Game Physics

305890
Spring 2014
6/3/2014
Kyoung Shin Park
kpark@dankook.ac.kr

Application in Video Games

- Racing games: Cars, snowboards, etc..
- Simulates how cars drive, collide, rebound, flip, etc..
- Sports games
- Simulates trajectory of soccer, basket balls.
- Increasing use in First Person Shooters: UnReal
- Used to simulate bridges falling and breaking apart when blown up.
- Dead bodies as they are dragged by a limb.
- Miscellaneous uses:
- Flowing flags / cloth.
- Problem is that real time physics is very compute intensive. But it is becoming easier with faster CPUs.

Definitions

ㅁ Kinematics (운동학)

- Study of movement over time.
- Not concerned with the cause of the movement.

ㅁ Dynamics (동역학)

- Study of forces and masses that cause the kinematic quantities to change as time progresses.

Game Physics

- Motion (운동)

ㅁ Position (위치), Velocity (속도), Acceleration (가속도)
ㅁ Force (힘), Gravity (중력)
ㅁ Buoyancy (부력), Drag (저항력)

- Friction (마찰력)
- Kinetic friction (운동마찰)
- Static friction (정지마찰)

ㅁ Spring (스프링)

Motion

- In physics, motion is a change in location or position of an object with respect to time.
- Object motion is represented with vectors
- Velocity is a vector
- Vector direction is direction of movement
- Vector magnitude is speed of movement
- Velocity vector corresponds to amount object will move in one unit of time.

Basic Motion

- Displacement (변위) = velocity * time
- If an object starts at position, P_{a} with velocity v_{1} after t time units, its position $P(t)$ is:

$$
\mathrm{P}(t)=\mathrm{P}_{0}+v t
$$

- NOTE: choice of unit is arbitrary as long as things are consistent, e.g. meters for distance, seconds for time, meters/second for velocity

Varying Velocity

- The previous formula only works if the object moves with a constant velocity.
- In many cases, object's velocities change over time.
- The velocity is defined by the derivative:

$$
v(t)=\frac{d}{d t} \mathrm{P}(t)
$$

- Constant velocity: $\mathrm{v}(\mathrm{t})=\mathrm{v}_{0}$
- Velocity change over time by constant acceleration: $\mathrm{v}(\mathrm{t})=\mathrm{v}_{0}+a \mathrm{t}$
- The displacement is a function that we integrate velocity

$$
\text { displacement }=\int_{0}^{t} \text { velocity } d t
$$

Acceleration

- The acceleration is the rate of change in velocity.
- The acceleration is defined by the derivative

$$
a(t)=\frac{d}{d t} v(t)=\frac{d^{2}}{d t^{2}} \mathrm{P}(t)
$$

- Velocity is the integral of acceleration

$$
\text { velocity }=\int_{0}^{t} \text { acceleration } d t
$$

Euler Method (or Euler Integration)

ㅁ Euler method (or Euler Integration) approximates an integral by step-wise addition.

- The most basic kind of explicit method for numerical integration of ordinary differential equations (ODE).
- At each time step, we move the object in a straight line using the current velocity:

$$
\begin{aligned}
& d t=t_{1}-t_{0} \\
& \mathrm{P}\left(t_{1}\right)=\mathrm{P}\left(t_{0}\right)+v d t
\end{aligned}
$$

Euler Method (or Euler Integration)

- Applying Euler Integration to compute the position:
$\mathrm{dt}=\mathrm{t} 1-\mathrm{t} 0$;
Acc = ComputeAcceleration();
Vel $=\mathrm{Vel}+\mathrm{Acc} * \mathrm{dt}^{\prime}$
Pos $=$ Pos + Vel * dt;

$$
\mathrm{P}(t)=\int_{0}^{t}\left(v_{0}+a t\right) d t=\mathrm{P}_{0}+v_{0} t+\frac{1}{2} a t^{2}
$$

Gravity

ㅁ Gravity (지구 중력 가속도) near the Earth's surface produces a constant acceleration of 9.8 meter $/ \mathrm{sec}^{2}$
$\rightarrow{ }^{\mathrm{v} 0}$

$$
F=m g\left(g=-9.8 m / s^{2}\right)
$$

Force

- Newton's second law of motion:

$$
\begin{aligned}
& F=m a \\
& \Rightarrow a=F / m
\end{aligned}
$$

- If an object has mass M, and force F is applied to it, its motion can be calculated via Euler integration:

```
Acc = F/M;
Vel += Acc * dt;
Pos += Vel * dt;
Note that F, Acc, Vel, and Pos are all vectors. M is a scalar.
```

```
뉴트ᄂ 여ᄀ하ᄀ의 3버ᄇ치ᄀ
- 과ᄂ서ᄋ의 버ᄇ치ᄀ: 모드ᄂ 무ᄅ체느ᄂ 다르ᄂ 무ᄅ체의 우ᄆ지ᄀ이ᄆ의 여ᄋ햐ᄋ으ᄅ 바ᄃ지 않느ᄂ다고 하ᄅ 때, 저ᄋ지해
    이ᄊ어ᄊ다며ᄂ 계소ᄀ 저ᄋ지해 이ᄊ으ᄅ 거ᄉ이고, 우ᄆ지ᄀ이고 이ᄊ어ᄊ다며ᄂ 이ᄅ저ᄋ하ᄂ 소ᄀ도로 계소ᄀ 우ᄂ도ᄋ하ᄅ 거ᄉ이다.
- 가소ᄀ도의 버ᄇ치ᄀ: 무ᄅ체의 우ᄂ도ᄋ랴ᄋ의 벼ᄂ화유ᄅ으ᄂ, 크기와 바ᄋ햐ᄋ에서, 그 무ᄅ체에 자ᄀ요ᄋ하느ᄂ 히ᄆ에 따르ᄂ다.
- 자ᄀ요ᄋ, 바ᄂ자ᄀ요ᄋ의 버ᄇ치ᄀ: 모드ᄂ 자ᄀ요ᄋ에느ᄂ 그 바ᄂ대바ᄋ햐ᄋ으로 가ᄐ으ᄂ 크기의 바ᄂ자ᄀ요ᄋ이 조ᄂ재하ᄂ다.
```


Gravitational Force

Projectile Motion

ㅁ Gravitational force (중 력)

- The force of attraction between all masses in the universe; especially the attraction of the earth's mass for bodies near its surface.
- The gravitation between two bodies is proportional to the product of their masses and inversely proportional to the square of the distance between them.
- For a complete simulation, we need to calculate the force on each object every frame.
- When multiple forces are applied, their veciprs are added.
$F_{\text {gravity }}=\frac{G M_{1} M_{2}}{d^{2}}\left(G=6.673 \times 10^{-11}\right)$
$M_{1}, M_{2}: \operatorname{mass}(k g)$
d : distance (meter)

- The projectile position, P_{0}, at $t=0$ with the velocity v_{0} :

$$
\begin{aligned}
& \mathrm{P}(t)=\mathrm{P}_{0}+v_{0} t+\frac{1}{2} g t^{2} \\
& x(t)=x_{0}+v_{x} t, y(t)=y_{0}+v_{y} t-\frac{1}{2} g t^{2}, z(t)=z 0+v_{z} t
\end{aligned}
$$

- Time to reach the maximum height, t :

$$
y(t)=v_{y} t-g t^{2}=0 \Rightarrow t=\frac{v_{y}}{g}
$$

- Maximum height, h :
$h=y_{0}+\frac{v_{y}{ }^{2}}{2 g}$

Projectile Motion

- Maximum range, r :

$$
\begin{aligned}
& y(t)=y_{0}+v_{y} t-\frac{1}{2} g t^{2}=y_{0} \Rightarrow t=0 \text { or } t=\frac{2 v_{y}}{g} \\
& x(t)=x_{0}+v_{x} t \Rightarrow r=\frac{2 v_{x} v_{y}}{g}
\end{aligned}
$$

- Angle of elevation to reach the maximum height, θ :

$$
h=y_{0}+\frac{v_{z}^{2}}{2 g} \Rightarrow h=y_{0}+\frac{(s \sin \theta)^{2}}{2 g} \Rightarrow \theta=\sin ^{-1}\left(\frac{1}{s} \sqrt{2 g\left(h-y_{0}\right)}\right)
$$

- Angle required to hit the target, θ :

$$
r=\frac{2 v_{x} v_{y}}{g} \Rightarrow r=\frac{2(s \cos \theta)(s \sin \theta)}{g}=\frac{s^{2}}{g} \sin 2 \theta \Rightarrow \theta=\frac{1}{2} \sin ^{-1} \frac{r g}{s^{2}}
$$

Buoyancy

- Buoyancy force
- Buoyancy is an upward acting force exerted by a fluid that oppose an object's weight.
- Archimedes' principle:
- Any floating object displaces its own weight of fluid.
\square I.e., any object, wholly or partially immersed in a fluid, is buoyed up by a force equal to the weight of the fluid displaced by the object

$$
F_{\text {buosхапу }}=-\rho_{f} / g
$$

ρ_{f} is the density of the fluid
V is the volume of the displaced body of liquid g is the gravitational acceleration

- Drag force
- In fluid dynamics, drag refers to forces that oppose the relative motion of an object through a fluid (a liquid or gas).
- Drag at low velocity (Stoke's drag):

$$
F_{d}=-b v
$$

$b=6 \pi \eta r$ (r : small spherical object radius, η : viscosity)

- Drag at high velocity:
$F_{d}=\frac{1}{2} \rho v^{2} A C_{d}(v \bullet v) \frac{v}{\|v\|}$
F_{d} is the force vector of drag
ρ is the density of the fluid
v is the velocity of the object relative to the fluid
A is the reference area
C_{d} is the drag coefficien t

Kinetic Friction

- Kinetic friction

- Kinetic (or dynamic) friction occurs when two objects are moving relative to each other and rub together (E.g., a sled on the ground).

$$
F_{K}=-\mu_{K} N
$$

N is the normal force
μ_{K} is the coefficien t of kinetic friction

Static Friction

- Static friction
- Static friction is the friction between two solid objects that are not moving relative to each other (E.g..., static friction can prevent an object from sliding down a sloped surface).

$$
F_{S}=-\mu_{S} N
$$

N is the normal force
μ_{S} is the coefficien t of static friction

- The maximum value of static friction, $\mathrm{F}_{\text {max, }}$ when motion is impending, is sometimes referred to as limiting friction.
- Any force larger than $F_{\max }$ overcomes the force of static friction and causes sliding to occur.

$$
\mu_{S} m g \cos \theta=m g \sin \theta \Rightarrow \theta=\tan ^{-1} \mu_{S}
$$

Momentum

- Momentum, P , is the product of the mass and velocity of an object.
- The rate of change of the momentum of a particle is proportional to the resultant force acting on the particle and is in the direction of that force.
$P=m v$
$\Rightarrow \frac{d P}{d t}=m \frac{d v}{d t}=m a=F$
Force = ComputeTotalForce();
Momentum += Force * dt;
Velocity $=$ Momentum / Mass;
Position += Velocity* dt;

Angular Velocity

ㅁ Angular velocity (각속도) is the rate of change of angular displacement

- Angular velocity (radian/second):

$$
\omega(t)=\frac{d}{d t} \theta(t)
$$

- Relationship between angular velocity, ω, and linear velocity (선속도), v
- Given a fixed speed v and radius r, then:
$v(t)=\omega(t) \times r(t)$

Centrifugal Force

ㅁ Linear acceleration (선가속도)

$$
\begin{aligned}
a(t) & =\omega(t) \times r(t)+\omega(t) \times r^{\prime}(t) \\
& =\omega(t) \times r(t)+\omega(t) \times[\omega(t) \times r(t)]
\end{aligned}
$$

- If the angular velocity is constant: $w^{\prime}(\mathrm{t})=0$
$a(t)=\omega(t) \times[\omega(t) \times r(t)]$

- Centrifugal force (원심력), equal and opposite to the tension (장력), drawing a rotating body away from the center of rotation.

$$
F_{c}=-m(\omega(t) \times[\omega(t) \times r(t)])
$$

- Centrifugal force (when $r(t)$ and $w(t)$ is perpendicular):

$$
F_{c}=m \omega^{2} r=\frac{m v^{2}}{r}
$$

Rigid Motion

ㅁ Rigid motion (강체운동)

- A rigid body is an idealization of solid body (e.g. car) of finite size in which deformation is neglected. (only translation \& rotation possible)
ㅁ Rigid body dynamics (강체동역학)
- Linear \& angular position, velocity, acceleration

Force $=$ ComputeTotalForce();
Momentum += Force * dt;
Velocity $=$ Momentum / Mass;
Position += Velocity* dt;
Torque = ComputeTotalTorque();
AngMomentum += Torque * dt;
Matrix I = Matrix*RotInertia*Matrix.Inverse(); // tensor
AngVelocity = I.Inverse()*AngMomentum;
Matrix.Rotate(AngVelocity*dt);

Integration Method

- Euler method
- $v=v_{0}+a^{*} d t$
- $P=P_{0}+v^{*} d t$
float $\mathrm{t}=0$; // 현재 시간
float $\mathrm{dt}=1$; // 시간 간격 (timestamp)
float velocity $=0$; // 초기 속도
float position $=0 ; \quad / /$ 초기 위치
float force $=10$;

Initial : $y^{\prime}(t)=f(t, y(t)), y\left(t_{0}\right)=y_{0}$
Euler Method: $y_{n+1}=y_{n}+h f\left(t_{n}, y_{n}\right)$
float mass $=1$;
float acceleration = force/mass;
while ($\mathrm{t}<=10$) \{
position += velocity * dt;
velocity $+=$ acceleration * $\mathrm{dt}_{\text {; }}$
t += dt;
\}

Integration Method

- Runge-Kutta method

Initial : $y^{\prime}=f(t, y), y\left(t_{0}\right)=y_{0}$
RK4: $y_{n+1}=y_{n}+\frac{h}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right)$
$k_{1}=f\left(t_{n}, y_{n}\right)$
$k_{2}=f\left(t_{n}+\frac{h}{2}, y_{n}+\frac{h}{2} k_{1}\right)$
$k_{3}=f\left(t_{n}+\frac{h}{2}, y_{n}+\frac{h}{2} k_{2}\right)$
$k_{4}=f\left(t_{n}+h, y_{n}+h k_{3}\right)$
slope $=\frac{k_{1}+2 k_{2}+2 k_{3}+k_{4}}{6}$

Springs

- Hooke's Law
- Spring force is proportional to displacement.
$F=-K_{s} d$
K_{s} is the spring constant
d is the displaceme nt from rest length

- Spring is modeled as two point masses, linked by the spring.
- Equal but opposite force is applied to each end.

Integration Method

void RK4Integration(vector3\& pos, vector3\& vel, float t, float dt) $\{$ vector3 k1Vel = vel;
vector3 $\mathrm{k} 1 \mathrm{Acc}=\mathrm{f}(\mathrm{t}$, pos, vel);
vector3 $\mathrm{k} 2 \mathrm{Vel}=\mathrm{vel}+0.5 \mathrm{f} * \mathrm{dt} * \mathrm{k} 1 \mathrm{Acc} ;$
vector3 $\mathrm{k} 2 \mathrm{Acc}=\mathrm{f}(\mathrm{t}+0.5 \mathrm{f} * \mathrm{dt}, \mathrm{pos}+0.5 \mathrm{f} * \mathrm{dt}$ * k1Vel, k 2 Vel$)$; vector3 $\mathrm{k} 3 \mathrm{Vel}=\mathrm{vel}+0.5 \mathrm{f} * \mathrm{dt} * \mathrm{k} 2 \mathrm{Acc}$; vector3 k3Acc $=f(t+0.5 f * d t$, pos $+0.5 f * d t * k 2 V e l, k 3 V e l) ;$ vector3 $\mathrm{k} 4 \mathrm{Vel}=\mathrm{vel}+\mathrm{dt}$ * k 3 Acc ;
vector3 $\mathrm{k} 4 \mathrm{Acc}=\mathrm{f}(\mathrm{t}+\mathrm{dt}, \mathrm{pos}+\mathrm{dt}$ * k3Vel, k4Vel);
pos $+=(\mathrm{dt} / 6.0 \mathrm{f})$ * $(\mathrm{k} 1 \mathrm{Vel}+2.0 \mathrm{f} * \mathrm{k} 2 \mathrm{Vel}+2.0 \mathrm{f} * \mathrm{k} 3 \mathrm{Vel}+\mathrm{k} 4 \mathrm{Vel})$; vel $+=(\mathrm{dt} / 6.0 \mathrm{f})$ * $(\mathrm{k} 1 \mathrm{Acc}+2.0 \mathrm{f} * \mathrm{k} 2 \mathrm{Acc}+2.0 \mathrm{f} * \mathrm{k} 3 \mathrm{Acc}+\mathrm{k} 4 \mathrm{Acc})$
\}
while ($\mathrm{t}<=10$) \{
RK4Integration(position, velocity, t , dt);
$\mathrm{t}+=\mathrm{dt} ;$
\}

Springs

- When spring is stretched, spring force pulls masses together.

- When spring is compressed, spring force pushes masses apart.

Springs

- Vector between the points is used to compute displacement and the direction of force:

Vector3 v = point1 - point0;
float displacement $=$ v.length ()$-$ restLength;
v.normalize();

Vector3 force $=$ springConstant * displacement * v;

Spring Classes

```
class PointMass
{
    float mass;
    float position[3];
    float velocity[3];
    float acceleration[3];
    void ClearForces();
    void AddForce();
    void Update();
    void Freeze();
}
```


Simulating Cloth

class Spring

\{
float pointMass[2];
float springConstant;
float restLength; void Update();
\}

- Cloth can be simulated by a mesh of springs.
- Structural Springs
- Shear Springs (to prevent the flag from shearing)

Simulating Cloth

- Bend Springs (to prevent the flag from folding along the vertices).
- Connect to every other particle.
- Cross-section of cloth

Particle Systems

- First used for graphics in Star Trek II (1983) "Genesis Effect"

Particle Systems

- Particle systems simulate explosions, smoke, fire, spray.
- They are also useful for modeling non-rigid objects such as jelly or cloth (more later).
- Infinitely small objects that have Mass, Position and Velocity
- Motion of a Newtonian particle is governed by:
- $F=m a$ ($F=$ force, $m=$ mass, $a=$ acceleration)
- $a=d v / d t$ (Change of velocity over time- $v=$ velocity; $t=t i m e)$
- $\mathrm{v}=\mathrm{dp} / \mathrm{dt}$ (Change of distance over time- $\mathrm{p}=$ distance or position)
- So a basic data structure for a particle consists of: F, m, v, p.

E.g. a 3D particle might be represented as:

class Particle
\{
float mass;
float position[3];// [3] for x, y, z components
float velocity[3];
float forceAccumulator[3];
\}

- forceAccumulator is here because the particle may be acted upon by several forces- e.g. a soccerball is affected by the force of gravity and an external force like when someone kicks it. (see later)
- Anything that will impart a force on the particle will simply ADD their 3 force components (force in X, Y, Z) to the forceAccumulator.

E.g. 3D Particle System

```
class ParticleSystem
{
    particle *listOfParticles;
    int numParticles;
    void EulerStep();// Discussed later
}
```


Particle Dynamics Algorithm

```
For each particle
{
    Compute the forces that are acting on the particle.
    Compute the acceleration of each particle:
            Since F=ma; a=F/m
        Compute velocity of each particle due to the
        acceleration.
        Compute the new position of the particle based on
        the velocity.
}
```


How do you calculate velocity?

- Recall that:
- $\mathrm{a}=\mathrm{dv} / \mathrm{dt}$ (ie change in velocity over time)
- $v=d p / d t$ (ie change in position over time)
- So to find velocity we need to find the integral of acceleration
- To find the position we need to find the integral of velocity

ㅁ A simple numerical integration method (Euler's Method):

- $\mathrm{Q}(\mathrm{t}+\mathrm{dt})=\mathrm{Q}(\mathrm{t})+\mathrm{dt}{ }^{*} \mathrm{Q}^{\prime}(\mathrm{t})$
- So in our case:
- To find velocity at each simulation timestep:
- $v(t+d t)=v(t)+d t * v^{\prime}(t)=v(t)+d t * a(t) / /$ we know $a(t)$ from $F=$ ma
\square To find the position at each simulation timestep:
- $p(t+d t)=p(t)+d t * p^{\prime}(t)=p(t)+d t *(t) / /$ we know $v(t)$

E.g. Euler Integration EulerStep

- To find velocity at each simulation timestep:
$v(t+d t)=v(t)+d t$ * $a(t) / /$ we know $a(t)$ from $F=m a$
$v_{-} n e x t[x]=v_{-} n o w[x]+d t$ * $a[x] ;$
$v_{-} n e x t[y]=v_{-} n o w[y]+d t$ * $a[y] ;$
v_next[z] = v_now[z] + dt * a[z];
\square To find the position at each simulation timestep:
$p(t+d t)=p(t)+d t * v(t) / /$ we know $v(t)$
$p_{-} n e x t[x]=$ p_now $[x]+d t$ * v_{-}now $[x]$;
p_next[y] = p_now[y] + dt * v_now[y];
p_next[z] = p_now[z] + dt * v_now[z];
- Remember to save away v_next for the next step through the simulation:
- v_now[x] = v_next[x]; v_now[y] = v_next[y]; v_now[z] = v_next[z];

Warning about Euler Method

- Big time steps causes big integration errors.
- You know this has happened because your particles go out of control and fly off into infinity!
- Use small time steps- but note that small time steps chew up a lot of CPU cycles.
- You do not necessarily have to DRAW
every time step. E.g. compute 10 V timesteps and then draw the result:
- There are other better solutions:
- Adaptive Euler Method
- Midpoint Method
- Implicit Euler Method
- Runge Kutta Method

Euler with Adaptive Step Sizes

- Suppose you compute 2 estimates for the velocity at time $t+d t$:
- So v 1 is your velocity estimate for $\mathrm{t}+\mathrm{dt}$
- And $v 2$ is your velocity estimate if you instead took 2 smaller steps of size dt/2 each.
- Both v1 and v2 differ from the true velocity by an order of dt^{2} (because Euler's method is derived from Taylor's Theorem truncated after the 2nd term- see reference in the notes section of this slide)
- By that definition, v1 and v2 also differ from each other by an order of dt^{2}
- So we can write a measure of the current error as: $\mathrm{E}=|\mathrm{v} 1-\mathrm{v} 2|$
- Let $\mathrm{E}_{\text {tolerated }}$ be the error that YOU can tolerate in your game.
- Adaptive step size $\mathrm{dt}_{\text {adapt }}$ is calculated as approximately:

$$
\mathrm{dt}_{\text {adapt }}=\operatorname{Sqrt}\left(\mathrm{E}_{\text {tolerated }} / \mathrm{E}\right) * \mathrm{dt}
$$

- So a bigger tolerated error would allow you to take a bigger step size. And a smaller one would force a smaller step size.

Adaptive Step Sizes

- Ideally we want the step-size (dt) to be as big as possible so we can do as few calculations as possible.
- But with bigger step sizes you incorporate more errors and your system can eventually destabilize.
- So small step sizes are usually needed. Unfortunately smaller step sizes can take a long time.
- You don't want to force a small step size all the time if possible.

Handling Collisions

- Particles often bounce off surfaces.

1. Need to detect when a collision has occurred.
2. Need to determine the correct response to the collision.

Detecting Collision

- General Collision problem is complex:
- Particle/Plane Collision - we will look at this one coz it's easy way to start
- Plane/Plane Collision
- Edge/Plane Collision

Particle/Plane Collisions

- $P=$ any point on the plane
$\square N=$ normal pointing on the "legal" side of the plane.
$\square X=$ position of point we want to examine.
- For (X - P) . N
- If >0 then X is on legal side of plane.
- If $=0$ then X is on the plane
- If <0 then X is on the wrong side of plane

Collision Response - dealing with the case where particle penetrates a plane (and it shouldn't have)

- If particle X is on the wrong side of the plane, move it to the surface of the plane and then compute its collision response.

Collision Response

- N=normal to the collision plane
- $V n=$ normal component of a vector V is

$$
V n=(N . V) V
$$

- $\mathrm{Vt}=$ tangential component is:
$\mathrm{Vt}=\mathrm{V}$ - V n

- $\mathrm{Vb}=$ bounced response:
$V b=(1-K f) * V t-(K r * V n) \quad V t$
- $K r=$ coefficient of restitution: ie how bouncy the surface is.
$1=$ perfectly elastic; $0=$ stick to wall.
ㅁ $\mathrm{Kf}=$ coefficient of friction: ie how much the tangential vector is slowed down after the bounce. $1=$ particle stops in its tracks. $0=$ no friction.

References

- http://www.evl.uic.edu/spiff/class/cs426/Notes/physics.ppt
- http://en.wikipedia.org/wiki/Newton\'s_laws_of_motion
- http://en.wikipedia.org/wiki/Equations_of_motion
- http://en.wikipedia.org/wiki/Projectile
- http://en.wikipedia.org/wiki/Trajectory
- http://en.wikipedia.org/wiki/Buoyancy
- http://en.wikipedia.org/wiki/Drag_(physics)
- http://en.wikipedia.org/wiki/Euler_method
- http://en.wikipedia.org/wiki/RK4
- http://www.gaffer.org/game-physics/

