Application in Video Games

. o Racing games: Cars, snowboards, etc..
Game PhyS|CS m Simulates how cars drive, collide, rebound, flip, etc..
O Sports games

m Simulates trajectory of soccer, basket balls.

O Increasing use in First Person Shooters: UnReal
m Used to simulate bridges falling and breaking apart when

305890 blown up.
Spring 2014 -. Dead bodies as they are dragged by a limb.
6/3/2014 o Miscellaneous uses:
Kyoung Shin Park = Flowing flags / cloth.
kpark@dankook.ac kr o Problem is that real time physics is very compute
intensive. But it is becoming easier with faster CPUs.
Definitions Game Physics

o Kinematics (2=2)
» Study of movement over time.
= Not concerned with the cause of the movement.
o Dynamics (59 3l)
m Study of forces and masses that cause the kinematic
quantities to change as time progresses.

o Motion (&)
o Position (2]X]), Velocity (£ k), Acceleration (7} k)
o Force (g!), Gravity (53)
0 Buoyancy (8 &), Drag (Mg &)
O Friction (OpEH)
= Kinetic friction (2= 0OF&H
m Static friction (A X|O}&)

o Spring (&I &)

Motion

Basic Motion

o In physics, motion is a change in location or position
of an object with respect to time.

o Object motion is represented with vectors

o Velocity is a vector
m Vector direction is direction of movement
= Vector magnitude is speed of movement

O Velocity vector corresponds to amount object will

move in one unit of time.

o Displacement (H2|) = velocity * time
o If an object starts at position, 2, with velocity v,
after ¢ time units, its position At is:

P(t)=P,+v ¢

o NOTE: choice of unit is arbitrary as long as things are
consistent, e.g. meters for distance, seconds for time,
meters/second for velocity

Varying Velocity

Acceleration

O The previous formula only works if the object moves with
a constant velocity.

o In many cases, object’s velocities change over time.
O The velocity is defined by the derivative:

v(t) = %P(t)

= Constant velocity: v(t) = v,
= Velocity change over time by constant acceleration: v(t) = v, + at

O The displacement is a function that we integrate velocity
t

displacement = jvelocity dt
0

O The acceleration is the rate of change in velocity.
O The acceleration is defined by the derivative

a(t)%v(t):%m)

O Velocity is the integral of acceleration

t
velocity = jaccelemtion dt
0

Euler Method (or Euler Integration)

Euler Method (or Euler Integration)

O Euler method (or Euler Integration) approximates an
integral by step-wise addition.

= The most basic kind of explicit method for numerical integration
of ordinary differential equations (ODE).

O At each time step, we move the object in a straight line
using the current velocity:

dt =t —t,
P(t,)=P(t,)+V dt

o Applying Euler Integration to compute the position:
dt = t1 - t0;
Acc = ComputeAcceleration();
Vel = Vel + Acc * dt;
Pos = Pos + Vel * dt;

t
P(t) = j(vo +at)dt =P, +v,t +%a £
0

Gravity

O Gravity (K| 7+ &3 7t k) near the Earth's surface
produces a constant acceleration of 9.8 meter/sec?

’VO
F=mg (g==98"/,) ‘4v1

gravity
(0, -9.8, 0)

v

v2

Force

o Newton's second law of motion:
F=ma
=a=F/m

o If an object has mass M, and force F is applied to it, its
motion can be calculated via Euler integration:

Acc = F/M;

Vel += Acc * dt;

Pos += Vel * dt;

Note that F, Acc, Vel, and Pos are all vectors. M is a scalar.

Gravitational Force

=

o Gravitational force (&)

m The force of attraction between all masses in the universe;
especially the attraction of the earth’s mass for bodies near its
surface.

m The gravitation between two bodies is proportional to the
product of their masses and inversely proportional to the
square of the distance between them.

O For a complete simulation, we need to calculate the
force on each object every frame.

m When multiple forces are applied, their vedﬂﬁ are added/
_GM\M,

Projectile Motion

O The projectile position, Py, at t=0 with the velocity vy

P(t)=P, +v,t +%gt2

1
x(t)=x,+vt, y(t)=y,+vt —Egtz, z(t)=z0+v_t

o Time to reach the maximum height, t:

y()=vi-gt’=0=>1=—"

graviy = 3 (G=6.673x10"") o Maximum height, h:
M, M, :mass(kg) / - vyz
d : distance (meter) Yo 2
Projectile Motion Buoyancy

o Maximum range, r:

1 > 2,
y(t)zyo—t—vyt‘zgt =y, =>t=0ort=——=
g

2vy
xO)=x,+vi—=r=—>"=
g

O Angle of elevation to reach the maximum height, 6:

2

. 2
h=y0+;;g:>h=yo+%:>e=smIG,/zg(h—yo)j

o Angle required to hit the target, o:

=—sin 20 = 0 = —sin
g g g 2 s

_ 2y, o 2(scos@)ssin §) s’ 1. %

o Buoyancy force
m Buoyancy is an upward acting force exerted by a fluid that
oppose an object’s weight.
m Archimedes’ principle:
Any floating object displaces its own weight of fluid.

Le., any object, wholly or partially immersed in a fluid, is buoyed up
by a force equal to the weight of the fluid displaced by the object.

Frvopany =P, V8

P/is the density of the fluid

Vis the volume of the displaced body of liquid
gis the gravitational acceleration

Drag o\ - el

o Drag force S o

m In fluid dynamics, drag refers to forces thafoppose the relative
motion of an object through a fluid (a liquid or gas).

m Drag at low velocity (Stoke's drag):

F,=-bv

b =6xnr (r:small spherical object radius, 1 : viscosity)
= Drag at high velocity:

Fy = g2 4C, (vov)

2]

F, is the force vector of drag

pis the density of the fluid

vis the velocity of the object relative to the fluid

A'is the reference area

C, is the drag coeflicien t

Kinetic Friction

o Kinetic friction

m Kinetic (or dynamic) friction occurs when two objects are
moving relative to each other and rub together (E.g., a sled on
the ground).

Fy == N
N is the normal force

M, 1s the coeflicien t of kinetic friction

Fo=—u.N=—p,mgcost

m =10kg F:FCY; +F;<

a=FIm=(F;+F,)/m=gsin@—pu,gcostd

F; =mgsin 0

Static Friction

o Static friction

m Static friction is the friction between two solid objects that are
not moving relative to each other (E.g.., static friction can
prevent an object from sliding down a sloped surface).

Fy=—pugN
N is the normal force

His the coefficien t of static friction

m The maximum value of static friction, F,,,,, when motion is
impending, is sometimes referred to as limiting friction.

= Any force larger than F,,,, overcomes the force of static friction
and causes sliding to occur.

Lgmgcosf=mgsin @ = 0 =tan"" y

Momentum

o Momentum, P, is the product of the mass and velocity of
an object.

o The rate of change of the momentum of a particle is
proportional to the resultant force acting on the particle
and is in the direction of that force.

P=mv
zﬁzmﬂ:mazF
dt dt

Force = ComputeTotalForce();
Momentum += Force * dt;
Velocity = Momentum / Mass;
Position += Velocity* dt;

Angular Velocity

Centrifugal Force

o Angular velocity (Z+% k) is the rate of change of angular

displacement .

o Angular velocity (radian/second): A .-

o)== 60)

o Relationship between angular velocity, o, and linear
velocity (M£E), v
= Given a fixed speed v and radius r, then:

WD) =at)<n(?)

w = angular speed

O Linear acceleration (M7} &
at) =S Ox1(O) +) <1 (1) -
=3O <)+ X[aA) <1 D)
o If the angular velocity is constant: w'(t)=0
a(t) =) alt)<r @) X

m Centrifugal force (4 &), equal and opposite to the tension
(&+=), drawing a rotating body away from the center of rotation.

E, == alt)<[cl®)<n?))

m Centrifugal force (when r(t) and w(t) is perpendicular):

—magr=""

r

Rigid Motion

Integration Method

O Rigid motion (ZH&5)

= A rigid body is an idealization of solid body (e.g. car) of finite
size in which deformation is neglected. (only translation &
rotation possible)

O Rigid body dynamics (ZH|s<Y2h
m Linear & angular position, velocity, acceleration
Force = ComputeTotalForce();
Momentum += Force * df;
Velocity = Momentum / Mass;
Position += Velocity* dt;
Torque = ComputeTotalTorque();
AngMomentum += Torque * dt;
Matrix I = Matrix*RotInertia*Matrix.Inverse(); // tensor
AngVelocity = Linverse()*AngMomentum;
Matrix.Rotate(AngVelocity*dt);

o Euler method
BV =y, + a¥dt
m P =P, + vt

floatt = 0; // SXY| A2t
float dt = 1; // A|ZF 2424 (timestamp)

float velocity = 0; // X7| & &
float position = 0; // =7| 9%
float force = 10;

Initial : y'(1) = £ (¢, y(1), ¥(1y) = ¥,
Euler Method : y,,, = y. + hf (£, y)

float mass = 1;

float acceleration = force/mass;

while (t<=10) {
position += velocity * dt;
velocity += acceleration * dt;
t +=dt;

Integration Method

Integration Method

o Runge-Kutta method
Initial @ y'= 72, y), y(1,) =
RK4:y, = h(k + 2k, + 2k, + k,)
kl :f(trﬂyn)

h h
k,=1(, +E’yn +Ek|)

. —F) ik
T Yiswad g T, Ry s
Gl By AR

b

h h
k3 :f(tn+57yn+5k2)
=f(t, +hy, +hk,)

void RK4Integration(vector3& pos, vector3& vel, float t, float dt) {
vector3 k1Vel = vel;
vector3 k1lAcc = f(t, pos, vel);
vector3 k2Vel = vel + 0.5f * dt * k1Acc;
vector3 k2Acc = f(t + 0.5f * dt, pos + 0.5f * dt * k1Vel, k2Vel);
vector3 k3Vel = vel + 0.5f * dt * k2Acc;
vector3 k3Acc = f(t + 0.5f * dt, pos + 0.5f * dt * k2Vel, k3Vel);
vector3 k4Vel = vel + dt * k3Acc;
vector3 k4Acc = f(t + dt, pos + dt * k3Vel, k4Vel);
pos += (dt / 6.0f) * (k1Vel + 2.0f * k2Vel + 2.0f * k3Vel + k4Vel);
vel += (dt / 6.0f) * (k1Acc + 2.0f * k2Acc + 2.0f * k3Acc + k4Acc);

}
while (t<=10) {

slope = ky+2k, + 2k, +k, > RK4Inte9ration(position, velocity, t, dt);
6 t +=dt;
}
Springs Springs

O Hooke's Law
m Spring force is proportional to displacement.

F=-Kd F=-Kd
K s the spring constant |
d is the displaceme nt from rest length

O Spring is modeled as two point masses, linked by the
spring.
o Equal but opposite force is applied to each end.

o When spring is stretched, spring force pulls masses
together.

-F
o When spring is compressed, spring force pushes masses
apart.

F —F

('@

Springs

Spring Classes

o Vector between the points is used to compute
displacement and the direction of force:

Vector3 v = pointl — point0;

float displacement = v.length() — restLength;
v.normalize();

Vector3 force = springConstant * displacement * v;

class PointMass

{
float mass;
float position[3];
float velocity[3];
float acceleration[3];
void ClearForces();
void AddForce();
void Update();
void Freeze();

Spring Classes

Simulating Cloth

class Spring

{
float pointMass[2];
float springConstant;
float restLength;
void Update();

o Cloth can be simulated by a mesh of springs.

o Structural Springs
o Shear Springs (to prevent the flag

from shearing)

<u

Simulating Cloth

Particle Systems

O Bend Springs (to prevent the flag from folding along
the vertices).

o Connect to every other particle.
o

Structural springs l

—

— 7
P

Bend springs

o First used for graphics in Star Trek II (1983) "Genesis
Effect”

Particle Systems

E.g. a 3D particle might be represented as:

o Particle systems simulate explosions, smoke, fire, spray.

O They are also useful for modeling non-rigid objects
such as jelly or cloth (more later).

o Infinitely small objects that have Mass, Position and
Velocity

o Motion of a Newtonian particle is governed by:
= F=ma (F=force, m=mass, a=acceleration)
m a=dv/dt (Change of velocity over time- v=velocity; t=time)
m v=dp/dt (Change of distance over time- p=distance or

position)

® So a basic data structure for a particle consists of: F, m, v, p.

class Particle

{
float mass;
float position[3];
float velocity[3];
float forceAccumulator(3];

}

o forceAccumulator is here because the particle may be
acted upon by several forces- e.g. a soccerball is
affected by the force of gravity and an external force
like when someone kicks it. (see later)

o0 Anything that will impart a force on the particle will
simply ADD their 3 force components (force in X,Y,Z)
to the forceAccumulator.

E.g. 3D Particle System

Particle Dynamics Algorithm

class ParticleSystem

{
particle *listOfParticles;
int numParticles;
void EulerStep();

For each particle

{
Compute the forces that are acting on the particle.
Compute the acceleration of each particle:
Since F=ma; a=F/m
Compute velocity of each particle due to the
acceleration.
Compute the new position of the particle based on
the velocity.
}

How do you calculate velocity?

E.g. Euler Integration EulerStep

O Recall that:
= a = dv/dt (ie change in velocity over time)
m v = dp/dt (ie change in position over time)
o So to find velocity we need to find the integral of
acceleration
O To find the position we need to find the integral of velocity
O A simple numerical integration method (Euler’'s Method):
m Q(t+dt) = Q(t) + dt * Q'(t)

= So in our case:
To find velocity at each simulation timestep:
= y(t+dt) = v(t) + dt * v'(t) = v(t) + dt * a(t) // we know a(t) from F=ma
To find the position at each simulation timestep:
= p(t+dt) = p(t) + dt * p'(t) = p(t) + dt * v(t) // we know v(t)

o To find velocity at each simulation timestep:
v(t+dt) = v(t) + dt * a(t) // we know a(t) from F=ma
v_next[x] = v_now[x] + dt * a[x];
v_next[y] = v_nowly] + dt * aly];
v_next[z] = v_nowl[z] + dt * a[z];

o To find the position at each simulation timestep:
p(t+dt) = p(t) + dt * v(t) // we know v(t)
p_next[x] = p_now[x] + dt * v_nowl[x];
p_nextly] = p_now[y] + dt * v_nowly];
p_next[z] = p_now(z] + dt * v_now(z];

o Remember to save away v_next for the next step
through the simulation:

= v_now[x] = v_next[x]; v_nowl[y] = v_next[y]; v_now[z] =
v_next[z];

Warning about Euler Method

O Big time steps causes big integration
errors.

o You know this has happened because
your particles g?o out of control and fly
off into infinity!

O Use small time steps- but note that
small time steps chew up a lot of CPU
cycles.

O You do not necessarily have to DRAW
every time step. E.g. compute 10 V
timesteps and then draw the result

O There are other better solutions:

Adaptive Euler Method . Estimate

Midpoint Method ! i

Implicit Euler Method

Runge Kutta Method

Adaptive Step Sizes

o Ideally we want the step-size (dt) to be as big as
possible so we can do as few calculations as possible.

o But with bigger step sizes you incorporate more errors
and your system can eventually destabilize.

o So small step sizes are usually needed. Unfortunately
smaller step sizes can take a long time.

o You don't want to force a small step size all the time if
possible.

Euler with Adaptive Step Sizes

m}

Suppose you compute 2 estimates for the velocity at time t+dt:
So vl is your velocity estimate for t+dt

And v2 is your velocity estimate if you instead took 2 smaller steps of
size dt/2 each.

Both v1 and v2 differ from the true velocity by an order of dt? (because
Euler's method is derived from Taylor's Theorem truncated after the 2nd
term- see reference in the notes section of this slide)

gyzthat definition, v1 and v2 also differ from each other by an order of
t

So we can write a measure of the current error as: E = |[v1-v2|

Let Ejerateq € the error that YOU can tolerate in your game.

Adaptive step size dt,q,g is calculated as approximately:

dtadapt = Sqrt(Eto\erated / E) * dt
So a bigger tolerated error would allow you to take a bigger step size.
And a smaller one would force a smaller step size.

Handling Collisions

o Particles often bounce off surfaces.
1. Need to detect when a collision has occurred.
2. Need to determine the correct response to the collision.

Detecting Collision

Particle/Plane Collisions

o General Collision problem is complex:

m Particle/Plane Collision — we will look at this one coz it's easy
way to start

= Plane/Plane Collision
= Edge/Plane Collision

O P=any point on the plane

o N=normal pointing on the “legal” side of

the plane.

O X=position of point we want to examine.

o For (X-P).N
u
|
|

Collision Response - dealing with the case where
particle penetrates a plane (and it shouldn’'t have)

Collision Response

o If particle X is on the
wrong side of the plane,

N\
and then 7 /77//‘4

compute its collision
response.

o N=normal to the collision plane
o Vn=normal component of a vector V

is

Vn=(N.V)V vn
Vt=tangential component is:

Vt=V-Vn

Vb=bounced response:

Vb=(1 — Kf) * Vt = (Kr * Vn)
Kr=coefficient of restitution: ie how
bouncy the surface is.
1=perfectly elastic; O=stick to wall.

Kf=coefficient of friction: ie how
much the tangential vector is slowed
down after the bounce.

1=particle stops in its tracks. 0=no
friction.

Vt

References

http://www.evl.uic.edu/spiff/class/cs426/Notes/physics.ppt
http://en.wikipedia.org/wiki/Newton%27s_laws_of_motion
http://en.wikipedia.org/wiki/Equations_of_motion
http://en.wikipedia.org/wiki/Projectile
http://en.wikipedia.org/wiki/Trajectory
http://en.wikipedia.org/wiki/Buoyancy
http://en.wikipedia.org/wiki/Drag_(physics)
http://en.wikipedia.org/wiki/Euler_method
http://en.wikipedia.org/wiki/RK4
http://www.gaffer.org/game-physics/

O0OO0OO0OO0ODO0ODOoODoQoRaoQNa o

