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 Coordinate Systems
 Transformation

 Translate
 Rotate
 Scale

 O i t ti Orientation
 Euler Angles
 Rotation Matrix Rotation Matrix
 Quaternion

Multiple Coordinate SpaceMultiple Coordinate Space

 Use more than one coordinate system to specify 
coordinates – multiple coordinate space
 Why need ?

S U f l C di S Some Useful Coordinate Spaces
 World coordinate
 Object(Local) coordinate Object(Local) coordinate
 Camera(Viewport) coordinate
 Inetial Coordinate

Multiple Coordinate Space: ExampleMultiple Coordinate Space: Example

Game WorldWorld Origin: (0, 0)

xworld    
Game World

 World coordinate 
of Wheel = (xworld, 
y )Viewport origin

yworld    xviewport     

x
Viewport      

yworld)
 Object coordinate 

of Wheel to the

p g

yviewport    

xcar    

ycar    

of Wheel to the 
car = (xcar, ycar)

 Camera coordinate

Wheel
Car 

 Camera coordinate 
of Wheel 
=(xviewport, yviewport)

Car origin



Multiple Coordinate Space: ExampleMultiple Coordinate Space: Example

 In different situation we use different coordinates of In different situation, we use different coordinates of 
the wheel

 We can calculate the world coordinate of wheel from 
coordinate of car and local coordinate of wheel to the 
car, why ?

 Rendering pipeline

ViewPort 
Transformation

Clipping 
and 

Scaling
vertex pixel  

Scaling

LHS Coordinate SystemsLHS Coordinate Systems

 Left Hand Coordinate System (LHS) – z+ forwardy ( )
 Clockwise rotation
 If X-axis rotation, ,

Y->Z rotation is positive
 If Y-axis rotation,

y
z If Y axis rotation, 

Z->X rotation is positive
 If Z-axis rotation,

z

 If Z axis rotation, 
X->Y rotation is positive x

RHS Coordinate Systems

 Right Hand Coordinate System (RHS) – z+ coming 

RHS Coordinate Systems

g y ( ) g
out of the screen

 Counter clockwise rotation
 If X-axis rotation, 

Y->Z rotation is positive yp
 If Y-axis rotation, 

Z->X rotation is positivep
 If Z-axis rotation, 

X->Y rotation is positive
x

p
z

TransformationTransformation

 Geometric transformations are functions that map 
points from one place to another. 

 2D transformation
 Translation
 Rotation
 Scaling Scaling

y y
y

y y

x xx
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TransformationTransformation

 Direct3D/XNA uses 4x4 matrix and 1x4 vector for 
transformation
 v1x4 = (2, 6, -3, 1)

T t l t 10 it i i T4x4 = translate 10 units in x-axis
 v’ = v1x4 T4x4 = (12, 6, -3, 1)
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TransformationTransformation

 Why 3D computer graphics uses 4x4 matrix?
 Because it can express all kinds of transformation matrices 

(including translation, shearing, reflection, etc)
 It also allows transformations to be concatenated easily (by It also allows transformations to be concatenated easily (by 

multiplying their matrices)

 Non-homogeneous/Homogeneous coordinates g / g
convert
 (x, y, z)  (x, y, z, 1)
 (x/w, y/w, z/w)  (x, y, z, w)
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TranslationTranslation

 Translation
 T-1(p)=T(-p)

// t t l ti t i (RHS)// create a translation matrix (RHS)
Matrix Matrix.CreateTranslation(px, py, pz);

y y
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RotationRotation

 Rotation
 R-1(p)=RT(p)
 Angle in radian

// create a matrix that can be used to rotate a set of vertices 
around the x/y/z-axis (RHS)y ( )

Matrix Matrix.CreateRotationX(angle);  
Matrix Matrix.CreateRotationY(angle);
Matrix Matrix.CreateRotationZ(angle);
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3D Rotation Matrix3D Rotation Matrix
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RotationRotation

 Rotation
 Angle in radian

// t t i th t t t d bit t// create a matrix that rotates around an arbitrary vector
Matrix Matrix.CreateFromAxisAngle(vec, angle);  
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ScalingScaling

 Scaling
 S-1(sx, sy, sz)=S(1/sx, 1/sy, 1/sz)

// create a scaling matrix (RHS)// create a scaling matrix (RHS)
Matrix Matrix.CreateScale(3); // scaling in all axis by 3
Matrix Matrix.CreateScale(sx, sy, sz);y
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Inverse Transformation MatrixInverse Transformation Matrix

T-1(p) = 1 0 0 0 RX
-1() = 1 0 0 0

0 1 0 0

0 0 1 0

-px -py -pz 1

0 cos -sin 0
0 sin cos 0
0 0 0 1px py pz 1 0 0 0 1

RY
-1() = cos 0 sin 0

0 1 0 0S-1(s) = 1/sx 0 0 0 0 1 0 0
-sin 0 cos 0

0 0 0 1

S (s) 1/sx 0 0 0
0 1/sy 0 0

0 0 1/sz 0

RZ
-1() = cos -sin 0 0

sin cos 0 0

0 0 0 1

sin cos 0 0
0 0 1 0
0 0 0 1
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Composing TransformationComposing Transformation

 For example, transforms a vector p=[5, 0, 0, 1]
1. scale 1/5
2. rotate π/4 in y-axis

t l t (1 2 3)3. translate (1, 2, -3)

 Then, M = S(1/5, 1/5, 1/5) * Ry(PI/4) * T(1,2,-3)
 ’ M [1 707 2 3 707 1]
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TransformationTransformation

 Vector3.Transform
 Transforms a Vector3 (or array of Vec3 by a specified Matrix 

or Quaternion)

Vector3 Vector3.Transform(Vector3, Matrix);
Vector3 Vector3.Transform(ref Vector3, ref Matrix, out Vector3);
Vector3 Vector3 Transform(Vector3 Quaternion);Vector3 Vector3.Transform(Vector3, Quaternion);
Vector3 Vector3.Transform(ref Vector3, ref Quaternion, out 

Vector3);
Vector3 Vector3.Transform(Vector3[], int, ref Matrix, Vec3[], int, 

int);
Vector3 Vector3.Transform(Vector3[], int, ref Quaternion, Vec3[], 

int, int);
Vector3 Vector3.Transform(Vector3[], ref Matrix, Vector3[]);
Vector3 Vector3 Transform(Vector3[] ref Quaternion Vector3[]);
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Vector3 Vector3.Transform(Vector3[], ref Quaternion, Vector3[]);

OrientationOrientation

 We will define orientation to mean an object’s 
i t t t ti l fi tiinstantaneous rotational configuration.

 Think of it as the rotational equivalent of position
 Direction Direction

 Vector has a direction but not orientation

 Rotation Rotation
 An orientation is given by a rotation from identity orientation

 Angular Displacement
 The amount of rotation is angular displacement

Representing OrientationsRepresenting Orientations

 Is there a simple means of representing a 3D 
i t ti ( l t C t i di t )?orientation (analogous to Cartesian coordinates)?

 Not really
 There are several popular options though: There are several popular options though:

 Euler angles – the simplest
 Rotation vectors (axis/angle)( g )
 Rotation matrices
 Quaternions
 etc etc..



Euler AnglesEuler Angles

 Euler Angles
 Represent any arbitrary orientation as three rotations about 

three mutually perpendicular axes (rotation about X, Y, Z)
 Sometimes described as “Yaw Pitch Roll” or similar Sometimes described as Yaw, Pitch, Roll  or similar
 A sequence of rotations around principle axes is called an Euler 

Angle Sequence

 Axis order
 Euler angles represent three composed rotations that move a 

f f t i f d freference frame to a given referred frame.
 Euler angles are used in a lot of applications, but they tend to 

require some rather arbitrary decisions.q y
 (y, x, z), (x, y, z), (z, x, y),  … can be used

XYZ XZY XYX XZX
YXZ YZX YXY YZY
ZXY ZYX ZXZ ZYZ

Euler AnglesEuler Angles

 Yaw, Pitch, Roll
 Yaw (rotation about Y), Pitch (X), Roll (Z) sequence is 

used in OpenGL/Direct3D/XNA

Euler Angles to Matrix ConversionEuler Angles to Matrix Conversion

 Any orientation can be achieved by composing three 
elemental rotations
 i.e., Any rotation matrix can be decomposed as a product of 

three elemental rotation matricesthree elemental rotation matrices.
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Euler Angle OrderEuler Angle Order

 As matrix multiplication is not commutative, The order 
of operations is important.

 Rotations are assumed to be relative to fixed world axes, 
h h l l h bjrather than local to the object.

 One can think of them as being local to the object if 
th d i dthe sequence order is reversed.

 Euler angle can be used differently by applications.
 XYZ convention is widely used in 3D graphics XYZ convention is widely used in 3D graphics
 ZXZ convention is used in rigid-body dynamics



Euler Angle OrderEuler Angle Order

 ZXZ convention
 XYZ (fixed) system is shown in blue.
 XYZ (rotated) system is shown in red.

Th li f d N i h i The line of nodes, N, is shown in green.
 (Z-rotation) Rotate about the Z-axis by . 

 The X-axis now lies on the line of nodes, N,

 (X-rotation) Rotate again about the rotated X-
axis (i.e., N) by .

Th Z i i i it fi l i t ti d th The Z-axis is now in its final orientation, and the 
X-axis remains on the line of nodes

 (Z-rotation) Rotate a third time about the new 
Z-axis by .

Vehicle Orientation Using Euler AnglesVehicle Orientation Using Euler Angles

 Generally, for vehicles, it is convenient to rotate in roll 
(z), pitch (x) and then yaw (y) order.

 In situations where there is a definite ground plane, 
E l l ll b i i i iEuler angles can actually be an intuitive representation. 

+

front of vehicle

+y

+x

z

Rotations not uniquely defined with 
Euler AnglesEuler Angles

 Rotations are not uniquely defined with Euler Angles.
 Cartesian coordinates are independent of each other.

 Arbitrary position = x-axis position + y-axis position + z-axis 
itiposition

 Euler angles do not act independently of each other. 
 Arbitrary orientation = x axis rotation matrix * y axis rotation Arbitrary orientation = x-axis rotation matrix * y-axis rotation 

matrix * z-axis rotation matrix
 For example, (z, x, y) = (90, 45, 45) = (45, 0, -45)

Gimbal LockGimbal Lock

 One potential problem is ‘gimbal lock’.
 ‘Gimbal Lock’ results when two axes effectively line up, 

resulting in a temporary loss of a degree of freedom. 
Change to one of the angles affect to the entire systemChange to one of the angles affect to the entire system.
 This is related to the singularities in longitude that you get at the 

north and south poles.
R t t 30 b t X th t t 90 b t Y Th t Z i i Rotate 30 about X, then rotate 90 about Y. The current Z-axis is 
in line with X0-axis. This is what we call ‘gimbal lock’ situation.

 Any further rotation about the Z-axis affects the same degree of 
f d b h l h h dfreedom as rotating about the X-axis – losing the third DOF.



Problem with Interpolating Euler AnglesProblem with Interpolating Euler Angles

 The second problem is with generating the in-between p g g
frames, due to the fact that the Euler angles do not act 
independently of each other.
L t h th bj t ith (0 180 0) f t ti Let say you have the object with (0,180,0) of rotation 
angles, and the next keyframe rotation angles is in (0,0,0)
 (180,0,180) represents the same orientation of (0,180,0) ( , , ) p ( , , )
 But, the halfway between (0,180,0) and (0,0,0) is not same 

orientation of the halfway between (180,0,180) and (0,0,0)

Halfway between 
(0,0,0) and (0,180,0)

Halfway between 
(0,0, 0) and (180,0, 180)

Euler AnglesEuler Angles

 Euler angles are used in a lot of applications, but they 
tend to require some rather arbitrary decisions.

 They also do not interpolate in a consistent way (but 
hi i ’ l b d)this isn’t always bad).

 They can suffer from Gimbal lock and related 
p oblemsproblems.

 There is no simple way to concatenate rotations.
C i t /f t i i l Conversion to/from a matrix requires several 
trigonometry operations.

 They are compact (requiring only 3 numbers) They are compact (requiring only 3 numbers).

Matrix CreateFromYawPitchRollMatrix.CreateFromYawPitchRoll 

 Matrix.CreateFromYawPitchRoll

// Yaw/Pitch/Roll -> Rotation Matrix
Matrix Matrix.CreateFromYawPitchRoll 

(float yaw, // by y-axis (in radians)
float pitch, // by x-axis (in radians)
float roll); // by z-axis (in radians)y

Matrix CreateRotationX/Y/ZMatrix.CreateRotationX/Y/Z 

 CreateFromYawPitchRoll vs. CreateRotationX/Y/Z
 CreateFromYawPitchRoll – rotations in local coordinate system
 CreateRotationX/Y/Z multiplication – rotations in world 

coordinate systemcoordinate system

Matrix R1, R2, Rx, Ry, Rz;
R M t i C t R t ti Y(M thH l T R di (60 0))Ry = Matrix.CreateRotationY(MathHelper.ToRadians(60.0));
Rx = Matrix.CreateRotationX(MathHelper.ToRadians(30.0));
Rz = Matrix.CreateRotationZ(MathHelper.ToRadians(45.0));
R1 = Ry * Rx * Rz;
R2 = Matrix.CreateFromYawPitchRoll(MathHelper.ToRadians(60.0), 

MathHelper.ToRadians(30.0),p
MathHelper.ToRadians(45));

R1 != R2



YawPitchRoll vs RotationX/Y/ZYawPitchRoll vs. RotationX/Y/Z 

Y

X

Z

R1 = Y-axis rotation 60 R2 = Yaw 60 

YawPitchRoll vs RotationX/Y/ZYawPitchRoll vs. RotationX/Y/Z 

X

Y

Z

R1 = Y-axis rotation 60
* X-axis rotation 30 

R2 = Yaw 60
Pitch 30 

Z

a s otat o 30 tc 30

YawPitchRoll vs RotationX/Y/ZYawPitchRoll vs. RotationX/Y/Z 

X
Y

R1 = Y-axis rotation 60
* X axis rotation 30

R2 = Yaw 60
Pitch 30

Z

 X-axis rotation 30
* Z-axis rotation 45 

Pitch 30
Roll 45 

Rotation Vectors and Axis/AngleRotation Vectors and Axis/Angle

 Euler’s Theorem also shows that any two orientations 
can be related by a single rotation about some axis 
(not necessarily a principle axis).
Thi h bi This means that we can represent an arbitrary 
orientation as a rotation about some unit axis by some 
angle (4 numbers) (Axis/Angle form)angle (4 numbers) (Axis/Angle form).

 Alternately, we can scale the axis by the angle and 
compact it down to a single 3D vector (Rotationcompact it down to a single 3D vector (Rotation 
vector).



Axis/Angle to MatrixAxis/Angle to Matrix

 To generate a matrix as a rotation q around an 
arbitrary unit axis a:
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Rotation VectorsRotation Vectors

 To convert a scaled rotation vector to a matrix, one 
would have to extract the magnitude out of it and then 
rotate around the normalized axis
N ll i f i f l f Normally, rotation vector format is more useful for 
representing angular velocities and angular 
accelerations rather than angular position (orientation)accelerations, rather than angular position (orientation)

Axis/Angle RepresentationAxis/Angle Representation

 Storing an orientation as an axis and an angle uses 4 
numbers, but Euler’s theorem says that we only need 3 
numbers to represent an orientation
M h i ll hi h i 4 d Mathematically, this means that we are using 4 degrees 
of freedom to represent a 3 degrees of freedom value

 Thi i li th t th i ibl t d d t This implies that there is possibly extra or redundant 
information in the axis/angle format

 The redundancy manifests itself in the magnitude of The redundancy manifests itself in the magnitude of 
the axis vector. The magnitude carries no information, 
and so it is redundant. To remove the redundancy, we y,
choose to normalize the axis, thus constraining the 
extra degree of freedom

Matrix CreateFromAxisAngleMatrix.CreateFromAxisAngle 

 Matrix.CreateFromAxisAngle

Vector3 axis(0, 1, 0);
float angle = 60;g ;
Matrix R3 = Matrix.CreateFromAxisAngle(axis,

MathHelper.ToRadians(angle));



Matrix RepresentationMatrix Representation

 We can use a 3x3 matrix to represent an orientation as 
well.

 This means we now have 9 numbers instead of 3, and 
h f h 6 d f f dtherefore, we have 6 extra degrees of freedom.

 NOTE: We don’t use 4x4 matrices here, as those are 
i l f l b th i th bilit tmainly useful because they give us the ability to 

combine translations. We will just think of 3x3 matrices.

Matrix RepresentationMatrix Representation

 Those extra 6 DOFs manifest themselves as 3 scales (x, 
y, and z) and 3 shears (xy, xz, and yz)

 If we assume the matrix represents a rigid transform 
( h l) h i h 6 DOF(orthonormal), then we can constrain the extra 6 DOFs

cba  1
cba

cba


1

bac
acb




bac 

Matrix RepresentationMatrix Representation

 Matrices are usually the most computationally efficient 
way to apply rotations to geometric data, and so most 
orientation representations ultimately need to be 
converted into a matrix in order to do anything usefulconverted into a matrix in order to do anything useful.

 Why then, shouldn’t we just always use matrices?
 Numerical issues Numerical issues
 Storage issues
 User interaction issues
 Interpolation issues

QuaternionsQuaternions

 Quaternions are an interesting mathematical concept 
with a deep relationship with the foundations of 
algebra and number theory
I d b W R H il i 1843 Invented by W.R.Hamilton in 1843

 In practice, they are most useful as a means of 
ti i t tirepresenting orientations

 A quaternion has 4 components

wzyxq



Quaternions (Imaginary Space)Quaternions (Imaginary Space)

 Quaternions are actually an extension to complex 
numbers.

 Of the 4 components, one is a ‘real’ scalar number, 
d h h 3 f i i i ijk !and the other 3 form a vector in imaginary ijk space!

wzkyjxi q
ijkkji  1222

kk
kjjki 

jiijk
ikkij




jiijk 

Quaternions (Scalar/Vector)Quaternions (Scalar/Vector)

 Quaternions are written as the combination of a scalar 
value s and a vector value v, where

s ,vq
 zyxv  ,,

q
 
ws 

Identity QuaternionsIdentity Quaternions

 Unlike vectors, there are two identity quaternions.
 The multiplication identity quaternion is

10001000  kjiq
 The addition identity quaternion (which we do not use) 

10001,0,0,0  kjiq

is
0,0,0,0q

Unit QuaternionsUnit Quaternions

 For convenience, we will use only unit length 
quaternions, as they will make things a little easier

12222  wzyxq
 These correspond to the set of vectors that form the 

f f f

1 wzyxq

‘surface’ of a 4D hyper-sphere of radius 1
 The ‘surface’ is actually a 3D volume in 4D space, but 

it ti b i li d t i t thit can sometimes be visualized as an extension to the 
concept of a 2D surface on a 3D sphere

 Quaternion normalization: Quaternion normalization:

2222
qqq  q 2222 wzyx

q
q



Quaternions as RotationsQuaternions as Rotations

 A quaternion can represent a rotation by an angle 
around a unit axis a (ax, ay, az) :





 cossinsinsin q aaa  2

cos,
2

sin,
2

sin,
2

sinq

or

aaa zyx







2
cos,

2
sin aq

 If a has unit length then q will also has unit length

 22

 If a has unit length, then q will also has unit length

Quaternions as RotationsQuaternions as Rotations
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2222222

2222 
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q wzyx

2
cos

2
sin

2
sin

2
sin 2222222 


zyx aaa

 
2

cos
2

sin 22222 


zyx aaa

2
cos

2
sin

2
cos

2
sin 22222 

 a
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2222



Quaternion to MatrixQuaternion to Matrix

 Equivalent rotation matrix representing a quaternion is:












2222

2222

2222
2222 wyxzwzxywzyx







 


2222

2222

2222
2222

wzyxwxyzwyxz
wxyzwzyxwzxy

 Using unit quaternion that x2+y2+z2+w2=1, we can 
reduce the matrix to:





  22 2222221 wyxzwzxyzy







 

22

22

2212222
2222122 wxyzzxwzxy

yyy

  22 2212222 yxwxyzwyxz

Quaternion to Axis/AngleQuaternion to Axis/Angle

 To convert a quaternions to a rotation axis, a (ax, ay, az) 
and an angle 

))(i (222l  ))(acossin(222

x

worzyxscale 

y
scale

xax 

z
scale

yay 

)(acos2 w
scale

zaz





 )(acos2 w



Matrix to QuaternionMatrix to Quaternion

 To convert a matrix to a quaternion:

mmm 1332211 

mmmmmm

w
2

332211

w
mmz

w
mmy

w
mmx

444
211213313223 









 If w=0, then the division is undefined. First, 
determining which q0, q1,q2, q3 is the largest, g q , q ,q , q g ,
computing that component using the diagonal of the 
matrix.

Quaternion Dot ProductQuaternion Dot Product

 The dot product of two quaternions works in the same 
way as the dot product of two vectors:

cosqpqp  wwzzyyxx

 The angle between two quaternions in 4D space is half 
f

cosqpqp  qpqpqpqp wwzzyyxx

the angle one would need to rotate from one 
orientation to the other in 3D space.

Quaternion MultiplicationQuaternion Multiplication

 If q represents a rotation and q’ represents a rotation, 
then qq’ represents q rotated by q’

 This follows very similar rules as matrix multiplication 
(I i ) ’ ’(I.e., non-commutative) qq’ ≠ q’q

    
vvvvvv

qq




ssss
wkzjyixwzkyjxi

'
''''

vvvvvv  ssss ,

Quaternion MultiplicationQuaternion Multiplication

 Note that two unit quaternions multiplied together will 
result in another unit quaternion

 This corresponds to the same property of complex 
bnumbers

 Remember that multiplication by complex numbers can 
b th ht f t ti i th l lbe thought of as a rotation in the complex plane

 Quaternions extend the planar rotations of complex 
numbers to 3D rotations in spacenumbers to 3D rotations in space



Basic Quaternion MathematicsBasic Quaternion Mathematics

 Negation of quaternion, -q
 -[v s] = [-v –s] = [-x, –y, –z, –w]

 Addition of two quaternion, p + q
 p + q =  [pv, ps] + [qv, qs] = [pv + qv, ps + qs]

 Magnitude of quaternion, |q|
2222

 Conjugate of quaternion, q* (켤레 사원수)
 q* [v s]* [ v s] [ x y z w]

2222 wzyx q

 q* = [v s]* = [–v s] = [–x, –y, –z , w] 

 Multiplicative inverse of quaternion, q-1 (역수)
 q-1 = q*/|q| q = q /|q|
 q q-1 = q-1 q = 1

Basic Quaternion MathematicsBasic Quaternion Mathematics

 Exponential of quaternion
 exp(v ) = v sin cos 

 Logarithm of quaternion
 log(q) = log(v sin  + cos ) = log(exp(v )) = v 

where q = [v sin  , cos ]

Quaternion InterpolationQuaternion Interpolation

 One of the key benefits of using a quaternion 
representation is the ability to interpolate between key 
frames.

l h f ti l i b t f 0 d f 1alpha = fraction value in between frame0 and frame1
q1 = Euler2Quaternion(frame0)
q2 = Euler2Quaternion(frame1)q2  Euler2Quaternion(frame1)
qr = QuaternionInterpolation(q1, q2, alpha)
qr.Quaternion2Euler()

 Quaternion Interpolation
 Linear Interpolation (LERP)
 Spherical Linear Interpolation (SLERP)

S h i l C bi I t l ti (SQUAD) Spherical Cubic Interpolation (SQUAD)

Linear Interpolation (LERP)Linear Interpolation (LERP)

 If we want to do a direct interpolation between two 
quaternions p and q by alpha:

Lerp(p, q, t) = (1-t)p + (t)q
where 0 ≤ t  ≤ 1

 Note that the Lerp operation can be thought of as a 
weighted average (convex) qweighted average (convex)

 We could also write it in it’s additive blend form:

q

Lerp(p, q, t) = p + t(q - p) 0 ≤ t ≤ 1

p



Why SLERP?Why SLERP?

 The set of quaternions live on the unit hypersphere. 
Th di t i t l ti b t t i ldThe direct interpolation between quaternions would 
stray from the hypersphere.

 An illustration in the plane of the difference between p
Lerp and Slerp 
 The interpolation covers the angle v in three steps
 [Lerp] The secant across is split in four equal pieces The [Lerp] The secant across is split in four equal pieces The 

corresponding angles are shown
 [Slerp] The angle is split in four equal angles

Spherical Linear InterpolationSpherical Linear Interpolation

 If we want to interpolate between two points on a 

j

sphere (or hypersphere), we will travel across the 
surface of the sphere by following a ‘great arc.’

j

q
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Spherical Linear InterpolationSpherical Linear Interpolation

 We define the spherical linear interpolation of two 
quaternions p and q by alpha:

     sin1sin  tt    

 qp

qpqp





acos
sin

sin
sin
1sin),,(








where

tttSlerp

 NOTE: if p q are more than 90 degrees apart it takes

 qp  acoswhere

 NOTE: if p, q are more than 90 degrees apart, it takes 
shorter path.

Spherical Linear InterpolationSpherical Linear Interpolation

 Remember that there are two redundant vectors in 
quaternion space for every unique orientation in 3D 
space
Wh i h diff b What is the difference between:

Slerp(p, q, t) and  Slerp(-p, q, t) ?

 One of these will travel less than 90 degrees while the other 
will travel more than 90 degrees across the sphereg p

 This corresponds to rotating the ‘short way’ or the ‘long way’
 Usually, we want to take the short way, so we negate one of 

th if th i d t d t i 0them if their dot product is < 0



Why SQUAD?Why SQUAD?

 Slerp produces smooth interpolation, but it always 
follows a great arc connecting two quaternions – i.e. the 
animations change directions abruptly at the control 
points To smoothly interpolate through a series ofpoints. To smoothly interpolate through a series of 
quaternions, use splines.

Spline Interpolationp p

Linear Interpolation

Spherical Cubic Interpolation (SQUAD)Spherical Cubic Interpolation (SQUAD)

 To achieve C2 continuity between curve segments, a 
cubic interpolation must be done.

 Squad does a cubic interpolation between four 
i bquaternions by t

),,,,( 11 taaqqSquad iiii 

))1(2),,,(),,,(( 11 tttaaslerptqqslerpslerp iiii  

  )*l ()*l ( 11










 
 






4
)*log()*log(exp*

11

1
1

1
1

iiii
ii

qqqqqa








 
 







 4
)*log()*log(exp* 2

1
1

1
1

11
iiii

ii
qqqqqa

Catmull-Rom Spline InterpolationCatmull Rom Spline Interpolation

 Given n+1 control points {P0, P1, .. Pn}, you wish to find 
a curve that interpolates these control points (and 
passes through them all), and is local in nature (i.e. if 
one of the control points is moved it only affects theone of the control points is moved, it only affects the 
curve locally) – Catmull-Rom Spline. 

 The Catmull-Rom Spline takes a set of keyframe points The Catmull-Rom Spline takes a set of keyframe points 
to describe a smooth piecewise cubic curve that 
passes through all the points. In order to use this p g p
routine we need four keyframe points. 

 Given four keyframe points, P0, P1, P2, P3, the curve 
passes through P1 at t=0 and it passes through P2 at 
t=1 (0 < t < 1).
h i i ll l h li The tangent vector at a point P is parallel to the line 

joining P’s two surrounding points.

Path AnimationPath Animation



XNA QuaternionXNA Quaternion 

 Quaternion methods

// q* (conjugate of a quaternion)
Quaternion p;

C j t ()p.Conjugate();

// pq (multiply two quaternions)// pq ( p y q )
Quaternion Quaternion.Multiply(Quaternion p,

Quaternion q);

// p · q (dot product of two quaternions)
float Quaternion.Dot(Quaternion p,

Q t i )Quaternion q);

XNA QuaternionXNA Quaternion 

 // yaw/pitch/roll -> quaternion
Quaternion Quaternion.CreateFromYawPitchRoll

(float yaw, float pitch, float roll); 

// rotation matrix -> quaternion

Quaternion Quaternion CreateFromRotationMatrix (Matrix matrix);Quaternion Quaternion.CreateFromRotationMatrix (Matrix matrix);

// axis/angle -> quaternion
Quaternion Quaternion.CreateFromAxisAngle

(Vector3 axis, float angle);

XNA QuaternionXNA Quaternion 

 // quaternion -> axis/angle
id Q t i T A i A l ( f Q t ivoid QuaternionToAxisAngle(ref Quaternion q, 

out Vector3 axis, out float angle);
{{

angle = (float)Math.Acos(q.W);
float scale = 1.0f / (float)Math.Sin(angle);
angle *= 2.0f;
axis = new Vector3(-q.X * scale, -q.Y * scale, -q.Z * scale);

}

// quaternion -> rotation matrix
Matrix Matrix.CreateFromQuaternion(Quaternion quaternion);

// transform a vector by quaternion
Vector3 Vector3.Transform(Vector3 value, Quaternion rotation);

XNA QuaternionXNA Quaternion 

 // slerp(q1, q2, t) spherical linear interpolation between two quaternions

Quaternion Quaternion.Slerp

(Quaternion quaternion1, 
Q t i t i 2Quaternion quaternion2,
float amount);

// lerp(q1, q2, t) linear interpolation between two quaternions
Quaternion Quaternion.Lerp

(Quaternion quaternion1, 
Quaternion quaternion2,
fl t t)float amount);



XNA InterpolationXNA Interpolation 

 // Catmull Rom Spline Interpolation
V t 3 V t 3 C t llR (V t 3 l 1Vector3 Vector3.CatmullRom(Vector3 value1, 

Vector3 value2,
Vector3 value3,,
Vector3 value4,
float amount);

// Hermite Spline Interpolation
Vector3 Vector3.Hermite(Vector3 value1, 

Vector3 value2,
Vector3 value3,
Vector3 value4Vector3 value4,
float amount);


