
Game PhysicsGame Physics

305890
Spring 2014Spring 2014
6/3/2014

Kyoung Shin Park
k k@d k k kkpark@dankook.ac.kr

Application in Video GamesApplication in Video Games

 Racing games: Cars, snowboards, etc..
 Simulates how cars drive, collide, rebound, flip, etc..

 Sports games
 Simulates trajectory of soccer, basket balls.

 Increasing use in First Person Shooters: UnReal
U d i l b id f lli d b ki h Used to simulate bridges falling and breaking apart when
blown up.

 Dead bodies as they are dragged by a limb.y gg y

 Miscellaneous uses:
 Flowing flags / cloth.

 Problem is that real time physics is very compute
intensive. But it is becoming easier with faster CPUs.

DefinitionsDefinitions

 Kinematics (운동학)
 Study of movement over time.
 Not concerned with the cause of the movement.

D i (동역학) Dynamics (동역학)
 Study of forces and masses that cause the kinematic

quantities to change as time progressesquantities to change as time progresses.

Game PhysicsGame Physics

 Motion (운동)
 Position (위치), Velocity (속도), Acceleration (가속도)
 Force (힘), Gravity (중력)
 Buoyancy (부력), Drag (저항력)
 Friction (마찰력)

 Kinetic friction (운동마찰)
 Static friction (정지마찰)

 Spring (스프링)

MotionMotion

 In physics, motion is a change in location or position
of an object with respect to time.

 Object motion is represented with vectors
 Velocity is a vector

 Vector direction is direction of movement
V i d i d f Vector magnitude is speed of movement

 Velocity vector corresponds to amount object will
move in one unit of timemove in one unit of time.

Basic MotionBasic Motion

 Displacement (변위) = velocity * time
 If an object starts at position, P0, with velocity v,

after t time units, its position P(t) is:

tvt 0P)(P
 NOTE: choice of unit is arbitrary as long as things are

consistent, e.g. meters for distance, seconds for time,
meters/second for velocity

Varying VelocityVarying Velocity

 The previous formula only works if the object moves with
a constant velocity.

 In many cases, object’s velocities change over time.
 The velocity is defined by the derivative:

)(P)(tdtv

 Constant velocity: v(t) = v0

)(P)(t
dt

tv

 Constant velocity: v(t) = v0

 Velocity change over time by constant acceleration: v(t) = v0 + a t

 The displacement is a function that we integrate velocityp g y

t

dtvelocityntdisplaceme
0

AccelerationAcceleration

 The acceleration is the rate of change in velocity.
 The acceleration is defined by the derivative

)(P)()(
2

tdtdt)(P)()(2 t
dt

tv
dt

ta

 Velocity is the integral of acceleration

t

 dtonaccelerativelocity
0

Euler Method (or Euler Integration)Euler Method (or Euler Integration)

 Euler method (or Euler Integration) approximates an
integral by step-wise addition.
 The most basic kind of explicit method for numerical integration

of ordinary differential equations (ODE)of ordinary differential equations (ODE).

 At each time step, we move the object in a straight line
using the current velocity:using the current velocity:

ttdt
dtvtt

ttdt

)(P)(P 01

01

)()(01

Euler Method (or Euler Integration)Euler Method (or Euler Integration)

 Applying Euler Integration to compute the position:
dt = t1 – t0;

Acc = ComputeAcceleration();
Vel = Vel + Acc * dt;
Pos = Pos + Vel * dt;

t

tatvdtatvt 21P)()(P tatvdtatvt
0

000 2
P)()(P

GravityGravity

 Gravity (지구 중력 가속도) near the Earth’s surface
produces a constant acceleration of 9.8 meter/sec2

v0

)89(mgmgF
v1

)8.9(2s
mgmgF

gravity
(0, -9.8, 0)

v2

ForceForce

 Newton’s second law of motion:

mFa
maF

/

 If an object has mass M, and force F is applied to it, its
motion can be calculated via Euler integration:

mFa /

motion can be calculated via Euler integration:

Acc = F/M;
Vel + Acc * dt;Vel += Acc * dt;
Pos += Vel * dt;
Note that F, Acc, Vel, and Pos are all vectors. M is a scalar.

뉴튼 역학의 3법칙
 관성의 법칙: 모든 물체는 다른 물체의 움직임의 영향을 받지 않는다고 할 때, 정지해

있었다면 계 정지해 있을 것이 움직이 있었다면 일정한 계 할 것이다있었다면 계속 정지해 있을 것이고, 움직이고 있었다면 일정한 속도로 계속 운동할 것이다.
 가속도의 법칙: 물체의 운동량의 변화율은, 크기와 방향에서, 그 물체에 작용하는 힘에 따른다.
 작용, 반작용의 법칙: 모든 작용에는 그 반대방향으로 같은 크기의 반작용이 존재한다.

Gravitational ForceGravitational Force

 Gravitational force (중력)
 The force of attraction between all masses in the universe;

especially the attraction of the earth’s mass for bodies near its
surface.

 The gravitation between two bodies is proportional to the
product of their masses and inversely proportional to the
square of the distance between them.

 For a complete simulation, we need to calculate the
force on each object every frame.

Wh lti l f li d th i t dd d When multiple forces are applied, their vectors are added.

)10673.6(11
2

21 G
d

MGMFgravity

)(:,

)(

21

2

kgmassMM
dgravity

)(: meterdistanced

Projectile MotionProjectile Motion

 The projectile position, P0, at t=0 with the velocity v0:

gttvt
2
1P)(P 2

00

 Ti t h th i h i ht t

tvztzgttvytytvxtx zyx 0)(,
2
1)(,)(2

00

 Time to reach the maximum height, t:

v
tgttvty y 0)(2

 Maximum height h:

g
tgttvty y 0)(

 Maximum height, h:

v
yh y

2

g

yh
20

Projectile MotionProjectile Motion

 Maximum range, r:
2

vv
g
v

tortygttvyty y
y

2

2
 0

2
1)(0

2
0

 A l f l ti t h th i h i ht

g
vv

rtvxtx yx
x

2
)(0

 Angle of elevation to reach the maximum height, :

)(21sinsin 1

22

yhgsyhvyh z

 Angle required to hit the target :

)(2sin
22 000 yhg

sg
yh

g
yh z

 Angle required to hit the target, :

 1
2

sin12sinsincos22 rgsssr
vv

r yx
2sin

2
2sin

sgg
r

g
r y

BuoyancyBuoyancy

 Buoyancy force Buoyancy force
 Buoyancy is an upward acting force exerted by a fluid that

oppose an object’s weight.
 Archimedes’ principle:

 Any floating object displaces its own weight of fluid.
 I e any object wholly or partially immersed in a fluid is buoyed up I.e., any object, wholly or partially immersed in a fluid, is buoyed up

by a force equal to the weight of the fluid displaced by the object.

VgF

liquidedbodyofhedisplacolumeof tVisthev
e fluidsity of this the denρ

VgF

f

fbuoyancy

ational accelerravitationg is the g
 liquided body ofhe displacolume of tV is the v

DragDrag

 Drag force
 In fluid dynamics, drag refers to forces that oppose the relative

motion of an object through a fluid (a liquid or gas).
 Drag at low velocity (Stoke’s drag): Drag at low velocity (Stoke s drag):

viscosity):ηradius,object spherical small :(r 6 rb
bvFd

 Drag at high velocity:
y)η,jp(

)(1 2 vvvACvF

drag of vector force theis F

)(
2

d

v
vvACvF dd

fluid the torelativeobject theof velocity theis v
fluid theofdensity theis ρ

tcoefficien drag theis C
area reference theisA

d

Kinetic FrictionKinetic Friction

 Kinetic friction
 Kinetic (or dynamic) friction occurs when two objects are

moving relative to each other and rub together (E.g., a sled on
the ground)the ground).

flhi
KK NF

friction kinetic oft coefficien theis
force normal theis

K

N

 cosmgNF KKK
kgm 10 KG FFF

sinmgFG
N

 cossin/(/ ggmFFmFa KKG)

cosmgN
mg 30

Static FrictionStatic Friction

 Static friction
 Static friction is the friction between two solid objects that are

not moving relative to each other (E.g.., static friction can
prevent an object from sliding down a sloped surface).

force normal theis
SS

N
NF

friction static oft coefficien theisS

 The maximum value of static friction, Fmax, when motion is
impending, is sometimes referred to as limiting friction.

 Any force larger than Fmax overcomes the force of static friction y g max
and causes sliding to occur.

mgmg 1tansincos SS mgmg tansincos

MomentumMomentum

 Momentum, P, is the product of the mass and velocity of
bj tan object.

 The rate of change of the momentum of a particle is
proportional to the resultant force acting on the particleproportional to the resultant force acting on the particle
and is in the direction of that force.

mvP

Fma
d
dvm

d
dP
mvP

Force = ComputeTotalForce();
Momentum + Force * dt;

dtdt

Momentum += Force * dt;
Velocity = Momentum / Mass;
Position += Velocity* dt;

Angular VelocityAngular Velocity

 Angular velocity (각속도) is the rate of change of angular
displacement

 Angular velocity (radian/second):

)()(t
dt
dt

 Relationship between angular velocity, , and linear
velocity (선속도), v
 Given a fixed speed v and radius r, then:

)()()(trttv

Centrifugal ForceCentrifugal Force

 Linear acceleration (선가속도)
A

)()()()()('
)(')()()(')(

trtttrt
trttrtta

 r

v=xr
a

 If the angular velocity is constant: w‘(t)=0

)()()()(trttta
Y

 Centrifugal force (원심력), equal and opposite to the tension
(장력) drawing a rotating body away from the center of rotation

)()()()(trttta X

(장력), drawing a rotating body away from the center of rotation.

)()()(trttmFc
 Centrifugal force (when r(t) and w(t) is perpendicular):

mvrmF
2

2
r

rmFc

Rigid MotionRigid Motion

 Rigid motion (강체운동)
 A rigid body is an idealization of solid body (e.g. car) of finite

size in which deformation is neglected. (only translation &
rotation possible)

 Rigid body dynamics (강체동역학)
 Linear & angular position, velocity, acceleration
Force ComputeTotalForce();Force = ComputeTotalForce();
Momentum += Force * dt;
Velocity = Momentum / Mass;
Position += Velocity* dt;
Torque = ComputeTotalTorque();
AngMomentum += Torque * dt;AngMomentum += Torque dt;
Matrix I = Matrix*RotInertia*Matrix.Inverse(); // tensor
AngVelocity = I.Inverse()*AngMomentum;
Matrix.Rotate(AngVelocity*dt);

Integration MethodIntegration Method

 Euler method
 v = v0 + a*dt
 P = P0 + v*dt

float t = 0; // 현재 시간
float dt = 1; // 시간 간격 (timestamp)
fl t l it 0 // 초기 속도float velocity = 0; // 초기 속도
float position = 0; // 초기 위치
float force = 10;),(

)()),(,()('

1

00

nnn ythfyy
ytytytfty

n

:MethodEuler
:Initial

float mass = 1;
float acceleration = force/mass;
while (t<=10) {while (t 10) {

position += velocity * dt;
velocity += acceleration * dt;
t += dt;t += dt;

}

Integration MethodIntegration Method

 Runge-Kutta method

)(),,(' 00

h
ytyytfy :Initial

),(

22
6

1

43211

ytfk

kkkkhyy

nn

nn

:RK4

)
2

,
2

(

),(

12

1

khyhtfk

yf

nn

nn

)(

)
2

,
2

(23

hkhfk

khyhtfk nn

6
22

),(

4321

34

kkkkslope

hkyhtfk nn

6

Integration MethodIntegration Method

void RK4Integration(vector3& pos, vector3& vel, float t, float dt) {
3 k1V l lvector3 k1Vel = vel;

vector3 k1Acc = f(t, pos, vel);
vector3 k2Vel = vel + 0.5f * dt * k1Acc;
vector3 k2Acc = f(t + 0.5f * dt, pos + 0.5f * dt * k1Vel, k2Vel);
vector3 k3Vel = vel + 0.5f * dt * k2Acc;
vector3 k3Acc = f(t + 0 5f * dt pos + 0 5f * dt * k2Vel k3Vel);vector3 k3Acc = f(t + 0.5f * dt, pos + 0.5f * dt * k2Vel, k3Vel);
vector3 k4Vel = vel + dt * k3Acc;
vector3 k4Acc = f(t + dt, pos + dt * k3Vel, k4Vel);
pos += (dt / 6.0f) * (k1Vel + 2.0f * k2Vel + 2.0f * k3Vel + k4Vel);
vel += (dt / 6.0f) * (k1Acc + 2.0f * k2Acc + 2.0f * k3Acc + k4Acc);

}}
while (t<=10) {

RK4Integration(position, velocity, t, dt);
t dtt += dt;

}

SpringsSprings

 Hooke’s Law
 Spring force is proportional to displacement.

dKF
constant spring theisK

dKF

s

s

lengthrest fromnt displaceme theis d

 Spring is modeled as two point masses, linked by the
spring.

 Equal but opposite force is applied to each end.

SpringsSprings

 When spring is stretched, spring force pulls masses
together.

 When spring is compressed, spring force pushes masses p g p , p g p
apart.

SpringsSprings

 Vector between the points is used to compute
displacement and the direction of force:

V t 3 i t1 i t0Vector3 v = point1 – point0;
float displacement = v.length() – restLength;
v.normalize();v.normalize();
Vector3 force = springConstant * displacement * v;

Spring ClassesSpring Classes

class PointMass
{

float mass;
float position[3];
float velocity[3];y
float acceleration[3];
void ClearForces();();
void AddForce();
void Update();p ();
void Freeze();

}}

Spring ClassesSpring Classes

class Spring
{

float pointMass[2];
float springConstant;
float restLength;g
void Update();

}}

Simulating ClothSimulating Cloth

 Cloth can be simulated by a mesh of springs.
 Structural Springs
 Shear Springs (to prevent the flag

from shearing)

Simulating ClothSimulating Cloth

 Bend Springs (to prevent the flag from folding along
the vertices).

 Connect to every other particle.
 Cross-section of cloth

Structural springs

Bend springsp g

Particle SystemsParticle Systems

 First used for graphics in Star Trek II (1983) “Genesis
Effect”

Particle SystemsParticle Systems

 Particle systems simulate explosions, smoke, fire, spray.
 They are also useful for modeling non-rigid objects

such as jelly or cloth (more later).
 Infinitely small objects that have Mass Position and Infinitely small objects that have Mass, Position and

Velocity
 Motion of a Newtonian particle is governed by: Motion of a Newtonian particle is governed by:

 F=ma (F=force, m=mass, a=acceleration)
 a=dv/dt (Change of velocity over time- v=velocity; t=time)

d /d (Ch f di i di v=dp/dt (Change of distance over time- p=distance or
position)

 So a basic data structure for a particle consists of: F, m, v, p.

E g a 3D particle might be represented as:E.g. a 3D particle might be represented as:

class Particle
{{

float mass;
float position[3];// [3] for x y z componentsfloat position[3];// [3] for x,y,z components
float velocity[3];
float forceAccumulator[3];

}
 forceAccumulator is here because the particle may be

acted upon by several forces e g a soccerball isacted upon by several forces- e.g. a soccerball is
affected by the force of gravity and an external force
like when someone kicks it. (see later)
A thi th t ill i t f th ti l ill Anything that will impart a force on the particle will
simply ADD their 3 force components (force in X,Y,Z)
to the forceAccumulator.

E g 3D Particle SystemE.g. 3D Particle System

class ParticleSystem
{

particle *listOfParticles;
int numParticles;
void EulerStep(); // Discussed laterp

}

Particle Dynamics AlgorithmParticle Dynamics Algorithm

For each particle
{

Compute the forces that are acting on the particle.
Compute the acceleration of each particle:

Since F=ma; a=F/m
Compute velocity of each particle due to the

acceleration.
Compute the new position of the particle based on

the velocity.
}

How do you calculate velocity?How do you calculate velocity?

 Recall that:
 a = dv/dt (ie change in velocity over time)
 v = dp/dt (ie change in position over time)

 So to find elocit e need to find the integral of So to find velocity we need to find the integral of
acceleration

 To find the position we need to find the integral of velocity To find the position we need to find the integral of velocity
 A simple numerical integration method (Euler’s Method):

 Q(t+dt) = Q(t) + dt * Q’(t) Q(t+dt) = Q(t) + dt Q (t)
 So in our case:

 To find velocity at each simulation timestep:
 v(t+dt) = v(t) + dt * v’(t) = v(t) + dt * a(t) // we know a(t) from F=ma

 To find the position at each simulation timestep:
 p(t+dt) = p(t) + dt * p’(t) = p(t) + dt * v(t) // we know v(t)p() p() p () p() () ()

E g Euler Integration EulerStepE.g. Euler Integration EulerStep

 To find velocity at each simulation timestep:
v(t+dt) = v(t) + dt * a(t) // we know a(t) from F=ma
v_next[x] = v_now[x] + dt * a[x];
v next[y] = v now[y] + dt * a[y];v_next[y] v_now[y] + dt a[y];
v_next[z] = v_now[z] + dt * a[z];

 To find the position at each simulation timestep:
p(t+dt) = p(t) + dt * v(t) // we know v(t)
p_next[x] = p_now[x] + dt * v_now[x];
p next[y] = p now[y] + dt * v now[y];p_next[y] = p_now[y] + dt v_now[y];
p_next[z] = p_now[z] + dt * v_now[z];

 Remember to save away v_next for the next step
through the simulation:
 v_now[x] = v_next[x]; v_now[y] = v_next[y]; v_now[z] =

v next[z];v_next[z];

Warning about Euler MethodWarning about Euler Method

 Big time steps causes big integration
errorserrors.

 You know this has happened because
your particles go out of control and fly y p g y
off into infinity!

 Use small time steps- but note that
small time steps chew up a lot of CPUsmall time steps chew up a lot of CPU
cycles.

 You do not necessarily have to DRAW
every time step E g compute 10 vevery time step. E.g. compute 10
timesteps and then draw the result.

 There are other better solutions:
Error

v

 Adaptive Euler Method
 Midpoint Method
 Implicit Euler Method

Estimate

tImplicit Euler Method
 Runge Kutta Method

t0 t0+dt
t

Adaptive Step SizesAdaptive Step Sizes

 Ideally we want the step-size (dt) to be as big as
ibl d f l l ti iblpossible so we can do as few calculations as possible.

 But with bigger step sizes you incorporate more errors
and your system can eventually destabilizeand your system can eventually destabilize.

 So small step sizes are usually needed. Unfortunately
smaller step sizes can take a long time.p g

 You don’t want to force a small step size all the time if
possible.

Euler with Adaptive Step SizesEuler with Adaptive Step Sizes
 Suppose you compute 2 estimates for the velocity at time t+dt:
 So v1 is your velocity estimate for t+dty y
 And v2 is your velocity estimate if you instead took 2 smaller steps of

size dt/2 each.
 Both v1 and v2 differ from the true velocity by an order of dt2 (because y y (

Euler’s method is derived from Taylor’s Theorem truncated after the 2nd
term- see reference in the notes section of this slide)

 By that definition, v1 and v2 also differ from each other by an order of
dt2dt2

 So we can write a measure of the current error as: E = |v1-v2|
 Let Etolerated be the error that YOU can tolerate in your game.
 Adaptive step size dtadapt is calculated as approximately:

dtadapt = Sqrt(Etolerated / E) * dt
 S bi t l t d ld ll t t k bi t i So a bigger tolerated error would allow you to take a bigger step size.

And a smaller one would force a smaller step size.

Handling CollisionsHandling Collisions

 Particles often bounce off surfaces.
1. Need to detect when a collision has occurred.
2. Need to determine the correct response to the collision.

Detecting CollisionDetecting Collision

 General Collision problem is complex:
 Particle/Plane Collision – we will look at this one coz it’s easy

way to start
 Plane/Plane Collision Plane/Plane Collision
 Edge/Plane Collision

Particle/Plane CollisionsParticle/Plane Collisions

 P=any point on the plane
N l i i h “l l” id f N=normal pointing on the “legal” side of
the plane.

 X=position of point we want to examine. X position of point we want to examine.
 For (X – P) . N

 If > 0 then X is on legal side of plane.
If 0 th X i th l If = 0 then X is on the plane.

 If < 0 then X is on the wrong side of plane
P

N

X

Collision Response – dealing with the case where
particle penetrates a plane (and it shouldn’t have)particle penetrates a plane (and it shouldn t have)

 If particle X is on the
wrong side of the plane,
move it to the surface of
the plane and then Xthe plane and then
compute its collision
response.

X
response.

Collision ResponseCollision Response
 N=normal to the collision plane
 Vn=normal component of a vector V

N
 Vn=normal component of a vector V

is
Vn= (N . V) V VVn Vb

 Vt=tangential component is:
Vt=V-Vn

 Vb=bounced response:

Vn

 Vb bounced response:
Vb=(1 – Kf) * Vt – (Kr * Vn)

 Kr=coefficient of restitution: ie how
bouncy the surface is

Vt

bouncy the surface is.
1=perfectly elastic; 0=stick to wall.

 Kf=coefficient of friction: ie how
h h i l i l dmuch the tangential vector is slowed

down after the bounce.
1=particle stops in its tracks. 0=no p p
friction.

ReferencesReferences

 http://www.evl.uic.edu/spiff/class/cs426/Notes/physics.ppt
 http://en.wikipedia.org/wiki/Newton%27s_laws_of_motion
 http://en.wikipedia.org/wiki/Equations_of_motion
 http://en wikipedia org/wiki/Projectile http://en.wikipedia.org/wiki/Projectile
 http://en.wikipedia.org/wiki/Trajectory
 http://en.wikipedia.org/wiki/Buoyancyp p g y y
 http://en.wikipedia.org/wiki/Drag_(physics)
 http://en.wikipedia.org/wiki/Euler_method
 http://en.wikipedia.org/wiki/RK4
 http://www.gaffer.org/game-physics/

