of objects or models
 An object is represented as a triangle mesh approximation
 A triangle is defined by its the three vertices
 Model representation

 Vertex format
 Triangle
 Index

TriangleTriangle

 Triangle
 The basic building blocks of 3D objects
 For example, to construct a quad we break it into 2 triangles.

v3
(1,1,0)

v0
(-1,1,0)

v3v0
triangle1

v2 v1
2

triangle0

Vertex quad[6] = { v0, v1, v2, // triangle 0
0 3 1 } // t i l 1

(-1,-1,0) (1, -1, 0) v2 v1

v0, v3, v1 }; // triangle 1

 XNA vertex winding order is CW (same as Direct3D; oppositeXNA vertex winding order is CW (same as Direct3D; opposite
to OpenGL)

TriangleTriangle

 Circle approximation
7

v6

v7

v8

v1v5
v0

Vertex circle[24] = { v0, v1, v2, // triangle 0
v0, v2, v3, // triangle 1v2v4

v0, v3, v4, // triangle 2
v0, v4, v5, // triangle 3
0 5 6 // t i l 4

v3

v0, v5, v6, // triangle 4
v0, v6, v7, // triangle 5
v0, v7, v8, // triangle 6v0, v7, v8, // triangle 6
v0, v8, v1}; // triangle 7

IndexIndex

 Index list
 Triangles that form a 3D object share many of the same vertices
 2 reasons why we do not want to duplicate vertices: increased

memory & graphics processingmemory & graphics processing
 Hence, we build vertex list and index list

v3v0 v3v0
(1,1,0)(-1,1,0)

triangle0

triangle1

Vertex vertexList[4] = { v0 v1 v2 v3}; // vertex list

v2
(-1,-1,0)

v1
(1, -1, 0) v2 v1

triangle0

Vertex vertexList[4] = { v0, v1, v2, v3}; // vertex list
WORD indexList[6] = {0, 1, 2, // index list

0, 3, 1 };

IndexIndex

 Circle approximation
7

v6

v7

v8

v1v5
v0

v2v4

Vertex vertexList[9] = {v0, v1, v2, v3, v4, v5, v6, v7, v8};
WORD I d Li t[24] { 0 1 2 // t i l 0

v3

WORD IndexList[24] = { 0, 1, 2, // triangle 0
0, 2, 3, // triangle 1
……
0, 7, 8, // triangle 6
0, 8, 1}; // triangle 7

Texture CoordinatesTexture Coordinates

 Texture Coordinates
 (u, v): normalized to (0, 1)

(0,0) (1,0)
u

(,) (,)

(0,1) (1,1)
v

 Mapping
(x1,y1,z1)

(x2,y2,z2)

v
(u1,v1)

(,y ,)

3D space

(u2,v2)

(x0,y0,z0) (u0,v0)

VertexPositionNormalTextureVertexPositionNormalTexture

 Vertex structure include texture coordinates
public struct VertexPositionNormalTexture {
public Vector3 Normal;
public Vector3 Position;public Vector3 Position;
public Vector2 TextureCoordinate;
public static readonly VertexElement[] VertexElements;
public VertexPositionNormalTexture(Vector3 position, Vector3 normal,
Vector2 textureCoordinate);
public static bool operator !=(VertexPositionNormalTexture left,
VertexPositionNormalTexture right);
public static bool operator ==(VertexPositionNormalTexture left,
VertexPositionNormalTexture right);
public static int SizeInBytes { get; }
public override bool Equals(object obj);
public override int GetHashCode();public override int GetHashCode();
public override string ToString();
}

Virtual Camera

 Virtual Camera

Virtual Camera

 Camera specifies what part of the world the viewer can see and
thus what part of the world we need to generate a 2D image.

 Projection window is defined as plane z=0 in XNA Projection window is defined as plane z=0, in XNA.

View volume

Projection window
Near plane

Far plane
Projection window
Plane z = 0 (1, 1)

Center of Projection

(-1, -1)

Rendering PipelineRendering Pipeline

 Rendering pipeline refers to the entire sequence of steps
necessary to generate a 2D image that can be displayed
on a monitor screen based on what the virtual camera
seessees.

Rendering PipelineRendering Pipeline

 3D scene => 2D image
Vertex data

World matrix

Transformation
View matrix
Projection matrix
Viewport matrix

Lighting
Lights
Mate ialsLighting Materials

Rasterization
Textures
Alpha blending

Rendering target (in pixel)

Rendering PipelineRendering Pipeline

 Geometry stage rendering pipeline

Local Space World Space View Space Lighting Projection

BackfaceClippingHomogeneousRasterization Viewport

S cullingDivideSpace

Local Space & World SpaceLocal Space & World Space

 Local space (i.e., Modeling space)
 The 3D object is constructed in a local coordinate system,

where the object is the center of the coordinate system

 World space World space
 Once the 3D model is built in local space, it is placed in a

scene in world space, by executing a change of coordinates p , y g g
transformation (called world transform).

rrr zyx 0

fff
uuu

W
zyx

zyx

0
0

origintheisp

ppp zyx

y

1

LCSoffur

origintheisp
 ,,

Modeling TransformationModeling Transformation

 Local space => World space

// place a rectangle in (3, 0, -10)
world = Matrix.CreateTranslation(new Vector3(3.0f, 0, -10.0f));
DrawRectangle(ref world);

// set transform for rectangle// g
world = Matrix.CreateScale(0.75f) *

Matrix.CreateRotationX(MathHelper.ToRadians(15.0f)) *
Matrix CreateRotationY(MathHelper ToRadians(15 0f)) *Matrix.CreateRotationY(MathHelper.ToRadians(15.0f))
Matrix.CreateTranslation(new Vector3(-3.0f, -1.0f, -5.0f));

DrawRectangle(ref world);

View SpaceView Space

 Geometry object and camera is specified in world space,
d th t f d t i f j tiand then transformed to view space for projection.

 View space transformation
 Translate the camera to the origin of world space and then Translate the camera to the origin of world space, and then

rotate it to align into +z-axis.

 World space => view space
 void Matrix.CreateLookAt (

ref Vector3 cameraPosition, // camera position
ref Vector3 cameraTarget // camera look-at positionref Vector3 cameraTarget, // camera look at position
ref Vector3 cameraUpVector, // world up (0, 1, 0)
out Matrix result // ViewMatrix

);

View SpaceView Space

Objects and the camera
in World Space

Translate the camera
to the origin of World
Space

Rotate the camera to align
into +Z-axis. Objects are
also transformedSpace also transformed.

View SpaceView Space

)(111 RTRTV

0
0

0
0

0010
0001

fur
fur

fur
fur

yyy

xxx

yyy

xxx

1
0

1000
0

1
0100

fpuprp
fur
f

fur
f

ppp
zzz

yyy

zzz

yyy

zyx

 fpppppp zyx

p: camera position

w: up vector

p: camera position

q: target positionq g p

Viewing TransformationViewing Transformation

 World space => View space

// the camera is located in (0, 0, 3), looking down the origin (0, 0,
0))

// set camera
private Vector3 cameraPosition = new Vector3(0.0f, 0.0f, 3.0f);
private Vector3 cameraTarget = Vector3 Zero;private Vector3 cameraTarget = Vector3.Zero;
private Vector3 cameraUpVector = Vector3.Up;
// set view matrix
private Matrix view;
Matrix.CreateLookAt(ref cameraPosition, ref cameraTarget, ref

cameraUpVector, out view);cameraUpVector, out view);

private BasicEffect effect;
ff t Vi ieffect.View = view;

LightingLighting

 Lighting
 Lights are specified directly in World Space relative to the

overall scene.
 We can always transform lights into local space or view space We can always transform lights into local space or view space.

ProjectionProjection

 Projection
 All the vertices of the 3D scene are in View Space and lighting

has been completed, a projection transformation is applied.
 Perspective projection vs Orthogonal projection Perspective projection vs. Orthogonal projection

 Projection matrix
void Matrix CreatePerspectiveFieldOfView(void Matrix.CreatePerspectiveFieldOfView(

float fieldOfView,// field of view in y-axis (in radian)
float aspectRatio,// aspect ratio (= screen width/screen height)
float nearPlaneDistance, // z-value of near plane
float farPlaneDistance, // z-value of far plane

t M t i lt // P j ti M t iout Matrix result // ProjectionMatrix
)

Aspect ratio는 projection window(정사각형)을
screen window space(직사각형)으로 만드는 과정에서
왜곡을 보정하는 역할

Perspective ProjectionPerspective Projection

 Projection plane in front of the center of projection

000xScale

Y

100

000

f
zf

yScale
zf

0*00
znzf
zfzn
znzf

1f

AS lS l

fovYyScalewhere

/

)2/cot(
zn

fovY)
2

cot(
)

2
tan(

1

)
2

tan(1

fov
fovd

fov
d

d

heightweightAspect

AspectyScalexScale

/

/

X

2

Perspective ProjectionPerspective Projection

 XNA/Direct3D view volume normalization
 (-x, -y, zn) (-1, -1, 0)
 (x, y, zf) (1, 1, 1)

Direct3D (LHS)

Projection TransformationProjection Transformation

 Projection Transformation

// 45 degree FOV, near plane at 0.0001, far plane at 1000.0 frustum
// projection matrix.// projection matrix.
// set camera
private Matrix projection;
fl R i (fl) hi G hi D i Vi Wid h/float aspectRatio = (float)graphics.GraphicsDevice.Viewport.Width/

(float)graphics.GraphicsDevice.Viewport.Height;
Matrix.CreatePerspectiveFieldOfView(

Math.Helper.PiOver4, aspectRatio, 1.0f, 100.0f, out projection);

private BasicEffect effect;private BasicEffect effect;
effect.Projection = projection;

Backface cullingBackface culling

 Backface culling
A l h th f t f d th b k f A polygon has the front face and the back face.

 Backface culling can quickly discard about half of the scene’s
dataset from further processing – an excellent speed up.

D t i hi h l f t f i b k Determine which polygons are front facing or back
facing
 By default, triangles with clockwise winding order are front facing
 Visibility test: planeNormal • viewVector > 0

 Set culling
 graphics GraphicsDevice RenderState CullMode = Cullmode None; graphics.GraphicsDevice.RenderState.CullMode = Cullmode.None;
 Value

 NONE: disable backface culling
 CW: triangles with a clockwise winding are culled CW: triangles with a clockwise winding are culled
 CCW: triangles with a counterclockwise winding are culled (default)

Backface cullingBackface culling

Backface culling After backface culling

eye eyeeye eye

Backface cullingBackface culling

No Culling (All faces are seen) Backface Culling

ClippingClipping

 Clipping
 Clipping culls the geometry that is outside the viewing volume
 3 possible locations of triangle in the frustum:

Completel inside: it is kept Completely inside: it is kept
 Completely outside: it is culled
 Partially inside: then, the triangle is split into two parts. The part

inside the frustum is kept, while the part outside is culled.

 D3DRS_CLIPPING
 Enable clipping or not Completely Enable clipping or not Completely

inside

Completely
outside Partially inside

and outside

eye

and outside

Viewport TransformationViewport Transformation

 Viewport Transformation
 Projection window => viewport (on screen)
Viewport()

AspectRatio; // aspect radioAspectRatio; // aspect radio
Bounds; // size of this resource
MinDepth, MaxDepth; // range of min, max depth values
Ti l S f A // i l f f h iTitleSafeArea; // title safe area of the current viewport
Width, Height; // width, height dimension of the viewport
X, Y; // pixel coords of the upper-left corner , ; // p pp

 Viewport matrix
Viewport vp(0, 0, 640, 480);
graphics.GraphicsDevice.Viewport = vp;

ViewportViewport

 Viewport Matrix

000
2

Width

000

00
2

0

MinZMaxZ

Height

1
22

MinZHeightYWidthX

(X, Y)
(1, 1, 1)

Viewport Area Height

Width
(-1, -1, 0)

RasterizationRasterization

 Rasterization
 After the vertices are transformed to the back buffer, we have a

list of 2D triangles in image space to be processed one by one.
 Rasterization is responsible for computing the colors of the Rasterization is responsible for computing the colors of the

individual pixels that make up the interiors and boundaries of
these triangles.

 Pixel operations like texturing, pixel shaders, depth buffering,
and alpha blending occur in the rasterization.

BasicEffectBasicEffect

 Using the basic effect class requires a set of world, view,
and projection matrices, a vertex buffer, a vertex
declaration, and an instance of the BasicEffect class.
I i i li B i Eff i h f i d li h l Initialize BasicEffect with transformation and light values
private BasicEffect effect;
// Initialize Effect// Initialize Effect
effect = new BasicEffect(graphics.GraphicsDevice, null);
// Draw//
effect.World = world;
effect.Projection = projection;
effect.View = view;
effect.EnableDefaultLighting();
effect TextureEnabled = true;effect.TextureEnabled = true;
effect.Texture = texture;

BasicEffectBasicEffect

effect.Begin();
foreach (EffectPass pass in effect.CurrentTechnique.Passes)
{

pass Begin();pass.Begin();
graphics.GraphicsDevice.DrawUserIndexedPrimitives(

PrimitiveType.TriangleList, vertices, 0, vertices.Length,yp g g
indices, 0, indices.Length / 3);

pass.End();
}
effect.End();

XNA Game ComponentsXNA Game Components

 XNA game component allows us to separate pieces of
logic into their own file that will be called automatically
by the XNA Framework.
Y d i h f G C You derive the new component from GameComponent
class, or, if the component loads and draws graphics
content from DrawableGameComponent classcontent, from DrawableGameComponent class

 Method
 Constructor Constructor
 Initialize() – called by the Framework when the component starts
 Update() – called by the Framework when the component needs

to be updated
 Draw() – called by the Framework when the component needs

to be drawn (for only DrawableGameComponent)to be drawn (for only DrawableGameComponent)

XNA Game ComponentsXNA Game Components

class FPS : Microsoft.Xna.Framework.DrawableGameComponent
{
FPS(….) {…}
Initialize() { }Initialize() {… }
Update(GameTime gt) { … }
Draw(GameTime gt) { … } // only for DrawableGameComponent(g) { } y p
}

// Add XNA Game Components
fps = new FPS ();
Components Add(fps);Components.Add(fps);

Rendering PipelineRendering Pipeline
 Geometry stage rendering pipeline

d l ld ldmodel space world space world space camera space

compute lightingprojection
i

clip map to screen
p g g

image space

ReferenceReference

 Direct3D Transformation Pipeline -
http://msdn2.microsoft.com/en-us/library/bb206260.aspx

 XNA BasicEffect class
http://msdn.microsoft.com/en-us/library/bb203926.aspx

 XNA GameComponent class
http://msdn.microsoft.com/en-
us/library/microsoft.xna.framework.gamecomponent_mem
bbers.aspx

 XNA DrawableGameComponent class
htt // d i ft /http://msdn.microsoft.com/en-
us/library/microsoft.xna.framework.drawablegamecompon
ent members aspxent_members.aspx

