
Game PhysicsGame Physics

305890
Spring 2014Spring 2014
6/3/2014

Kyoung Shin Park
k k@d k k kkpark@dankook.ac.kr

Application in Video GamesApplication in Video Games

 Racing games: Cars, snowboards, etc..
 Simulates how cars drive, collide, rebound, flip, etc..

 Sports games
 Simulates trajectory of soccer, basket balls.

 Increasing use in First Person Shooters: UnReal
U d i l b id f lli d b ki h Used to simulate bridges falling and breaking apart when
blown up.

 Dead bodies as they are dragged by a limb.y gg y

 Miscellaneous uses:
 Flowing flags / cloth.

 Problem is that real time physics is very compute
intensive. But it is becoming easier with faster CPUs.

DefinitionsDefinitions

 Kinematics (운동학)
 Study of movement over time.
 Not concerned with the cause of the movement.

D i (동역학) Dynamics (동역학)
 Study of forces and masses that cause the kinematic

quantities to change as time progressesquantities to change as time progresses.

Game PhysicsGame Physics

 Motion (운동)
 Position (위치), Velocity (속도), Acceleration (가속도)
 Force (힘), Gravity (중력)
 Buoyancy (부력), Drag (저항력)
 Friction (마찰력)

 Kinetic friction (운동마찰)
 Static friction (정지마찰)

 Spring (스프링)

MotionMotion

 In physics, motion is a change in location or position
of an object with respect to time.

 Object motion is represented with vectors
 Velocity is a vector

 Vector direction is direction of movement
V i d i d f Vector magnitude is speed of movement

 Velocity vector corresponds to amount object will
move in one unit of timemove in one unit of time.

Basic MotionBasic Motion

 Displacement (변위) = velocity * time
 If an object starts at position, P0, with velocity v,

after t time units, its position P(t) is:

tvt  0P)(P
 NOTE: choice of unit is arbitrary as long as things are

consistent, e.g. meters for distance, seconds for time,
meters/second for velocity

Varying VelocityVarying Velocity

 The previous formula only works if the object moves with
a constant velocity.

 In many cases, object’s velocities change over time.
 The velocity is defined by the derivative:

)(P)(tdtv 

 Constant velocity: v(t) = v0

)(P)(t
dt

tv 

 Constant velocity: v(t) = v0

 Velocity change over time by constant acceleration: v(t) = v0 + a t

 The displacement is a function that we integrate velocityp g y


t

dtvelocityntdisplaceme
0

AccelerationAcceleration

 The acceleration is the rate of change in velocity.
 The acceleration is defined by the derivative

)(P)()(
2

tdtdt)(P)()(2 t
dt

tv
dt

ta 

 Velocity is the integral of acceleration

t

 dtonaccelerativelocity
0

Euler Method (or Euler Integration)Euler Method (or Euler Integration)

 Euler method (or Euler Integration) approximates an
integral by step-wise addition.
 The most basic kind of explicit method for numerical integration

of ordinary differential equations (ODE)of ordinary differential equations (ODE).

 At each time step, we move the object in a straight line
using the current velocity:using the current velocity:

ttdt
dtvtt

ttdt



)(P)(P 01

01

)()(01

Euler Method (or Euler Integration)Euler Method (or Euler Integration)

 Applying Euler Integration to compute the position:
dt = t1 – t0;

Acc = ComputeAcceleration();
Vel = Vel + Acc * dt;
Pos = Pos + Vel * dt;

 
t

tatvdtatvt 21P)()(P   tatvdtatvt
0

000 2
P)()(P

GravityGravity

 Gravity (지구 중력 가속도) near the Earth’s surface
produces a constant acceleration of 9.8 meter/sec2

v0

)89(mgmgF 
v1

)8.9(2s
mgmgF 

gravity
(0, -9.8, 0)

v2

ForceForce

 Newton’s second law of motion:

mFa
maF

/


 If an object has mass M, and force F is applied to it, its
motion can be calculated via Euler integration:

mFa /

motion can be calculated via Euler integration:

Acc = F/M;
Vel + Acc * dt;Vel += Acc * dt;
Pos += Vel * dt;
Note that F, Acc, Vel, and Pos are all vectors. M is a scalar.

뉴튼 역학의 3법칙
 관성의 법칙: 모든 물체는 다른 물체의 움직임의 영향을 받지 않는다고 할 때, 정지해

있었다면 계 정지해 있을 것이 움직이 있었다면 일정한 계 할 것이다있었다면 계속 정지해 있을 것이고, 움직이고 있었다면 일정한 속도로 계속 운동할 것이다.
 가속도의 법칙: 물체의 운동량의 변화율은, 크기와 방향에서, 그 물체에 작용하는 힘에 따른다.
 작용, 반작용의 법칙: 모든 작용에는 그 반대방향으로 같은 크기의 반작용이 존재한다.

Gravitational ForceGravitational Force

 Gravitational force (중력)
 The force of attraction between all masses in the universe;

especially the attraction of the earth’s mass for bodies near its
surface.

 The gravitation between two bodies is proportional to the
product of their masses and inversely proportional to the
square of the distance between them.

 For a complete simulation, we need to calculate the
force on each object every frame.

Wh lti l f li d th i t dd d When multiple forces are applied, their vectors are added.

)10673.6(11
2

21 G
d

MGMFgravity


)(:,

)(

21

2

kgmassMM
dgravity

)(: meterdistanced

Projectile MotionProjectile Motion

 The projectile position, P0, at t=0 with the velocity v0:

gttvt 
2
1P)(P 2

00

 Ti t h th i h i ht t

tvztzgttvytytvxtx zyx  0)(,
2
1)(,)(2

00

 Time to reach the maximum height, t:

v
tgttvty y 0)(2

 Maximum height h:

g
tgttvty y  0)(

 Maximum height, h:

v
yh y

2


g

yh
20 

Projectile MotionProjectile Motion

 Maximum range, r:
2

vv
g
v

tortygttvyty y
y

2

2
 0

2
1)(0

2
0 

 A l f l ti t h th i h i ht 

g
vv

rtvxtx yx
x

2
)(0 

 Angle of elevation to reach the maximum height, :

 




 )(21sinsin 1

22

yhgsyhvyh z 

 Angle required to hit the target :

 






)(2sin
22 000 yhg

sg
yh

g
yh z 

 Angle required to hit the target, :

   1
2

sin12sinsincos22 rgsssr
vv

r yx    
2sin

2
2sin

sgg
r

g
r y  

BuoyancyBuoyancy

 Buoyancy force Buoyancy force
 Buoyancy is an upward acting force exerted by a fluid that

oppose an object’s weight.
 Archimedes’ principle:

 Any floating object displaces its own weight of fluid.
 I e any object wholly or partially immersed in a fluid is buoyed up I.e., any object, wholly or partially immersed in a fluid, is buoyed up

by a force equal to the weight of the fluid displaced by the object.

VgF 

liquidedbodyofhedisplacolumeof tVisthev
e fluidsity of this the denρ

VgF

f

fbuoyancy 

ational accelerravitationg is the g
 liquided body ofhe displacolume of tV is the v

DragDrag

 Drag force
 In fluid dynamics, drag refers to forces that oppose the relative

motion of an object through a fluid (a liquid or gas).
 Drag at low velocity (Stoke’s drag): Drag at low velocity (Stoke s drag):

viscosity):ηradius,object spherical small :(r 6 rb
bvFd




 Drag at high velocity:
y)η,jp(

)(1 2 vvvACvF  

drag of vector force theis F

)(
2

d

v
vvACvF dd  

fluid the torelativeobject theof velocity theis v
fluid theofdensity theis ρ

tcoefficien drag theis C
area reference theisA

d

Kinetic FrictionKinetic Friction

 Kinetic friction
 Kinetic (or dynamic) friction occurs when two objects are

moving relative to each other and rub together (E.g., a sled on
the ground)the ground).

flhi
KK NF 

friction kinetic oft coefficien theis
force normal theis

K

N


 cosmgNF KKK 
kgm 10 KG FFF 

sinmgFG 
N

 cossin/(/ ggmFFmFa KKG )

cosmgN 
mg  30

Static FrictionStatic Friction

 Static friction
 Static friction is the friction between two solid objects that are

not moving relative to each other (E.g.., static friction can
prevent an object from sliding down a sloped surface).

force normal theis
SS

N
NF 

friction static oft coefficien theisS

 The maximum value of static friction, Fmax, when motion is
impending, is sometimes referred to as limiting friction.

 Any force larger than Fmax overcomes the force of static friction y g max
and causes sliding to occur.

mgmg  1tansincos  SS mgmg  tansincos 

MomentumMomentum

 Momentum, P, is the product of the mass and velocity of
bj tan object.

 The rate of change of the momentum of a particle is
proportional to the resultant force acting on the particleproportional to the resultant force acting on the particle
and is in the direction of that force.

mvP 

Fma
d
dvm

d
dP
mvP





Force = ComputeTotalForce();
Momentum + Force * dt;

dtdt

Momentum += Force * dt;
Velocity = Momentum / Mass;
Position += Velocity* dt;

Angular VelocityAngular Velocity

 Angular velocity (각속도) is the rate of change of angular
displacement

 Angular velocity (radian/second):

)()(t
dt
dt  

 Relationship between angular velocity, , and linear
velocity (선속도), v
 Given a fixed speed v and radius r, then:

)()()(trttv 

Centrifugal ForceCentrifugal Force

 Linear acceleration (선가속도)
A

 )()()()()('
)(')()()(')(

trtttrt
trttrtta






 r

v=xr
a

 If the angular velocity is constant: w‘(t)=0
 

 )()()()(trttta   
Y

 Centrifugal force (원심력), equal and opposite to the tension
(장력) drawing a rotating body away from the center of rotation

 )()()()(trttta   X

(장력), drawing a rotating body away from the center of rotation.

  )()()(trttmFc  
 Centrifugal force (when r(t) and w(t) is perpendicular):

mvrmF
2

2
r

rmFc  

Rigid MotionRigid Motion

 Rigid motion (강체운동)
 A rigid body is an idealization of solid body (e.g. car) of finite

size in which deformation is neglected. (only translation &
rotation possible)

 Rigid body dynamics (강체동역학)
 Linear & angular position, velocity, acceleration
Force ComputeTotalForce();Force = ComputeTotalForce();
Momentum += Force * dt;
Velocity = Momentum / Mass;
Position += Velocity* dt;
Torque = ComputeTotalTorque();
AngMomentum += Torque * dt;AngMomentum += Torque dt;
Matrix I = Matrix*RotInertia*Matrix.Inverse(); // tensor
AngVelocity = I.Inverse()*AngMomentum;
Matrix.Rotate(AngVelocity*dt);

Integration MethodIntegration Method

 Euler method
 v = v0 + a*dt
 P = P0 + v*dt

float t = 0; // 현재 시간
float dt = 1; // 시간 간격 (timestamp)
fl t l it 0 // 초기 속도float velocity = 0; // 초기 속도
float position = 0; // 초기 위치
float force = 10;),(

)()),(,()('

1

00

nnn ythfyy
ytytytfty

n 


:MethodEuler
:Initial

float mass = 1;
float acceleration = force/mass;
while (t<=10) {while (t 10) {

position += velocity * dt;
velocity += acceleration * dt;
t += dt;t += dt;

}

Integration MethodIntegration Method

 Runge-Kutta method

 

)(),,(' 00

h
ytyytfy :Initial

 

),(

22
6

1

43211

ytfk

kkkkhyy

nn

nn



:RK4

)
2

,
2

(

),(

12

1

khyhtfk

yf

nn

nn



)(

)
2

,
2

(23

hkhfk

khyhtfk nn 

6
22

),(

4321

34

kkkkslope

hkyhtfk nn






6

Integration MethodIntegration Method

void RK4Integration(vector3& pos, vector3& vel, float t, float dt) {
3 k1V l lvector3 k1Vel = vel;

vector3 k1Acc = f(t, pos, vel);
vector3 k2Vel = vel + 0.5f * dt * k1Acc;
vector3 k2Acc = f(t + 0.5f * dt, pos + 0.5f * dt * k1Vel, k2Vel);
vector3 k3Vel = vel + 0.5f * dt * k2Acc;
vector3 k3Acc = f(t + 0 5f * dt pos + 0 5f * dt * k2Vel k3Vel);vector3 k3Acc = f(t + 0.5f * dt, pos + 0.5f * dt * k2Vel, k3Vel);
vector3 k4Vel = vel + dt * k3Acc;
vector3 k4Acc = f(t + dt, pos + dt * k3Vel, k4Vel);
pos += (dt / 6.0f) * (k1Vel + 2.0f * k2Vel + 2.0f * k3Vel + k4Vel);
vel += (dt / 6.0f) * (k1Acc + 2.0f * k2Acc + 2.0f * k3Acc + k4Acc);

}}
while (t<=10) {

RK4Integration(position, velocity, t, dt);
t dtt += dt;

}

SpringsSprings

 Hooke’s Law
 Spring force is proportional to displacement.

dKF 
constant spring theisK

dKF

s

s

lengthrest fromnt displaceme theis d

 Spring is modeled as two point masses, linked by the
spring.

 Equal but opposite force is applied to each end.

SpringsSprings

 When spring is stretched, spring force pulls masses
together.

 When spring is compressed, spring force pushes masses p g p , p g p
apart.

SpringsSprings

 Vector between the points is used to compute
displacement and the direction of force:

V t 3 i t1 i t0Vector3 v = point1 – point0;
float displacement = v.length() – restLength;
v.normalize();v.normalize();
Vector3 force = springConstant * displacement * v;

Spring ClassesSpring Classes

class PointMass
{

float mass;
float position[3];
float velocity[3];y
float acceleration[3];
void ClearForces();();
void AddForce();
void Update();p ();
void Freeze();

}}

Spring ClassesSpring Classes

class Spring
{

float pointMass[2];
float springConstant;
float restLength;g
void Update();

}}

Simulating ClothSimulating Cloth

 Cloth can be simulated by a mesh of springs.
 Structural Springs
 Shear Springs (to prevent the flag

from shearing)

Simulating ClothSimulating Cloth

 Bend Springs (to prevent the flag from folding along
the vertices).

 Connect to every other particle.
 Cross-section of cloth

Structural springs

Bend springsp g

Particle SystemsParticle Systems

 First used for graphics in Star Trek II (1983) “Genesis
Effect”

Particle SystemsParticle Systems

 Particle systems simulate explosions, smoke, fire, spray.
 They are also useful for modeling non-rigid objects

such as jelly or cloth (more later).
 Infinitely small objects that have Mass Position and Infinitely small objects that have Mass, Position and

Velocity
 Motion of a Newtonian particle is governed by: Motion of a Newtonian particle is governed by:

 F=ma (F=force, m=mass, a=acceleration)
 a=dv/dt (Change of velocity over time- v=velocity; t=time)

d /d (Ch f di i di v=dp/dt (Change of distance over time- p=distance or
position)

 So a basic data structure for a particle consists of: F, m, v, p.

E g a 3D particle might be represented as:E.g. a 3D particle might be represented as:

class Particle
{{

float mass;
float position[3];// [3] for x y z componentsfloat position[3];// [3] for x,y,z components
float velocity[3];
float forceAccumulator[3];

}
 forceAccumulator is here because the particle may be

acted upon by several forces e g a soccerball isacted upon by several forces- e.g. a soccerball is
affected by the force of gravity and an external force
like when someone kicks it. (see later)
A thi th t ill i t f th ti l ill Anything that will impart a force on the particle will
simply ADD their 3 force components (force in X,Y,Z)
to the forceAccumulator.

E g 3D Particle SystemE.g. 3D Particle System

class ParticleSystem
{

particle *listOfParticles;
int numParticles;
void EulerStep(); // Discussed laterp

}

Particle Dynamics AlgorithmParticle Dynamics Algorithm

For each particle
{

Compute the forces that are acting on the particle.
Compute the acceleration of each particle:

Since F=ma; a=F/m
Compute velocity of each particle due to the

acceleration.
Compute the new position of the particle based on

the velocity.
}

How do you calculate velocity?How do you calculate velocity?

 Recall that:
 a = dv/dt (ie change in velocity over time)
 v = dp/dt (ie change in position over time)

 So to find elocit e need to find the integral of So to find velocity we need to find the integral of
acceleration

 To find the position we need to find the integral of velocity To find the position we need to find the integral of velocity
 A simple numerical integration method (Euler’s Method):

 Q(t+dt) = Q(t) + dt * Q’(t) Q(t+dt) = Q(t) + dt Q (t)
 So in our case:

 To find velocity at each simulation timestep:
 v(t+dt) = v(t) + dt * v’(t) = v(t) + dt * a(t) // we know a(t) from F=ma

 To find the position at each simulation timestep:
 p(t+dt) = p(t) + dt * p’(t) = p(t) + dt * v(t) // we know v(t)p() p() p () p() () ()

E g Euler Integration EulerStepE.g. Euler Integration EulerStep

 To find velocity at each simulation timestep:
v(t+dt) = v(t) + dt * a(t) // we know a(t) from F=ma
v_next[x] = v_now[x] + dt * a[x];
v next[y] = v now[y] + dt * a[y];v_next[y] v_now[y] + dt a[y];
v_next[z] = v_now[z] + dt * a[z];

 To find the position at each simulation timestep:
p(t+dt) = p(t) + dt * v(t) // we know v(t)
p_next[x] = p_now[x] + dt * v_now[x];
p next[y] = p now[y] + dt * v now[y];p_next[y] = p_now[y] + dt v_now[y];
p_next[z] = p_now[z] + dt * v_now[z];

 Remember to save away v_next for the next step
through the simulation:
 v_now[x] = v_next[x]; v_now[y] = v_next[y]; v_now[z] =

v next[z];v_next[z];

Warning about Euler MethodWarning about Euler Method

 Big time steps causes big integration
errorserrors.

 You know this has happened because
your particles go out of control and fly y p g y
off into infinity!

 Use small time steps- but note that
small time steps chew up a lot of CPUsmall time steps chew up a lot of CPU
cycles.

 You do not necessarily have to DRAW
every time step E g compute 10 vevery time step. E.g. compute 10
timesteps and then draw the result.

 There are other better solutions:
Error

v

 Adaptive Euler Method
 Midpoint Method
 Implicit Euler Method

Estimate

tImplicit Euler Method
 Runge Kutta Method

t0 t0+dt
t

Adaptive Step SizesAdaptive Step Sizes

 Ideally we want the step-size (dt) to be as big as
ibl d f l l ti iblpossible so we can do as few calculations as possible.

 But with bigger step sizes you incorporate more errors
and your system can eventually destabilizeand your system can eventually destabilize.

 So small step sizes are usually needed. Unfortunately
smaller step sizes can take a long time.p g

 You don’t want to force a small step size all the time if
possible.

Euler with Adaptive Step SizesEuler with Adaptive Step Sizes
 Suppose you compute 2 estimates for the velocity at time t+dt:
 So v1 is your velocity estimate for t+dty y
 And v2 is your velocity estimate if you instead took 2 smaller steps of

size dt/2 each.
 Both v1 and v2 differ from the true velocity by an order of dt2 (because y y (

Euler’s method is derived from Taylor’s Theorem truncated after the 2nd
term- see reference in the notes section of this slide)

 By that definition, v1 and v2 also differ from each other by an order of
dt2dt2

 So we can write a measure of the current error as: E = |v1-v2|
 Let Etolerated be the error that YOU can tolerate in your game.
 Adaptive step size dtadapt is calculated as approximately:

dtadapt = Sqrt(Etolerated / E) * dt
 S bi t l t d ld ll t t k bi t i So a bigger tolerated error would allow you to take a bigger step size.

And a smaller one would force a smaller step size.

Handling CollisionsHandling Collisions

 Particles often bounce off surfaces.
1. Need to detect when a collision has occurred.
2. Need to determine the correct response to the collision.

Detecting CollisionDetecting Collision

 General Collision problem is complex:
 Particle/Plane Collision – we will look at this one coz it’s easy

way to start
 Plane/Plane Collision Plane/Plane Collision
 Edge/Plane Collision

Particle/Plane CollisionsParticle/Plane Collisions

 P=any point on the plane
N l i i h “l l” id f N=normal pointing on the “legal” side of
the plane.

 X=position of point we want to examine. X position of point we want to examine.
 For (X – P) . N

 If > 0 then X is on legal side of plane.
If 0 th X i th l If = 0 then X is on the plane.

 If < 0 then X is on the wrong side of plane
P

N

X

Collision Response – dealing with the case where
particle penetrates a plane (and it shouldn’t have)particle penetrates a plane (and it shouldn t have)

 If particle X is on the
wrong side of the plane,
move it to the surface of
the plane and then Xthe plane and then
compute its collision
response.

X
response.

Collision ResponseCollision Response
 N=normal to the collision plane
 Vn=normal component of a vector V

N
 Vn=normal component of a vector V

is
Vn= (N . V) V VVn Vb

 Vt=tangential component is:
Vt=V-Vn

 Vb=bounced response:

Vn

 Vb bounced response:
Vb=(1 – Kf) * Vt – (Kr * Vn)

 Kr=coefficient of restitution: ie how
bouncy the surface is

Vt

bouncy the surface is.
1=perfectly elastic; 0=stick to wall.

 Kf=coefficient of friction: ie how
h h i l i l dmuch the tangential vector is slowed

down after the bounce.
1=particle stops in its tracks. 0=no p p
friction.

ReferencesReferences

 http://www.evl.uic.edu/spiff/class/cs426/Notes/physics.ppt
 http://en.wikipedia.org/wiki/Newton%27s_laws_of_motion
 http://en.wikipedia.org/wiki/Equations_of_motion
 http://en wikipedia org/wiki/Projectile http://en.wikipedia.org/wiki/Projectile
 http://en.wikipedia.org/wiki/Trajectory
 http://en.wikipedia.org/wiki/Buoyancyp p g y y
 http://en.wikipedia.org/wiki/Drag_(physics)
 http://en.wikipedia.org/wiki/Euler_method
 http://en.wikipedia.org/wiki/RK4
 http://www.gaffer.org/game-physics/

