Game Physics

305890 Spring 2013 6/7/2013 Kyoung Shin Park kpark@dankook.ac.kr

Definitions

- Kinematics (운동학)
 - Study of movement over time.
 - Not concerned with the cause of the movement.
- Dynamics (동역학)
 - Study of forces and masses that cause the kinematic quantities to change as time progresses.

Application in Video Games

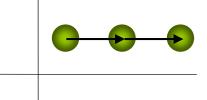
- Racing games: Cars, snowboards, etc..
 - Simulates how cars drive, collide, rebound, flip, etc..
- Sports games
 - Simulates trajectory of soccer, basket balls.
- □ Increasing use in First Person Shooters: UnReal
 - Used to simulate bridges falling and breaking apart when blown up.
 - Dead bodies as they are dragged by a limb.
- Miscellaneous uses:
 - Flowing flags / cloth.
- □ Problem is that real time physics is very compute intensive. But it is becoming easier with faster CPUs.

Game Physics

- □ Motion (운동)
- □ Position (위치), Velocity (속도), Acceleration (가속도)
- □ Force (힘), Gravity (중력)
- □ Buoyancy (부력), Drag (저항력)
- □ Friction (마찰력)
 - Kinetic friction (운동마찰)
 - Static friction (정지마찰)
- □ Spring (스프링)

Motion

- □ In physics, motion is a change in location or position of an object with respect to time.
- Object motion is represented with vectors
- Velocity is a vector
 - Vector direction is direction of movement
 - Vector magnitude is speed of movement
- □ Velocity vector corresponds to amount object will move in one unit of time.



Basic Motion

- □ Displacement (변위) = velocity * time
- If an object starts at position, P_o with velocity v_i after t time units, its position P(t) is:

$$P(t) = P_0 + v t$$

■ NOTE: choice of unit is arbitrary as long as things are consistent, e.g. meters for distance, seconds for time, meters/second for velocity

Varying Velocity

- The previous formula only works if the object moves with a constant velocity.
- In many cases, object's velocities change over time.
- □ The velocity is defined by the derivative:

$$v(t) = \frac{d}{dt} P(t)$$

- Constant velocity: $v(t) = v_0$
- Velocity change over time by constant acceleration: $v(t) = v_0 + at$
- □ The displacement is a function that we integrate velocity

$$displacement = \int_{0}^{t} velocity dt$$

Acceleration

- □ The acceleration is the rate of change in velocity.
- □ The acceleration is defined by the derivative

$$a(t) = \frac{d}{dt}v(t) = \frac{d^2}{dt^2}P(t)$$

Velocity is the integral of acceleration

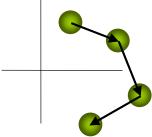
$$velocity = \int_{0}^{t} acceleration dt$$

Euler Method (or Euler Integration)

- Euler method (or Euler Integration) approximates an integral by step-wise addition.
 - The most basic kind of explicit method for numerical integration of ordinary differential equations (ODE).
- At each time step, we move the object in a straight line using the current velocity:

$$dt = t_1 - t_0$$

$$P(t_1) = P(t_0) + v dt$$



Euler Method (or Euler Integration)

■ Applying Euler Integration to compute the position:

$$P(t) = \int_{0}^{t} (v_0 + at)dt = P_0 + v_0 t + \frac{1}{2}a t^2$$

Gravity

□ Gravity (지구 중력 가속도) near the Earth's surface produces a constant acceleration of 9.8 meter/sec²

$$F = mg \ (g = -9.8 \frac{m}{s^2})$$
gravity
(0, -9.8, 0)
v2

Force

■ Newton's second law of motion:

$$F = ma$$
$$\Rightarrow a = F / m$$

□ If an object has mass M, and force F is applied to it, its motion can be calculated via Euler integration:

```
Acc = F/M;

Vel += Acc * dt;

Pos += Vel * dt;

Note that F. Acc. Vel. and Pos are all vectors. M is a scalar.
```

뉴튼 역학의 3법칙

- 관성의 법칙: 모든 물체는 다른 물체의 움직임의 영향을 받지 않는다고 할 때, 정지해 있었다면 계속 정지해 있을 것이고, 움직이고 있었다면 일정한 속도로 계속 운동할 것이다.
- 가속도의 법칙: 물체의 운동량의 변화율은, 크기와 방향에서, 그 물체에 작용하는 힘에 따른다.
- 작용, 반작용의 법칙: 모든 작용에는 그 반대방향으로 같은 크기의 반작용이 존재한다

Gravitational Force

- □ Gravitational force (중력)
 - The force of attraction between all masses in the universe; especially the attraction of the earth's mass for bodies near its surface.
 - The gravitation between two bodies is proportional to the product of their masses and inversely proportional to the square of the distance between them.
- For a complete simulation, we need to calculate the force on each object every frame.
 - When multiple forces are applied, their vectors are added

$$F_{gravity} = \frac{GM_1M_2}{d^2} \ (G = 6.673 \times 10^{-11})$$

 M_1, M_2 : mass(kg)

d: distance (meter)

Projectile Motion

■ The projectile position, P_0 , at t=0 with the velocity v_0 :

$$P(t) = P_0 + v_0 t + \frac{1}{2} g t^2$$

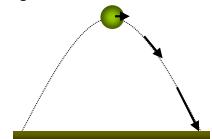
$$x(t) = x_0 + v_x t$$
, $y(t) = y_0 + v_y t - \frac{1}{2}gt^2$, $z(t) = z0 + v_z t$

□ Time to reach the maximum height, t:

$$y(t) = v_y t - gt^2 = 0 \Rightarrow t = \frac{v_y}{g}$$

■ Maximum height, h:

$$h = y_0 + \frac{{v_y}^2}{2g}$$



Projectile Motion

■ Maximum range, r:

$$y(t) = y_0 + v_y t - \frac{1}{2}gt^2 = y_0 \Longrightarrow t = 0 \text{ or } t = \frac{2v_y}{g}$$
$$x(t) = x_0 + v_x t \Longrightarrow r = \frac{2v_x v_y}{g}$$

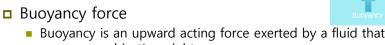
 \blacksquare Angle of elevation to reach the maximum height, θ :

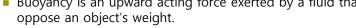
$$h = y_0 + \frac{{v_z}^2}{2g} \Rightarrow h = y_0 + \frac{(s \sin \theta)^2}{2g} \Rightarrow \theta = \sin^{-1} \left(\frac{1}{s} \sqrt{2g(h - y_0)}\right)$$

 \blacksquare Angle required to hit the target, θ :

$$r = \frac{2v_x v_y}{g} \Rightarrow r = \frac{2(s\cos\theta)(s\sin\theta)}{g} = \frac{s^2}{g}\sin 2\theta \Rightarrow \theta = \frac{1}{2}\sin^{-1}\frac{rg}{s^2}$$

Buoyancy



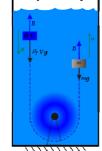


- Archimedes' principle:
 - Any floating object displaces its own weight of fluid.
 - I.e., any object, wholly or partially immersed in a fluid, is buoyed up by a force equal to the weight of the fluid displaced by the object.

$$F_{buoyancy} = -\rho_f V g$$

 $\rho_{\rm f}$ is the density of the fluid

V is the volume of the displaced body of liquid g is the gravitational acceleration



Drag

□ Drag force

- In fluid dynamics, drag refers to forces that oppose the relative motion of an object through a fluid (a liquid or gas).
- Drag at low velocity (Stoke's drag):

$$F_d = -bv$$

 $b = 6\pi \eta r$ (r: small spherical object radius, η : viscosity)

Drag at high velocity:

$$F_d = \frac{1}{2} \rho v^2 A C_d (v \bullet v) \frac{v}{\|v\|}$$

F_d is the force vector of drag

 ρ is the density of the fluid

v is the velocity of the object relative to the fluid

A is the reference area

C_d is the drag coefficien t

Static Friction

Static friction

Static friction is the friction between two solid objects that are not moving relative to each other (E.g., static friction can prevent an object from sliding down a sloped surface).

$$F_S = -\mu_S N$$

N is the normal force

 μ_{S} is the coefficient of static friction

- The maximum value of static friction, F_{max}, when motion is impending, is sometimes referred to as limiting friction.
- ullet Any force larger than F_{max} overcomes the force of static friction and causes sliding to occur.

$$\mu_S mg \cos \theta = mg \sin \theta \Rightarrow \theta = \tan^{-1} \mu_S$$

Kinetic Friction

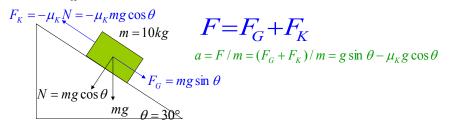
Kinetic friction

• Kinetic (or dynamic) friction occurs when two objects are moving relative to each other and rub together (E.g., a sled on the ground).

$$F_K = -\mu_K N$$

N is the normal force

 μ_{κ} is the coefficient of kinetic friction



Momentum

- Momentum, P, is the product of the mass and velocity of an object.
- The rate of change of the momentum of a particle is proportional to the resultant force acting on the particle and is in the direction of that force.

$$P = mv$$

$$\Rightarrow \frac{dP}{dt} = m\frac{dv}{dt} = ma = F$$

Force = ComputeTotalForce();

Momentum += Force * dt;

Velocity = Momentum / Mass;

Position += Velocity* dt;

Angular Velocity

- □ Angular velocity (각속도) is the rate of change of angular displacement
- Angular velocity (radian/second):

$$\omega(t) = \frac{d}{dt} \theta(t)$$

□ Relationship between angular velocity, ω, and linear velocity (선속도), v

v = linear speed

ω - angular speed

• Given a fixed speed v and radius r, then:

$$v(t) = \omega(t) \times r(t)$$

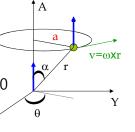
Centrifugal Force

□ Linear acceleration (선가속도)

$$a(t) = a(t) \times r(t) + a(t) \times r'(t)$$
$$= a(t) \times r(t) + a(t) \times [a(t) \times r(t)]$$

■ If the angular velocity is constant: w'(t)=0

$$a(t) = a(t) \times \left[a(t) \times r(t) \right]$$



 Centrifugal force (원심력), equal and opposite to the tension (장력), drawing a rotating body away from the center of rotation.

$$F_c = -m(\alpha(t) \times [\alpha(t) \times r(t)])$$

Centrifugal force (when r(t) and w(t) is perpendicular):

$$F_c = m\omega^2 r = \frac{mv^2}{r}$$

Rigid Motion

- □ Rigid motion (강체운동)
 - A rigid body is an idealization of solid body (e.g. car) of finite size in which deformation is neglected. (only translation & rotation possible)
- □ Rigid body dynamics (강체동역학)
 - Linear & angular position, velocity, acceleration

```
Force = ComputeTotalForce();

Momentum += Force * dt;

Velocity = Momentum / Mass;

Position += Velocity* dt;

Torque = ComputeTotalTorque();

AngMomentum += Torque * dt;

Matrix I = Matrix*RotInertia*Matrix.Inverse(); // tensor

AngVelocity = I.Inverse()*AngMomentum;

Matrix.Rotate(AngVelocity*dt);
```

Integration Method

■ Fuler method

$$v = v_0 + a*dt$$

 $P = P_0 + v*dt$

```
float t = 0; // 현재 시간
float dt = 1; // 시간 간격 (timestamp)
float velocity = 0; // 초기 속도
float position = 0; // 초기 위치
float force = 10;
float mass = 1;
float acceleration = force/mass;
while (t<=10) {
  position += velocity * dt;
  velocity += acceleration * dt;
  t += dt;
```

Initial:
$$y'(t) = f(t, y(t)), y(t_0) = y_0$$

Euler Method: $y_{n+1} = y_n + hf(t_n, y_n)$

Integration Method

■ Runge-Kutta method

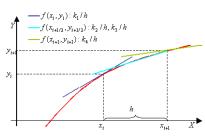
Initial:
$$y' = f(t, y), y(t_0) = y_0$$

RK4: $y_{n+1} = y_n + \frac{h}{6}(k_1 + 2k_2 + 2k_3 + k_4)$
 $k_1 = f(t_n, y_n)$
 $k_2 = f(t_n + \frac{h}{2}, y_n + \frac{h}{2}k_1)$

$$k_3 = f(t_n + \frac{h}{2}, y_n + \frac{h}{2}k_2)$$

$$k_4 = f(t_n + h, y_n + hk_3)$$

$$slope = \frac{k_1 + 2k_2 + 2k_3 + k_4}{6}$$



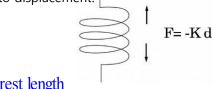
Springs

- Hooke's Law
 - Spring force is proportional to displacement.

$$F = -K_{s}d$$

 K_s is the spring constant

d is the displaceme nt from rest length



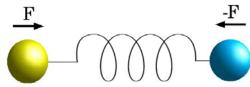
- Spring is modeled as two point masses, linked by the spring.
- Equal but opposite force is applied to each end.

Integration Method

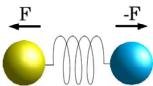
```
void RK4Integration(vector3& pos, vector3& vel, float t, float dt) {
    vector3 k1Vel = vel;
    vector3 k1Acc = f(t, pos, vel);
    vector3 k2Vel = vel + 0.5f * dt * k1Acc;
    vector3 k2Acc = f(t + 0.5f * dt, pos + 0.5f * dt * k1Vel, k2Vel);
    vector3 k3Vel = vel + 0.5f * dt * k2Acc;
    vector3 k3Acc = f(t + 0.5f * dt, pos + 0.5f * dt * k2Vel, k3Vel);
    vector3 k4Vel = vel + dt * k3Acc;
    vector3 k4Acc = f(t + dt, pos + dt * k3Vel, k4Vel);
    pos += (dt / 6.0f) * (k1Vel + 2.0f * k2Vel + 2.0f * k3Vel + k4Vel);
    vel += (dt / 6.0f) * (k1Acc + 2.0f * k2Acc + 2.0f * k3Acc + k4Acc);
}
while (t<=10) {
    RK4Integration(position, velocity, t, dt);
    t += dt;
}</pre>
```

Springs

■ When spring is stretched, spring force pulls masses together.



■ When spring is compressed, spring force pushes masses apart.



Springs

■ Vector between the points is used to compute displacement and the direction of force:

```
Vector3 v = point1 - point0;
float displacement = v.length() - restLength;
v.normalize();
Vector3 force = springConstant * displacement * v;
F
-F
```

Spring Classes

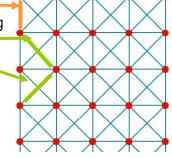
```
class PointMass
{
    float mass;
    float position[3];
    float velocity[3];
    float acceleration[3];
    void ClearForces();
    void AddForce();
    void Update();
    void Freeze();
}
```

Spring Classes

```
class Spring
{
    float pointMass[2];
    float springConstant;
    float restLength;
    void Update();
}
```

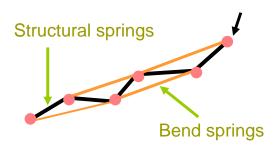
Simulating Cloth

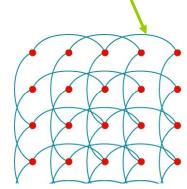
- □ Cloth can be simulated by a mesh of springs.
- Structural Springs—
- □ Shear Springs (to prevent the flag from shearing)



Simulating Cloth

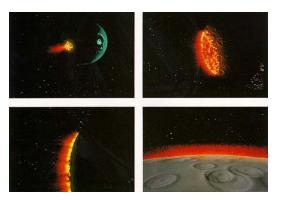
- Bend Springs (to prevent the flag from folding along the vertices).
- □ Connect to every other particle.
- **□** Cross-section of cloth





Particle Systems

□ First used for graphics in Star Trek II (1983) "Genesis Effect"



Particle Systems

- □ Particle systems simulate explosions, smoke, fire, spray.
- □ They are also useful for modeling non-rigid objects such as jelly or cloth (more later).
- □ Infinitely small objects that have Mass, Position and Velocity
- □ Motion of a Newtonian particle is governed by:
 - F=ma (F=force, m=mass, a=acceleration)
 - a=dv/dt (Change of velocity over time- v=velocity; t=time)
 - v=dp/dt (Change of distance over time- p=distance or position)
 - So a basic data structure for a particle consists of: F, m, v, p.

E.g. a 3D particle might be represented as:

```
class Particle
{
    float mass;
    float position[3];// [3] for x,y,z components
    float velocity[3];
    float forceAccumulator[3];
}
```

- □ forceAccumulator is here because the particle may be acted upon by several forces- e.g. a soccerball is affected by the force of gravity and an external force like when someone kicks it. (see later)
- □ Anything that will impart a force on the particle will simply ADD their 3 force components (force in X,Y,Z) to the forceAccumulator.

E.g. 3D Particle System

```
class ParticleSystem
{
    particle *listOfParticles;
    int numParticles;
    void EulerStep();// Discussed later
}
```

How do you calculate velocity?

- Recall that:
 - a = dv/dt (ie change in velocity over time)
 - v = dp/dt (ie change in position over time)
- So to find velocity we need to find the integral of acceleration
- □ To find the position we need to find the integral of velocity
- A simple numerical integration method (**Euler's Method**):
 - Q(t+dt) = Q(t) + dt * Q'(t)
 - So in our case:
 - □ To find velocity at each simulation timestep:
 - v(t+dt) = v(t) + dt * v'(t) = v(t) + dt * a(t) // we know a(t) from F=ma
 - To find the position at each simulation timestep:
 - p(t+dt) = p(t) + dt * p'(t) = p(t) + dt * v(t) // we know v(t)

Particle Dynamics Algorithm

```
For each particle

{
    Compute the forces that are acting on the particle.
    Compute the acceleration of each particle:
        Since F=ma; a=F/m
    Compute velocity of each particle due to the acceleration.

Compute the new position of the particle based on the velocity.
}
```

E.g. Euler Integration EulerStep

■ To find velocity at each simulation timestep:

```
v(t+dt) = v(t) + dt * a(t) // we know a(t) from F=ma
v_next[x] = v_now[x] + dt * a[x];
v_next[y] = v_now[y] + dt * a[y];
v_next[z] = v_now[z] + dt * a[z];
```

■ To find the position at each simulation timestep:

```
p(t+dt) = p(t) + dt * v(t) // we know v(t)

p_next[x] = p_now[x] + dt * v_now[x];

p_next[y] = p_now[y] + dt * v_now[y];

p_next[z] = p_now[z] + dt * v_now[z];
```

- Remember to save away v_next for the next step through the simulation:
 - v_now[x] = v_next[x]; v_now[y] = v_next[y]; v_now[z] =
 v_next[z];

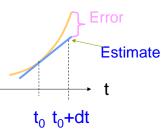
Warning about Euler Method

- Big time steps causes big integration errors.
- You know this has happened because your particles go out of control and fly off into infinity!
- □ Use small time steps- but note that small time steps chew up a lot of CPU cycles.

■ You do not necessarily have to DRAW every time step. E.g. compute 10 V timesteps and then draw the result?

■ There are other better solutions:

- Adaptive Euler Method
- Midpoint Method
- Implicit Euler Method
- Runge Kutta Method



Adaptive Step Sizes

- □ Ideally we want the step-size (dt) to be as big as possible so we can do as few calculations as possible.
- But with bigger step sizes you incorporate more errors and your system can eventually destabilize.
- So small step sizes are usually needed. Unfortunately smaller step sizes can take a long time.
- You don't want to force a small step size all the time if possible.

Euler with Adaptive Step Sizes

- □ Suppose you compute 2 estimates for the velocity at time t+dt:
- So v1 is your velocity estimate for t+dt
- And v2 is your velocity estimate if you instead took 2 smaller steps of size dt/2 each.
- Both v1 and v2 differ from the true velocity by an order of dt² (because Euler's method is derived from Taylor's Theorem truncated after the 2nd term- see reference in the notes section of this slide)
- By that definition, v1 and v2 also differ from each other by an order of dt²
- So we can write a measure of the current error as: E = |v1-v2|
- $\hfill\Box$ Let $E_{tolerated}$ be the error that YOU can tolerate in your game.
- Adaptive step size dt_{adapt} is calculated as approximately:

$$dt_{adapt} = Sqrt(E_{tolerated} / E) * dt$$

So a bigger tolerated error would allow you to take a bigger step size. And a smaller one would force a smaller step size.

Handling Collisions

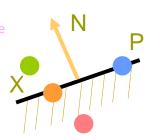
- Particles often bounce off surfaces.
 - 1. Need to detect when a collision has occurred.
 - 2. Need to determine the correct response to the collision.

Detecting Collision

- □ General Collision problem is complex:
 - Particle/Plane Collision we will look at this one coz it's easy way to start
 - Plane/Plane Collision
 - Edge/Plane Collision

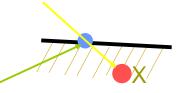
Particle/Plane Collisions

- P=any point on the plane
- N=normal pointing on the "legal" side of the plane.
- X=position of point we want to examine.
- □ For (X P) . N
 - If > 0 then X is on legal side of plane.
 - If = 0 then X is on the plane.
 - If < 0 then X is on the wrong side of plane



Collision Response – dealing with the case where particle penetrates a plane (and it shouldn't have)

☐ If particle X is on the wrong side of the plane, move it to the surface of the plane and then compute its collision response.

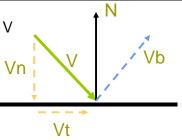


Collision Response

- N=normal to the collision plane
- Vn=normal component of a vector V is

$$Vn = (N . V) V$$

- Vt=tangential component is: Vt=V-Vn
- Vb=bounced response: Vb=(1 - Kf) * Vt - (Kr * Vn)
- Kr=coefficient of restitution: ie how bouncy the surface is.
 1=perfectly elastic; 0=stick to wall.
- Kf=coefficient of friction: ie how much the tangential vector is slowed down after the bounce.
 1=particle stops in its tracks. 0=no friction.



References

- http://www.evl.uic.edu/spiff/class/cs426/Notes/physics.ppt
- http://en.wikipedia.org/wiki/Newton%27s_laws_of_motion
- □ http://en.wikipedia.org/wiki/Equations_of_motion
- http://en.wikipedia.org/wiki/Projectile
- http://en.wikipedia.org/wiki/Trajectory
- http://en.wikipedia.org/wiki/Buoyancy
- http://en.wikipedia.org/wiki/Drag_(physics)
- http://en.wikipedia.org/wiki/Euler_method
- □ http://en.wikipedia.org/wiki/RK4
- http://www.gaffer.org/game-physics/