Transformation &
Representing Orientations

Outline

305890
Spring 2013
3/22/2013
Kyoung Shin Park

o Coordinate Systems

o Transformation
m Translate
= Rotate
m Scale

o Orientation
m Euler Angles
= Rotation Matrix
= Quaternion

Multiple Coordinate Space

o Use more than one coordinate system to specify
coordinates — multiple coordinate space
= Why need ?

o Some Useful Coordinate Spaces
World coordinate

Object(Local) coordinate
Camera(Viewport) coordinate
Inetial Coordinate

Multiple Coordinate Space: Example

.— World Origin: (0, 0) Game World

Xworld
Viewport origin
Yworld \ Xviewport Viewport
Jear |
yviewport 7
ca] [
Car origin Car
- Wheel

o

m]

World coordinate
of Wheel = (X0
yworld)

Object coordinate
of Wheel to the
car = (Xcarl ycar)
Camera coordinate
of Wheel

:(Xviewportl yviewport)

Multiple Coordinate Space: Example

LHS Coordinate Systems

o In different situation, we use different coordinates of
the wheel

o We can calculate the world coordinate of wheel from
coordinate of car and local coordinate of wheel to the
car, why ?

O Rendering pipeline

Clipping

o Left Hand Coordinate System (LHS) — z+ forward

o Clockwise rotation

o If X-axis rotation,
Y->Z rotation is positive

o If Y-axis rotation, 7
Z->X rotation is positive

o If Z-axis rotation,

ViewPort d X->Y rotation is positive X
|:> Transformation |:> Scaar;ing
RHS Coordinate Systems Transformation

o Right Hand Coordinate System (RHS) — z+ coming
out of the screen

o Counter clockwise rotation
o If X-axis rotation,

Y->Z rotation is positive Yy
o If Y-axis rotation,

Z->X rotation is positive “~\
o If Z-axis rotation, (

X->Y rotation is positive

o Geometric transformations are functions that map
points from one place to another.
o 2D transformation
= Translation
= Rotation
m Scaling

" /

Transformation

O Direct3D/XNA uses 4x4 matrix and 1x4 vector for
transformation
BV, =(2,6 -3 1)
® T,. = translate 10 units in x-axis
® V= Vi Ta = (12,6,-3, 1)

My My, Mz M,

[x'}ﬂ]=h zl]ﬂﬁl My My My
X # My My, My M,
My My Mg M,

x o=l Myl +lyx M +izx M+ 1% M,
o=l M+ (e My + 2% M |+ 112 M,

z =l M+l Myl +lzx Ml +1x M)

Transformation

o Why 3D computer graphics uses 4x4 matrix?

= Because it can express all kinds of transformation matrices
(including translation, shearing, reflection, etc)

m It also allows transformations to be concatenated easily (by
multiplying their matrices)
o Non-homogeneous/Homogeneous coordinates
convert
B (XY.2 > XYzl
= (X/wW, y/w, z/w) € (X, Y, Z, W)

10

Translation

o Translation
= Tp)=T(-p)

// create a translation matrix (RHS)
Matrix Matrix.CreateTranslation(px, py, pz);

1 0 0 0
0 1 0 0 y translatg
T =
0 0 1 0
px py pz 1 /\

Rotation

| « L\

11

X

O Rotation
= R(p)=R'(p)
= Angle in radian

// create a matrix that can be used to rotate a set of vertices
around the x/y/z-axis (RHS)

Matrix Matrix.CreateRotationX(angle);
Matrix Matrix.CreateRotationY(angle);
Matrix Matrix.CreateRotationZ(angle);

12

3D Rotation Matrix

Rotation

10 0 0 o Rotation
R (0)= 0 cosf sing 0 y = Angle in radian
’ 0 -sind cosd 0
0 0 0 1] // create a matrix that rotates around an arbitrary vector
"cosd 0 —singd O] Matrix Matrix.CreateFromAxisAngle(vec, angle); —
0 1 0 0 Poi;:t }?rats;;r on \
Civcie Qf yolarro
R(0)=| " .
sing 0 cosd O) rotate
| 0 0 0 1] y cos@+x*(1-cosd) xy(l-cosé)+zsin 6 xz(1-cosf)-a,sin & O
cosd sind 0 0] | xy(l-cos@)-zsin ¢ cosf+y*(1-cosf) yz(l-cosf)+xsin@ O
~sing cos@ 0 0 xz(1-cos@) +ysin @ yz(l-cos#)—xsiné cos@+z°(1-cosd) 0
R,(0)=
.(6) 0 0 10 [0 0 0 1
0 0 01 X T Preot Joint
- 13 14
Scaling Inverse Transformation Matrix
o Scaling Tip) =[1 0 0 0 RAO) = (1 0 0 0
- S’l(sx, sy, sz)=S(1/sx, l/sy, 1/s2) 0 1 0 0 0 cos® -sin® 0
0 0 1 0 0 sin® cos® 0
// create a scaling matrix (RHS) -px -py -pz 1 0 0 0 1
Matr!x Matr!x.CreateScaIe(B); // scaling in all axis by 3 R@) = cos® 0 sind 0
Matrix Matrix.CreateScale(sx, sy, sz); sis) = [1/sx 0 0 0 0) 0 0
0 1/sy 0 0 -sinf 0 cos6 0
sx. 0 00 y scale) 0 0 1/sz 0 o 0o 0 1
S_ 0 sy 00 0 0 0 1
10 0 sz 0 R,10) = cos6 -sin6 0 O
0 0 01 . sin@ cos@ 0 O
X 0 0 1 0
0 0 0 1

15

16

Composing Transformation

Transformation

o For example, transforms a vector p=[5, 0, 0, 1]
1. scale 1/5
2. rotate /4 in y-axis
3. translate (1, 2, -3)
= Then, M = S(1/5, 1/5, 1/5) * R (P1/4) * T(1,2,-3)
op =§M [1.707, 2, -3.707, 1]
5 0

o Vector3.Transform

m Transforms a Vector3 (or array of Vec3 by a specified Matrix
or Quaternion)

Vector3 Vector3.Transform(Vector3, Matrix);
Vector3 Vector3.Transform(ref Vector3, ref Matrix, out Vector3);
Vector3 Vector3.Transform(Vector3, Quaternion);

0 0,707 0 -707 0Y1 O O O Vector3 Vector3.Transform(ref Vector3, ref Quaternion, out
Vector3);
0 1 0 0jo 1 0 O '
SRT = 0 % 0 0 Vector3 Vector3.Transform(Vector3[], int, ref Matrix, Vec3[], int,
y 0 0 % ol-707 0 707 0j0 0 1 0 int);
0 0 o 100 0 0 101 2 -3 1 Vector3 Vector3.Transform(Vector3[], int, ref Quaternion, Vec3[],
int, int);
1414 0 -.1414 0 ’ ;
Vector3 Vector3.Transform(Vector3[], ref Matrix, Vector3[]);
|0 0.2 0 0 -M Vector3 Vector3.Transform(Vector3[], ref Quaternion, Vector3[]);
1414 0 1414 0 . .
1 2 -3 1
Orientation Representing Orientations

o We will define orientation to mean an object’s
instantaneous rotational configuration.
O Think of it as the rotational equivalent of position
o Direction
= Vector has a direction but not orientation
O Rotation
= An orientation is given by a rotation from identity orientation
o Angular Displacement
m The amount of rotation is angular displacement

o Is there a simple means of representing a 3D
orientation (analogous to Cartesian coordinates)?

o Not really

O There are several popular options though:
m Euler angles — the simplest
m Rotation vectors (axis/angle)
= Rotation matrices
= Quaternions
= etc.

Euler Angles

Euler Angles

o Euler Angles

= Represent any arbitrary orientation as three rotations about
three mutually perpendicular axes (rotation about X, Y, Z)

= Sometimes described as “Yaw, Pitch, Roll” or similar
= A sequence of rotations around principle axes is called an Euler
Angle Sequence
O Axis order

m Euler angles represent three composed rotations that move a
reference frame to a given referred frame.

m Euler angles are used in a lot of applications, but they tend to
require some rather arbitrary decisions.

m(y, X2, XYV 2, (zXxYy) .. can be used

XYZ XZY XYX XZX
YXZ YZX YXY YZY
ZXY ZYX ZXZ YA VA

o Yaw, Pitch, Roll

o Yaw (rotation about Y), Pitch (X), Roll (Z) sequence is
used in OpenGL/Direct3D/XNA

Euler Angles to Matrix Conversion

Euler Angle Order

o Any orientation can be achieved by composing three
elemental rotations

® i.e, Any rotation matrix can be decomposed as a product of
three elemental rotation matrices.

1 0 O0ffc, O =s,||¢c, s O
R,-R,-R,=0 ¢, s 10 1 0 |-/-s, ¢, O
0 -s, ¢]|s, 0 ¢ 0 01
¢, C,s, -s,
=15,5,C,—C,S, S,5,5,+CC, S¢C,
c.S,C,+5s,8, CS,8,—S.C, CC,

o As matrix multiplication is not commutative, The order
of operations is important.

O Rotations are assumed to be relative to fixed world axes,
rather than local to the object.

o One can think of them as being local to the object if
the sequence order is reversed.

o Euler angle can be used differently by applications.
m XYZ convention is widely used in 3D graphics
m ZXZ convention is used in rigid-body dynamics

Euler Angle Order

O ZXZ convention
m XYZ (fixed) system is shown in blue.
m XYZ (rotated) system is shown in red. 4
m The line of nodes, N, is shown in green. t
m (Z-rotation) Rotate about the Z-axis by a. v (VAN
The X-axis now lies on the line of nodes, N

m (X-rotation) Rotate again about the rotated X-
axis (i.e.,, N) by B.
The Z-axis is now in its final orientation, and the
X-axis remains on the line of nodes
m (Z-rotation) Rotate a third time about the new
Z-axis by v.

Vehicle Orientation Using Euler Angles

O Generally, for vehicles, it is convenient to rotate in roll
(2), pitch (x) and then yaw (y) order.

O In situations where there is a definite ground plane,
Euler angles can actually be an intuitive representation.

ty

front of vehicle

+X

Rotations not uniquely defined with
Euler Angles

O Rotations are not uniquely defined with Euler Angles.

O Cartesian coordinates are independent of each other.

= Arbitrary position = x-axis position + y-axis position + z-axis
position

o Euler angles do not act independently of each other.

m Arbitrary orientation = x-axis rotation matrix * y-axis rotation
matrix * z-axis rotation matrix

m For example, (z, x, y) = (90, 45, 45) = (45, O, -45)

Gimbal Lock

o One potential problem is ‘gimbal lock'.

O ‘Gimbal Lock’ results when two axes effectively line up,
resulting in a temporary loss of a degree of freedom.
Change to one of the angles affect to the entire system.

m This is related to the singularities in longitude that you get at the
north and south poles.

= Rotate 30 about X, then rotate 90 about Y. The current Z-axis is
in line with X0-axis. This is what we call ‘gimbal lock’ situation.

m Any further rotation about the Z-axis affects the same degree of
freedom as rotating about the X-axis — losing the third DOF.

(x=30, y=90, z=0)

Problem with Interpolating Euler Angles

Euler Angles

o The second problem is with generating the in-between
frames, due to the fact that the Euler angles do not act
independently of each other.

O Let say you have the object with (0,180,0) of rotation
angles, and the next keyframe rotation angles is in (0,0,0)

= (180,0,180) represents the same orientation of (0,180,0)

= But, the halfway between (0,180,0) and (0,0,0) is not same
orientation of the halfway between (180,0,180) and (0,0,0)

| ve

g

Halfway between Halfway between
(0,0,0) and (0,180,0) (0,0, 0) and (180,0, 180)

o Euler angles are used in a lot of applications, but they
tend to require some rather arbitrary decisions.

o They also do not interpolate in a consistent way (but
this isn't always bad).

o0 They can suffer from Gimbal lock and related
problems.

o There is no simple way to concatenate rotations.

o Conversion to/from a matrix requires several
trigonometry operations.

o They are compact (requiring only 3 numbers).

Matrix.CreateFromYawPitchRoll

Matrix.CreateRotationX/Y/Z

o Matrix.CreateFromYawPitchRoll

// Yaw/Pitch/Roll -> Rotation Matrix

Matrix Matrix.CreateFromYawPitchRoll
(float yaw, // by y-axis (in radians)
float pitch, // by x-axis (in radians)
float roll); // by z-axis (in radians)

pitch

roll

o CreateFromYawPitchRoll vs. CreateRotationX/Y/Z
m CreateFromYawPitchRoll — rotations in local coordinate system

m CreateRotationX/Y/Z multiplication — rotations in world
coordinate system

Matrix R1, R2, Rx, Ry, Rz;

Ry = Matrix.CreateRotationY(MathHelper.ToRadians(60.0));

Rx = Matrix.CreateRotationX(MathHelper.ToRadians(30.0));

Rz = Matrix.CreateRotationZ(MathHelper.ToRadians(45.0));

R1 = Ry * Rx * Rz;

R2 = Matrix.CreateFromYawPitchRoll(MathHelper.ToRadians(60.0),
MathHelper.ToRadians(30.0),
MathHelper.ToRadians(45));

R1 = R2

YawPitchRoll vs. RotationX/Y/Z

YawPitchRoll vs. RotationX/Y/Z

R1 = Y-axis rotation 60 R2 = Yaw 60

R1 = Y-axis rotation 60 R2 =
* X-axis rotation 30

Yaw 60
Pitch 30

YawPitchRoll vs. RotationX/Y/Z

Rotation Vectors and Axis/Angle

R1 = Y-axis rotation 60 R2 = Yaw 60
* X-axis rotation 30 Pitch 30
* Z-axis rotation 45 Roll 45

o Euler's Theorem also shows that any two orientations
can be related by a single rotation about some axis

(not necessarily a principle axis).

o This means that we can represent an arbitrary
orientation as a rotation about some unit axis by some

angle (4 numbers) (Axis/Angle form).

o Alternately, we can scale the axis by the angle and
compact it down to a single 3D vector (Rotation

vector).

Axis/Angle to Matrix

o To generate a matrix as a rotation g around an
arbitrary unit axis a:

a, +cosf(l-a;) aa,(l-cosd)+a,sind a,a,(L-cosd)-a,sind
,(1-cosf)-a,sind aj+cosf(l-a;) a,a,(l-cosd)+a,sin b

®+cosf(l-a’)

aa
a,a,(1-cost)+a sind aa,(l-cosd)-a,sin o

Rotation Vectors

o To convert a scaled rotation vector to a matrix, one
would have to extract the magnitude out of it and then
rotate around the normalized axis

o Normally, rotation vector format is more useful for
representing angular velocities and angular
accelerations, rather than angular position (orientation)

Axis/Angle Representation

o Storing an orientation as an axis and an angle uses 4
numbers, but Euler's theorem says that we only need 3
numbers to represent an orientation

o Mathematically, this means that we are using 4 degrees
of freedom to represent a 3 degrees of freedom value

O This implies that there is possibly extra or redundant
information in the axis/angle format

O The redundancy manifests itself in the magnitude of
the axis vector. The magnitude carries no information,
and so it is redundant. To remove the redundancy, we
choose to normalize the axis, thus constraining the
extra degree of freedom

Matrix.CreateFromAxisAngle

o Matrix.CreateFromAxisAngle

Vector3 axis(0, 1, 0);

float angle = 60;

Matrix R3 = Matrix.CreateFromAxisAngle(axis,
MathHelper.ToRadians(angle));

Matrix Representation

o We can use a 3x3 matrix to represent an orientation as
well.

O This means we now have 9 numbers instead of 3, and
therefore, we have 6 extra degrees of freedom.

o NOTE: We don't use 4x4 matrices here, as those are
mainly useful because they give us the ability to

combine translations. We will just think of 3x3 matrices.

Matrix Representation

O Those extra 6 DOFs manifest themselves as 3 scales (x,
y, and z) and 3 shears (xy, xz, and yz)

o If we assume the matrix represents a rigid transform
(orthonormal), then we can constrain the extra 6 DOFs

jal = bl =[c| =1
a=bxc
b=cxa
c=axb

Matrix Representation

O Matrices are usually the most computationally efficient
way to apply rotations to geometric data, and so most
orientation representations ultimately need to be
converted into a matrix in order to do anything useful.

o Why then, shouldn't we just always use matrices?
= Numerical issues

Storage issues

User interaction issues

Interpolation issues

Quaternions

o Quaternions are an interesting mathematical concept
with a deep relationship with the foundations of
algebra and number theory

o Invented by W.R.Hamilton in 1843

o In practice, they are most useful as a means of
representing orientations

o A quaternion has 4 components

q=(x y z w)

Quaternions (Imaginary Space)

Quaternions (Scalar/Vector)

o Quaternions are actually an extension to complex
numbers.

o Of the 4 components, one is a ‘real’ scalar number,
and the other 3 form a vector in imaginary /k space!

g=Xl+yj+zZK+Ww

i2 = j2 = k2 =ijk =1

i = jk =K
j = ki=—ik
k=ij=—ji

o Quaternions are written as the combination of a scalar
value s and a vector value v, where

q=(Vv,s)
v=[xv,z]

Identity Quaternions

Unit Quaternions

o Unlike vectors, there are two identity quaternions.
O The multiplication identity quaternion is

q=(0,0,01)=0i+0j+0k +1

O The addition identity quaternion (which we do not use)

q=(0,0,0,0)

o For convenience, we will use only unit length
quaternions, as they will make things a little easier

q =\/x2 +yP 4zt +w =1
o These correspond to the set of vectors that form the

‘surface’ of a 4D hyper-sphere of radius 1

o The ‘surface’ is actually a 3D volume in 4D space, but
it can sometimes be visualized as an extension to the
concept of a 2D surface on a 3D sphere

o Quaternion normalization:

qé}/=)
al \/x2+y2+22+wz

Quaternions as Rotations

O A quaternion can represent a rotation by an angle 6
around a unit axis a (a,, ay, a,) :

.6 .0 .0 0
q=|a,sin—, a,sin—, a,sin—, coS_—
2 2 2 2

or

.0 0
g=|asin—, cos—
2 2

o If a has unit length, then q will also has unit length

Quaternions as Rotations

\q\z\/x2+y2+zz+w2

:\/af sinzg+a§ sinzg+afsinzg+coszg
2 2 2 2

- \/sin Zg(af +a; +af)+ coszg

\/. 20 2 29 \/. 29 20
= Isin —|a\ +c0s2 = = [sin? = +cos? =
2 2 2 2

=J1=1

Quaternion to Matrix

o Equivalent rotation matrix representing a quaternion is:

X2 -y -2+ W 2Xy — 2wz 2XZ+ 2wy
2Xy+ 2Wz — x>y -z +w 2yz — 2WX
2XZ— 2wy 2YZ + 2WX — Xy + 77+ W

o Using unit quaternion that x2+y?+z?+w?=1, we can
reduce the matrix to:

1-2y?—27% 2Xy—2wz 2XZ+2wy
2Xy+2wz 1-2x*-22° 2yz—2wx
2Xz—2wy 2yz+2wx 1-2x*-2y°

Quaternion to Axis/Angle

o To convert a quaternions to a rotation axis, a (ax, ay, az)
and an angle 6 :

scale =/x2+y%+2z% or sin(acos(w))

_ X
ax Acale

_y
ay = scale
_z
az= Acale
6 = 2acos(w)

Matrix to Quaternion

Quaternion Dot Product

o To convert a matrix to a quaternion:

\/m11+m22+m33+1

2
m,, —m m,, —m m,,—m
X = 28 32 y = 31 KR A V. 21
4w 4w 4w

w

o If w=0, then the division is undefined. First,
determining which q0, q1,g2, g3 is the largest,
computing that component using the diagonal of the
matrix.

o The dot product of two quaternions works in the same
way as the dot product of two vectors:

PO =X, Xy +Y,Yq + 2,2, +W,W, =|p||g|cos ¢

o The angle between two quaternions in 4D space is half
the angle one would need to rotate from one
orientation to the other in 3D space.

Quaternion Multiplication

Quaternion Multiplication

o If q represents a rotation and q' represents a rotation,
then qq’ represents q rotated by q’

O This follows very similar rules as matrix multiplication
(Le., non-commutative) qq’ # q'q

99’ = (Xi+yj+ zZk +W)x'i+y' j+z'k +w)
=(SV'+SV+V'xV,s8' =V V)

o Note that two unit quaternions multiplied together will
result in another unit quaternion

O This corresponds to the same property of complex
numbers

o Remember that multiplication by complex numbers can
be thought of as a rotation in the complex plane

o Quaternions extend the planar rotations of complex
numbers to 3D rotations in space

Basic Quaternion Mathematics

Basic Quaternion Mathematics

o Negation of quaternion, -q

B -[vs] =[-v=s] = [-X -y, —Z, —W]
o Addition of two quaternion, p + q

= p+q= [pv,ps] +I[qv,qs] = [pv + qV, ps + qs]
o Magnitude of quaternion, |q|

= o= ryr ezt ew?

o Conjugate of quaternion, g* (A2 AtRl=)

B gQ*=[vs]* =[-vs] =[x~y -z, W]
o Multiplicative inverse of quaternion, g (¥ =)
= qt=q"d|

“qgql=qlq=1

o Exponential of quaternion
m exp(v0) =vsin 6+cos O
o Logarithm of quaternion
m log(q) = log(v sin & + cos) = log(exp(v 0)) = v 6
where g = [v sin 6, cos 0]

Quaternion Interpolation

Linear Interpolation (LERP)

o One of the key benefits of using a quaternion
representation is the ability to interpolate between key
frames.

alpha = fraction value in between frame0 and framel
gl = Euler2Quaternion(frame0)

g2 = Euler2Quaternion(framel)

gr = Quaternioninterpolation(ql, g2, alpha)
gr.Quaternion2Euler()

o Quaternion Interpolation
m Linear Interpolation (LERP)
= Spherical Linear Interpolation (SLERP)
= Spherical Cubic Interpolation (SQUAD)

o If we want to do a direct interpolation between two
quaternions p and q by alpha:

Lerp(p, q. t) = (1-t)p + (t)q
where0 <t <1

o Note that the Lerp operation can be thought of as a
weighted average (convex) q

o We could also write it in it's additive blend form:

Lerp(p, g, 1) = p + t(q - P) Ost<l

Why SLERP?

Spherical Linear Interpolation

O The set of quaternions live on the unit hypersphere.
The direct interpolation between quaternions would
stray from the hypersphere.

L e P

o An illustration in the plane of the difference between
Lerp and Slerp
= The interpolation covers the angle v in three steps

m [Lerp] The secant across is split in four equal pieces The
corresponding angles are shown

m [Slerp] The angle is split in four equal angles

o If we want to interpolate between two points on a
sphere (or hypersphere), we will travel across the
surface of the sphere by following a ‘great arc.’

j

sinf(1-t) sin &
n h+t+———0,
sin@ sin@

0=cos™(q, *9,)

q®) =

Spherical Linear Interpolation

Spherical Linear Interpolation

o We define the spherical linear interpolation of two
quaternions p and q by alpha:

sin((1-t)9) L Sin (to)
sin & sin 6

where 6 =acos(p-q)

Slerp(p,q,t) =

o NOTE: if p, g are more than 90 degrees apart, it takes
shorter path.

o Remember that there are two redundant vectors in
quaternion space for every unique orientation in 3D
Space

o What is the difference between:

Slerp(p, g, t) and Slerp(-p, q, t) ?

= One of these will travel less than 90 degrees while the other
will travel more than 90 degrees across the sphere
= This corresponds to rotating the 'short way’ or the ‘long way

= Usually, we want to take the short way, so we negate one of
them if their dot product is < 0

1

Why SQUAD?

o Slerp produces smooth interpolation, but it always
follows a great arc connecting two quaternions — i.e. the
animations change directions abruptly at the control
points. To smoothly interpolate through a series of
quaternions, use splines.

g—~Spline Interpolation

//Linear Interpolation

Spherical Cubic Interpolation (SQUAD)

O To achieve C? continuity between curve segments, a
cubic interpolation must be done.

o0 Squad does a cubic interpolation between four
quaternions by t

Squad (¢, G, @, @4, 1)
= slerp(slerp(q;, g, 1), slerp(a;, &, 1), 2t(1- 1))

a; =q; *exp[_ log(a, qi*1)4+ log(q; qi+1)J
1% .
A, = qm*exp(_ Iog(qi+1 q|) Z Iog(qi+1 qi+2)j

Catmull-Rom Spline Interpolation

o Given n+1 control points {P,, P;, .. P,}, you wish to find
a curve that interpolates these control points (and
passes through them all), and is local in nature (i.e. if
one of the control points is moved, it only affects the
curve locally) — Catmull-Rom Spline.

o The Catmull-Rom Spline takes a set of keyframe points
to describe a smooth piecewise cubic curve that
passes through all the points. In order to use this
routine we need four keyframe points.

o Given four keyframe points, Py, P;, P,, P;, the curve
passes through P; at t=0 and it passes through P, at
t=1 (0 <t < 1).

O The tangent vector at a point P is parallel to the line
joining P's two surrounding points.

Path Animation

VvV 4

v
v

Path Controlled Translation & Rotation

XNA Quaternion

o Quaternion methods

// q* (conjugate of a quaternion)
Quaternion p;
p.Conjugate();

// pg (multiply two quaternions)
Quaternion Quaternion.Multiply(Quaternion p,
Quaternion q);

// p - q (dot product of two quaternions)
float Quaternion.Dot(Quaternion p,
Quaternion q);

XNA Quaternion

o // yaw/pitch/roll -> quaternion
Quaternion Quaternion.CreateFromYawPitchRoll
(float yaw, float pitch, float roll);

// rotation matrix -> quaternion
Quaternion Quaternion.CreateFromRotationMatrix (Matrix matrix);

// axis/angle -> quaternion
Quaternion Quaternion.CreateFromAxisAngle
(Vector3 axis, float angle);

XNA Quaternion

o // quaternion -> axis/angle
void QuaternionToAxisAngle(ref Quaternion q,
out Vector3 axis, out float angle);

angle = (float)Math.Acos(q.W);

float scale = 1.0f / (float)Math.Sin(angle);

angle *= 2.0f;

axis = new Vector3(-q.X * scale, -q.Y * scale, -q.Z * scale);

}

// quaternion -> rotation matrix
Matrix Matrix.CreateFromQuaternion(Quaternion quaternion);

// transform a vector by quaternion
Vector3 Vector3.Transform(Vector3 value, Quaternion rotation);

XNA Quaternion

o // slerp(qy, 9, t) spherical linear interpolation between two quaternions

Quaternion Quaternion.Slerp
(Quaternion quaternionl,
Quaternion quaternion2,
float amount);

// lerp(gy, g, t) linear interpolation between two quaternions
Quaternion Quaternion.Lerp
(Quaternion quaternionl,
Quaternion quaternion2,
float amount);

XNA Interpolation

o // Catmull Rom Spline Interpolation
Vector3 Vector3.CatmullRom(Vector3 valuel,
Vector3 value2,
Vector3 value3,
Vector3 value4,
float amount);

// Hermite Spline Interpolation

Vector3 Vector3.Hermite(Vector3 valuel,
Vector3 value2,
Vector3 value3,
Vector3 value4,
float amount);

