
Transformation &Transformation &
Representing OrientationsRepresenting Orientations

305890
Spring 2013
3/22/2013

Kyoung Shin Park

OutlineOutline

 Coordinate Systems
 Transformation

 Translate
 Rotate
 Scale

 O i t ti Orientation
 Euler Angles
 Rotation Matrix Rotation Matrix
 Quaternion

Multiple Coordinate SpaceMultiple Coordinate Space

 Use more than one coordinate system to specify
coordinates – multiple coordinate space
 Why need ?

S U f l C di S Some Useful Coordinate Spaces
 World coordinate
 Object(Local) coordinate Object(Local) coordinate
 Camera(Viewport) coordinate
 Inetial Coordinate

Multiple Coordinate Space: ExampleMultiple Coordinate Space: Example

Game WorldWorld Origin: (0, 0)

xworld
Game World

 World coordinate
of Wheel = (xworld,
y)Viewport origin

yworld xviewport

x
Viewport

yworld)
 Object coordinate

of Wheel to the

p g

yviewport

xcar

ycar

of Wheel to the
car = (xcar, ycar)

 Camera coordinate

Wheel
Car

 Camera coordinate
of Wheel
=(xviewport, yviewport)

Car origin

Multiple Coordinate Space: ExampleMultiple Coordinate Space: Example

 In different situation we use different coordinates of In different situation, we use different coordinates of
the wheel

 We can calculate the world coordinate of wheel from
coordinate of car and local coordinate of wheel to the
car, why ?

 Rendering pipeline

ViewPort
Transformation

Clipping
and

Scaling
vertex pixel

Scaling

LHS Coordinate SystemsLHS Coordinate Systems

 Left Hand Coordinate System (LHS) – z+ forwardy ()
 Clockwise rotation
 If X-axis rotation, ,

Y->Z rotation is positive
 If Y-axis rotation,

y
z If Y axis rotation,

Z->X rotation is positive
 If Z-axis rotation,

z

 If Z axis rotation,
X->Y rotation is positive x

RHS Coordinate Systems

 Right Hand Coordinate System (RHS) – z+ coming

RHS Coordinate Systems

g y () g
out of the screen

 Counter clockwise rotation
 If X-axis rotation,

Y->Z rotation is positive yp
 If Y-axis rotation,

Z->X rotation is positivep
 If Z-axis rotation,

X->Y rotation is positive
x

p
z

TransformationTransformation

 Geometric transformations are functions that map
points from one place to another.

 2D transformation
 Translation
 Rotation
 Scaling Scaling

y y
y

y y

x xx

8

TransformationTransformation

 Direct3D/XNA uses 4x4 matrix and 1x4 vector for
transformation
 v1x4 = (2, 6, -3, 1)

T t l t 10 it i i T4x4 = translate 10 units in x-axis
 v’ = v1x4 T4x4 = (12, 6, -3, 1)

9

TransformationTransformation

 Why 3D computer graphics uses 4x4 matrix?
 Because it can express all kinds of transformation matrices

(including translation, shearing, reflection, etc)
 It also allows transformations to be concatenated easily (by It also allows transformations to be concatenated easily (by

multiplying their matrices)

 Non-homogeneous/Homogeneous coordinates g / g
convert
 (x, y, z)  (x, y, z, 1)
 (x/w, y/w, z/w)  (x, y, z, w)

10

TranslationTranslation

 Translation
 T-1(p)=T(-p)

// t t l ti t i (RHS)// create a translation matrix (RHS)
Matrix Matrix.CreateTranslation(px, py, pz);

y y
translate










0010
0001

T














1
0100

pzpypx

T

11
x x

RotationRotation

 Rotation
 R-1(p)=RT(p)
 Angle in radian

// create a matrix that can be used to rotate a set of vertices
around the x/y/z-axis (RHS)y ()

Matrix Matrix.CreateRotationX(angle);
Matrix Matrix.CreateRotationY(angle);
Matrix Matrix.CreateRotationZ(angle);

12

3D Rotation Matrix3D Rotation Matrix





 0001

y

















1000
0cossin0
0sincos0

)(



xR





 1000





  0sin0cos 

x

y

rotate















1000
0cos0sin
0010

)(


yR

y



 1000





 00sincos 

x















1000
0100
00cossin

)(


zR

13





 1000

RotationRotation

 Rotation
 Angle in radian

// t t i th t t t d bit t// create a matrix that rotates around an arbitrary vector
Matrix Matrix.CreateFromAxisAngle(vec, angle);

 0i)1(i)1()1(2 
















0)cos1(cossin)cos1(sin)cos1(
0sin)cos1()cos1(cossin)cos1(
0sin)cos1(sin)cos1()cos1(cos

2

2

2





 zxyzyxz
xyzyzxy

axzzxyx

R

y












1000
0)cos1(cossin)cos1(sin)cos1( zxyzyxz

14

ScalingScaling

 Scaling
 S-1(sx, sy, sz)=S(1/sx, 1/sy, 1/sz)

// create a scaling matrix (RHS)// create a scaling matrix (RHS)
Matrix Matrix.CreateScale(3); // scaling in all axis by 3
Matrix Matrix.CreateScale(sx, sy, sz);y

y y
scale





000
000sx
















1000
000
000

sz
sy

S

x x
 1000

15

Inverse Transformation MatrixInverse Transformation Matrix

T-1(p) = 1 0 0 0 RX
-1() = 1 0 0 0

0 1 0 0

0 0 1 0

-px -py -pz 1

0 cos -sin 0
0 sin cos 0
0 0 0 1px py pz 1 0 0 0 1

RY
-1() = cos 0 sin 0

0 1 0 0S-1(s) = 1/sx 0 0 0 0 1 0 0
-sin 0 cos 0

0 0 0 1

S (s) 1/sx 0 0 0
0 1/sy 0 0

0 0 1/sz 0

RZ
-1() = cos -sin 0 0

sin cos 0 0

0 0 0 1

sin cos 0 0
0 0 1 0
0 0 0 1

16

Composing TransformationComposing Transformation

 For example, transforms a vector p=[5, 0, 0, 1]
1. scale 1/5
2. rotate π/4 in y-axis

t l t (1 2 3)3. translate (1, 2, -3)

 Then, M = S(1/5, 1/5, 1/5) * Ry(PI/4) * T(1,2,-3)
 ’ M [1 707 2 3 707 1]















 











0010
0001

0010
0707.0707.

0010

0005
1

 p’ = pM = [1.707, 2, -3.707, 1]










 





















1321
0100
0010

1000
0707.0707.
0010

1000
05

100

0050 TSRy

 1000

M







 

002.00
01414.01414.

17

M








 



1321
01414.01414.

TransformationTransformation

 Vector3.Transform
 Transforms a Vector3 (or array of Vec3 by a specified Matrix

or Quaternion)

Vector3 Vector3.Transform(Vector3, Matrix);
Vector3 Vector3.Transform(ref Vector3, ref Matrix, out Vector3);
Vector3 Vector3 Transform(Vector3 Quaternion);Vector3 Vector3.Transform(Vector3, Quaternion);
Vector3 Vector3.Transform(ref Vector3, ref Quaternion, out

Vector3);
Vector3 Vector3.Transform(Vector3[], int, ref Matrix, Vec3[], int,

int);
Vector3 Vector3.Transform(Vector3[], int, ref Quaternion, Vec3[],

int, int);
Vector3 Vector3.Transform(Vector3[], ref Matrix, Vector3[]);
Vector3 Vector3 Transform(Vector3[] ref Quaternion Vector3[]);

18

Vector3 Vector3.Transform(Vector3[], ref Quaternion, Vector3[]);

OrientationOrientation

 We will define orientation to mean an object’s
i t t t ti l fi tiinstantaneous rotational configuration.

 Think of it as the rotational equivalent of position
 Direction Direction

 Vector has a direction but not orientation

 Rotation Rotation
 An orientation is given by a rotation from identity orientation

 Angular Displacement
 The amount of rotation is angular displacement

Representing OrientationsRepresenting Orientations

 Is there a simple means of representing a 3D
i t ti (l t C t i di t)?orientation (analogous to Cartesian coordinates)?

 Not really
 There are several popular options though: There are several popular options though:

 Euler angles – the simplest
 Rotation vectors (axis/angle)(g)
 Rotation matrices
 Quaternions
 etc etc..

Euler AnglesEuler Angles

 Euler Angles
 Represent any arbitrary orientation as three rotations about

three mutually perpendicular axes (rotation about X, Y, Z)
 Sometimes described as “Yaw Pitch Roll” or similar Sometimes described as Yaw, Pitch, Roll or similar
 A sequence of rotations around principle axes is called an Euler

Angle Sequence

 Axis order
 Euler angles represent three composed rotations that move a

f f t i f d freference frame to a given referred frame.
 Euler angles are used in a lot of applications, but they tend to

require some rather arbitrary decisions.q y
 (y, x, z), (x, y, z), (z, x, y), … can be used

XYZ XZY XYX XZX
YXZ YZX YXY YZY
ZXY ZYX ZXZ ZYZ

Euler AnglesEuler Angles

 Yaw, Pitch, Roll
 Yaw (rotation about Y), Pitch (X), Roll (Z) sequence is

used in OpenGL/Direct3D/XNA

Euler Angles to Matrix ConversionEuler Angles to Matrix Conversion

 Any orientation can be achieved by composing three
elemental rotations
 i.e., Any rotation matrix can be decomposed as a product of

three elemental rotation matricesthree elemental rotation matrices.













 







0
0

010
0

0
001 zzyy scsc

RRR






























 


100
0

0
010

0
0 zz

yyxx

xxzyx cs
cscs

scRRR





  yzyzy ssccc











 
 yxzxzyxzxzyx

cccssscsscsc
csccssssccss

  yxzxzyxzxzyx cccssscsscsc

Euler Angle OrderEuler Angle Order

 As matrix multiplication is not commutative, The order
of operations is important.

 Rotations are assumed to be relative to fixed world axes,
h h l l h bjrather than local to the object.

 One can think of them as being local to the object if
th d i dthe sequence order is reversed.

 Euler angle can be used differently by applications.
 XYZ convention is widely used in 3D graphics XYZ convention is widely used in 3D graphics
 ZXZ convention is used in rigid-body dynamics

Euler Angle OrderEuler Angle Order

 ZXZ convention
 XYZ (fixed) system is shown in blue.
 XYZ (rotated) system is shown in red.

Th li f d N i h i The line of nodes, N, is shown in green.
 (Z-rotation) Rotate about the Z-axis by .

 The X-axis now lies on the line of nodes, N,

 (X-rotation) Rotate again about the rotated X-
axis (i.e., N) by .

Th Z i i i it fi l i t ti d th The Z-axis is now in its final orientation, and the
X-axis remains on the line of nodes

 (Z-rotation) Rotate a third time about the new
Z-axis by .

Vehicle Orientation Using Euler AnglesVehicle Orientation Using Euler Angles

 Generally, for vehicles, it is convenient to rotate in roll
(z), pitch (x) and then yaw (y) order.

 In situations where there is a definite ground plane,
E l l ll b i i i iEuler angles can actually be an intuitive representation.

+

front of vehicle

+y

+x

z

Rotations not uniquely defined with
Euler AnglesEuler Angles

 Rotations are not uniquely defined with Euler Angles.
 Cartesian coordinates are independent of each other.

 Arbitrary position = x-axis position + y-axis position + z-axis
itiposition

 Euler angles do not act independently of each other.
 Arbitrary orientation = x axis rotation matrix * y axis rotation Arbitrary orientation = x-axis rotation matrix * y-axis rotation

matrix * z-axis rotation matrix
 For example, (z, x, y) = (90, 45, 45) = (45, 0, -45)

Gimbal LockGimbal Lock

 One potential problem is ‘gimbal lock’.
 ‘Gimbal Lock’ results when two axes effectively line up,

resulting in a temporary loss of a degree of freedom.
Change to one of the angles affect to the entire systemChange to one of the angles affect to the entire system.
 This is related to the singularities in longitude that you get at the

north and south poles.
R t t 30 b t X th t t 90 b t Y Th t Z i i Rotate 30 about X, then rotate 90 about Y. The current Z-axis is
in line with X0-axis. This is what we call ‘gimbal lock’ situation.

 Any further rotation about the Z-axis affects the same degree of
f d b h l h h dfreedom as rotating about the X-axis – losing the third DOF.

Problem with Interpolating Euler AnglesProblem with Interpolating Euler Angles

 The second problem is with generating the in-between p g g
frames, due to the fact that the Euler angles do not act
independently of each other.
L t h th bj t ith (0 180 0) f t ti Let say you have the object with (0,180,0) of rotation
angles, and the next keyframe rotation angles is in (0,0,0)
 (180,0,180) represents the same orientation of (0,180,0) (, ,) p (, ,)
 But, the halfway between (0,180,0) and (0,0,0) is not same

orientation of the halfway between (180,0,180) and (0,0,0)

Halfway between
(0,0,0) and (0,180,0)

Halfway between
(0,0, 0) and (180,0, 180)

Euler AnglesEuler Angles

 Euler angles are used in a lot of applications, but they
tend to require some rather arbitrary decisions.

 They also do not interpolate in a consistent way (but
hi i ’ l b d)this isn’t always bad).

 They can suffer from Gimbal lock and related
p oblemsproblems.

 There is no simple way to concatenate rotations.
C i t /f t i i l Conversion to/from a matrix requires several
trigonometry operations.

 They are compact (requiring only 3 numbers) They are compact (requiring only 3 numbers).

Matrix CreateFromYawPitchRollMatrix.CreateFromYawPitchRoll

 Matrix.CreateFromYawPitchRoll

// Yaw/Pitch/Roll -> Rotation Matrix
Matrix Matrix.CreateFromYawPitchRoll

(float yaw, // by y-axis (in radians)
float pitch, // by x-axis (in radians)
float roll); // by z-axis (in radians)y

Matrix CreateRotationX/Y/ZMatrix.CreateRotationX/Y/Z

 CreateFromYawPitchRoll vs. CreateRotationX/Y/Z
 CreateFromYawPitchRoll – rotations in local coordinate system
 CreateRotationX/Y/Z multiplication – rotations in world

coordinate systemcoordinate system

Matrix R1, R2, Rx, Ry, Rz;
R M t i C t R t ti Y(M thH l T R di (60 0))Ry = Matrix.CreateRotationY(MathHelper.ToRadians(60.0));
Rx = Matrix.CreateRotationX(MathHelper.ToRadians(30.0));
Rz = Matrix.CreateRotationZ(MathHelper.ToRadians(45.0));
R1 = Ry * Rx * Rz;
R2 = Matrix.CreateFromYawPitchRoll(MathHelper.ToRadians(60.0),

MathHelper.ToRadians(30.0),p
MathHelper.ToRadians(45));

R1 != R2

YawPitchRoll vs RotationX/Y/ZYawPitchRoll vs. RotationX/Y/Z

Y

X

Z

R1 = Y-axis rotation 60 R2 = Yaw 60

YawPitchRoll vs RotationX/Y/ZYawPitchRoll vs. RotationX/Y/Z

X

Y

Z

R1 = Y-axis rotation 60
* X-axis rotation 30

R2 = Yaw 60
Pitch 30

Z

a s otat o 30 tc 30

YawPitchRoll vs RotationX/Y/ZYawPitchRoll vs. RotationX/Y/Z

X
Y

R1 = Y-axis rotation 60
* X axis rotation 30

R2 = Yaw 60
Pitch 30

Z

 X-axis rotation 30
* Z-axis rotation 45

Pitch 30
Roll 45

Rotation Vectors and Axis/AngleRotation Vectors and Axis/Angle

 Euler’s Theorem also shows that any two orientations
can be related by a single rotation about some axis
(not necessarily a principle axis).
Thi h bi This means that we can represent an arbitrary
orientation as a rotation about some unit axis by some
angle (4 numbers) (Axis/Angle form)angle (4 numbers) (Axis/Angle form).

 Alternately, we can scale the axis by the angle and
compact it down to a single 3D vector (Rotationcompact it down to a single 3D vector (Rotation
vector).

Axis/Angle to MatrixAxis/Angle to Matrix

 To generate a matrix as a rotation q around an
arbitrary unit axis a:












sin)cos1()1(cossin)cos1(
sin)cos1(sin)cos1()1(cos

22

22

xzyyyzyx

yzxzyxxx

aaaaaaaa
aaaaaaaa










 )1(cossin)cos1(sin)cos1(
s)cos()(coss)cos(

22
zzxzyyzx

xzyyyzyx

aaaaaaaa
aaaaaaaa




Rotation VectorsRotation Vectors

 To convert a scaled rotation vector to a matrix, one
would have to extract the magnitude out of it and then
rotate around the normalized axis
N ll i f i f l f Normally, rotation vector format is more useful for
representing angular velocities and angular
accelerations rather than angular position (orientation)accelerations, rather than angular position (orientation)

Axis/Angle RepresentationAxis/Angle Representation

 Storing an orientation as an axis and an angle uses 4
numbers, but Euler’s theorem says that we only need 3
numbers to represent an orientation
M h i ll hi h i 4 d Mathematically, this means that we are using 4 degrees
of freedom to represent a 3 degrees of freedom value

 Thi i li th t th i ibl t d d t This implies that there is possibly extra or redundant
information in the axis/angle format

 The redundancy manifests itself in the magnitude of The redundancy manifests itself in the magnitude of
the axis vector. The magnitude carries no information,
and so it is redundant. To remove the redundancy, we y,
choose to normalize the axis, thus constraining the
extra degree of freedom

Matrix CreateFromAxisAngleMatrix.CreateFromAxisAngle

 Matrix.CreateFromAxisAngle

Vector3 axis(0, 1, 0);
float angle = 60;g ;
Matrix R3 = Matrix.CreateFromAxisAngle(axis,

MathHelper.ToRadians(angle));

Matrix RepresentationMatrix Representation

 We can use a 3x3 matrix to represent an orientation as
well.

 This means we now have 9 numbers instead of 3, and
h f h 6 d f f dtherefore, we have 6 extra degrees of freedom.

 NOTE: We don’t use 4x4 matrices here, as those are
i l f l b th i th bilit tmainly useful because they give us the ability to

combine translations. We will just think of 3x3 matrices.

Matrix RepresentationMatrix Representation

 Those extra 6 DOFs manifest themselves as 3 scales (x,
y, and z) and 3 shears (xy, xz, and yz)

 If we assume the matrix represents a rigid transform
(h l) h i h 6 DOF(orthonormal), then we can constrain the extra 6 DOFs

cba  1
cba

cba


1

bac
acb




bac 

Matrix RepresentationMatrix Representation

 Matrices are usually the most computationally efficient
way to apply rotations to geometric data, and so most
orientation representations ultimately need to be
converted into a matrix in order to do anything usefulconverted into a matrix in order to do anything useful.

 Why then, shouldn’t we just always use matrices?
 Numerical issues Numerical issues
 Storage issues
 User interaction issues
 Interpolation issues

QuaternionsQuaternions

 Quaternions are an interesting mathematical concept
with a deep relationship with the foundations of
algebra and number theory
I d b W R H il i 1843 Invented by W.R.Hamilton in 1843

 In practice, they are most useful as a means of
ti i t tirepresenting orientations

 A quaternion has 4 components

wzyxq

Quaternions (Imaginary Space)Quaternions (Imaginary Space)

 Quaternions are actually an extension to complex
numbers.

 Of the 4 components, one is a ‘real’ scalar number,
d h h 3 f i i i ijk !and the other 3 form a vector in imaginary ijk space!

wzkyjxi q
ijkkji  1222

kk
kjjki 

jiijk
ikkij




jiijk 

Quaternions (Scalar/Vector)Quaternions (Scalar/Vector)

 Quaternions are written as the combination of a scalar
value s and a vector value v, where

s ,vq
 zyxv  ,,

q
 
ws 

Identity QuaternionsIdentity Quaternions

 Unlike vectors, there are two identity quaternions.
 The multiplication identity quaternion is

10001000  kjiq
 The addition identity quaternion (which we do not use)

10001,0,0,0  kjiq

is
0,0,0,0q

Unit QuaternionsUnit Quaternions

 For convenience, we will use only unit length
quaternions, as they will make things a little easier

12222  wzyxq
 These correspond to the set of vectors that form the

f f f

1 wzyxq

‘surface’ of a 4D hyper-sphere of radius 1
 The ‘surface’ is actually a 3D volume in 4D space, but

it ti b i li d t i t thit can sometimes be visualized as an extension to the
concept of a 2D surface on a 3D sphere

 Quaternion normalization: Quaternion normalization:

2222
qqq  q 2222 wzyx

q
q

Quaternions as RotationsQuaternions as Rotations

 A quaternion can represent a rotation by an angle 
around a unit axis a (ax, ay, az) :





 cossinsinsin q aaa  2

cos,
2

sin,
2

sin,
2

sinq

or

aaa zyx







2
cos,

2
sin aq

 If a has unit length then q will also has unit length

 22

 If a has unit length, then q will also has unit length

Quaternions as RotationsQuaternions as Rotations

2222

2222222

2222 



q wzyx

2
cos

2
sin

2
sin

2
sin 2222222 


zyx aaa

 
2

cos
2

sin 22222 


zyx aaa

2
cos

2
sin

2
cos

2
sin 22222 

 a

11
2222



Quaternion to MatrixQuaternion to Matrix

 Equivalent rotation matrix representing a quaternion is:












2222

2222

2222
2222 wyxzwzxywzyx







 


2222

2222

2222
2222

wzyxwxyzwyxz
wxyzwzyxwzxy

 Using unit quaternion that x2+y2+z2+w2=1, we can
reduce the matrix to:





  22 2222221 wyxzwzxyzy







 

22

22

2212222
2222122 wxyzzxwzxy

yyy

  22 2212222 yxwxyzwyxz

Quaternion to Axis/AngleQuaternion to Axis/Angle

 To convert a quaternions to a rotation axis, a (ax, ay, az)
and an angle 

))(i (222l ))(acossin(222

x

worzyxscale 

y
scale

xax 

z
scale

yay 

)(acos2 w
scale

zaz





)(acos2 w

Matrix to QuaternionMatrix to Quaternion

 To convert a matrix to a quaternion:

mmm 1332211 

mmmmmm

w
2

332211

w
mmz

w
mmy

w
mmx

444
211213313223 









 If w=0, then the division is undefined. First,
determining which q0, q1,q2, q3 is the largest, g q , q ,q , q g ,
computing that component using the diagonal of the
matrix.

Quaternion Dot ProductQuaternion Dot Product

 The dot product of two quaternions works in the same
way as the dot product of two vectors:

cosqpqp  wwzzyyxx

 The angle between two quaternions in 4D space is half
f

cosqpqp  qpqpqpqp wwzzyyxx

the angle one would need to rotate from one
orientation to the other in 3D space.

Quaternion MultiplicationQuaternion Multiplication

 If q represents a rotation and q’ represents a rotation,
then qq’ represents q rotated by q’

 This follows very similar rules as matrix multiplication
(I i) ’ ’(I.e., non-commutative) qq’ ≠ q’q

    
vvvvvv

qq




ssss
wkzjyixwzkyjxi

'
''''

vvvvvv  ssss ,

Quaternion MultiplicationQuaternion Multiplication

 Note that two unit quaternions multiplied together will
result in another unit quaternion

 This corresponds to the same property of complex
bnumbers

 Remember that multiplication by complex numbers can
b th ht f t ti i th l lbe thought of as a rotation in the complex plane

 Quaternions extend the planar rotations of complex
numbers to 3D rotations in spacenumbers to 3D rotations in space

Basic Quaternion MathematicsBasic Quaternion Mathematics

 Negation of quaternion, -q
 -[v s] = [-v –s] = [-x, –y, –z, –w]

 Addition of two quaternion, p + q
 p + q = [pv, ps] + [qv, qs] = [pv + qv, ps + qs]

 Magnitude of quaternion, |q|
2222

 Conjugate of quaternion, q* (켤레 사원수)
 q* [v s]* [v s] [x y z w]

2222 wzyx q

 q* = [v s]* = [–v s] = [–x, –y, –z , w]

 Multiplicative inverse of quaternion, q-1 (역수)
 q-1 = q*/|q| q = q /|q|
 q q-1 = q-1 q = 1

Basic Quaternion MathematicsBasic Quaternion Mathematics

 Exponential of quaternion
 exp(v ) = v sin cos 

 Logarithm of quaternion
 log(q) = log(v sin  + cos ) = log(exp(v )) = v 

where q = [v sin  , cos ]

Quaternion InterpolationQuaternion Interpolation

 One of the key benefits of using a quaternion
representation is the ability to interpolate between key
frames.

l h f ti l i b t f 0 d f 1alpha = fraction value in between frame0 and frame1
q1 = Euler2Quaternion(frame0)
q2 = Euler2Quaternion(frame1)q2 Euler2Quaternion(frame1)
qr = QuaternionInterpolation(q1, q2, alpha)
qr.Quaternion2Euler()

 Quaternion Interpolation
 Linear Interpolation (LERP)
 Spherical Linear Interpolation (SLERP)

S h i l C bi I t l ti (SQUAD) Spherical Cubic Interpolation (SQUAD)

Linear Interpolation (LERP)Linear Interpolation (LERP)

 If we want to do a direct interpolation between two
quaternions p and q by alpha:

Lerp(p, q, t) = (1-t)p + (t)q
where 0 ≤ t ≤ 1

 Note that the Lerp operation can be thought of as a
weighted average (convex) qweighted average (convex)

 We could also write it in it’s additive blend form:

q

Lerp(p, q, t) = p + t(q - p) 0 ≤ t ≤ 1

p

Why SLERP?Why SLERP?

 The set of quaternions live on the unit hypersphere.
Th di t i t l ti b t t i ldThe direct interpolation between quaternions would
stray from the hypersphere.

 An illustration in the plane of the difference between p
Lerp and Slerp
 The interpolation covers the angle v in three steps
 [Lerp] The secant across is split in four equal pieces The [Lerp] The secant across is split in four equal pieces The

corresponding angles are shown
 [Slerp] The angle is split in four equal angles

Spherical Linear InterpolationSpherical Linear Interpolation

 If we want to interpolate between two points on a

j

sphere (or hypersphere), we will travel across the
surface of the sphere by following a ‘great arc.’

j

q

21 sin
sin

sin
)1(sin)(qtqttq












2q
)(cos 21

1 qq  

i1q



i

kk

Spherical Linear InterpolationSpherical Linear Interpolation

 We define the spherical linear interpolation of two
quaternions p and q by alpha:

     sin1sin  tt    

 qp

qpqp





acos
sin

sin
sin
1sin),,(








where

tttSlerp

 NOTE: if p q are more than 90 degrees apart it takes

 qp  acoswhere

 NOTE: if p, q are more than 90 degrees apart, it takes
shorter path.

Spherical Linear InterpolationSpherical Linear Interpolation

 Remember that there are two redundant vectors in
quaternion space for every unique orientation in 3D
space
Wh i h diff b What is the difference between:

Slerp(p, q, t) and Slerp(-p, q, t) ?

 One of these will travel less than 90 degrees while the other
will travel more than 90 degrees across the sphereg p

 This corresponds to rotating the ‘short way’ or the ‘long way’
 Usually, we want to take the short way, so we negate one of

th if th i d t d t i 0them if their dot product is < 0

Why SQUAD?Why SQUAD?

 Slerp produces smooth interpolation, but it always
follows a great arc connecting two quaternions – i.e. the
animations change directions abruptly at the control
points To smoothly interpolate through a series ofpoints. To smoothly interpolate through a series of
quaternions, use splines.

Spline Interpolationp p

Linear Interpolation

Spherical Cubic Interpolation (SQUAD)Spherical Cubic Interpolation (SQUAD)

 To achieve C2 continuity between curve segments, a
cubic interpolation must be done.

 Squad does a cubic interpolation between four
i bquaternions by t

),,,,(11 taaqqSquad iiii 

))1(2),,,(),,,((11 tttaaslerptqqslerpslerp iiii  

 )*l ()*l (11










 
 






4
)*log()*log(exp*

11

1
1

1
1

iiii
ii

qqqqqa








 
 







 4
)*log()*log(exp* 2

1
1

1
1

11
iiii

ii
qqqqqa

Catmull-Rom Spline InterpolationCatmull Rom Spline Interpolation

 Given n+1 control points {P0, P1, .. Pn}, you wish to find
a curve that interpolates these control points (and
passes through them all), and is local in nature (i.e. if
one of the control points is moved it only affects theone of the control points is moved, it only affects the
curve locally) – Catmull-Rom Spline.

 The Catmull-Rom Spline takes a set of keyframe points The Catmull-Rom Spline takes a set of keyframe points
to describe a smooth piecewise cubic curve that
passes through all the points. In order to use this p g p
routine we need four keyframe points.

 Given four keyframe points, P0, P1, P2, P3, the curve
passes through P1 at t=0 and it passes through P2 at
t=1 (0 < t < 1).
h i i ll l h li The tangent vector at a point P is parallel to the line

joining P’s two surrounding points.

Path AnimationPath Animation

XNA QuaternionXNA Quaternion

 Quaternion methods

// q* (conjugate of a quaternion)
Quaternion p;

C j t ()p.Conjugate();

// pq (multiply two quaternions)// pq (p y q)
Quaternion Quaternion.Multiply(Quaternion p,

Quaternion q);

// p · q (dot product of two quaternions)
float Quaternion.Dot(Quaternion p,

Q t i)Quaternion q);

XNA QuaternionXNA Quaternion

 // yaw/pitch/roll -> quaternion
Quaternion Quaternion.CreateFromYawPitchRoll

(float yaw, float pitch, float roll);

// rotation matrix -> quaternion

Quaternion Quaternion CreateFromRotationMatrix (Matrix matrix);Quaternion Quaternion.CreateFromRotationMatrix (Matrix matrix);

// axis/angle -> quaternion
Quaternion Quaternion.CreateFromAxisAngle

(Vector3 axis, float angle);

XNA QuaternionXNA Quaternion

 // quaternion -> axis/angle
id Q t i T A i A l (f Q t ivoid QuaternionToAxisAngle(ref Quaternion q,

out Vector3 axis, out float angle);
{{

angle = (float)Math.Acos(q.W);
float scale = 1.0f / (float)Math.Sin(angle);
angle *= 2.0f;
axis = new Vector3(-q.X * scale, -q.Y * scale, -q.Z * scale);

}

// quaternion -> rotation matrix
Matrix Matrix.CreateFromQuaternion(Quaternion quaternion);

// transform a vector by quaternion
Vector3 Vector3.Transform(Vector3 value, Quaternion rotation);

XNA QuaternionXNA Quaternion

 // slerp(q1, q2, t) spherical linear interpolation between two quaternions

Quaternion Quaternion.Slerp

(Quaternion quaternion1,
Q t i t i 2Quaternion quaternion2,
float amount);

// lerp(q1, q2, t) linear interpolation between two quaternions
Quaternion Quaternion.Lerp

(Quaternion quaternion1,
Quaternion quaternion2,
fl t t)float amount);

XNA InterpolationXNA Interpolation

 // Catmull Rom Spline Interpolation
V t 3 V t 3 C t llR (V t 3 l 1Vector3 Vector3.CatmullRom(Vector3 value1,

Vector3 value2,
Vector3 value3,,
Vector3 value4,
float amount);

// Hermite Spline Interpolation
Vector3 Vector3.Hermite(Vector3 value1,

Vector3 value2,
Vector3 value3,
Vector3 value4Vector3 value4,
float amount);

