
Game Software DesignGame Software Design

305900
Fall 2009

10/12/2009
Kyoung Shin Park

Overall Game LoopOverall Game Loop

Overall Game Program Loop
a. Game introduction and interface
b. Game level interface – e.g., select level options like

weapons etcweapons, etc
c. Game level init and loading of game objects
d. Game loopp

i. Handle all aspects of the actual game play (The hard part!)
ii. If player wins, goto reward sequence then goto b.
iii If player loses goto failure sequence then goto a if user givesiii. If player loses, goto failure sequence then goto a if user gives

up, or b. if user wants to try again.

2

Handle all aspects of the actual game
play (ie The hard part!)play (ie. The hard part!)

There are many many ways to approach this...
Will consider 3 important aspects here :

Building Finite State Machines
Maintaining Simulation Constancy in a Game Loop
Multi-Threaded Game Loops

3

Things that need to be done in the
game loopgame loop

Read user input (including any network data)
Calculate user parameters based on user input (e.g.
user moves forward when press “w” key; handle
i i h llid i h ll)situations where user collides with a wall)

Calculate NPC (Non-player Character) AI (Artificial
I t lli)Intelligence)
Draw graphics
H dl d ff tHandle sound effects

4

Finite State Machines are Not Just Those
Useless Things You Learned in Discrete MathUseless Things You Learned in Discrete Math

FSMs are one of the most commonly used
programming structures for games.
Quake is 1 giant FSM.
FSM

States
IInputs
Transitions

0
1

Input X = 1

0 Input Y = 7
Input Z = 3

2
Input X = 2

5

Finite State MachinesFinite State Machines

FSM is a state machine that receives the input signal set
f I f ti P i M hi d th dfrom Information Processing Machine and then produces
output signal.

FSM has a set of states that follow a certain path. A state hasFSM has a set of states that follow a certain path. A state has
transitions to other states, which is caused by events or actions
within a state.

M = (S s I O f g)M = (S, s0, I, O, f, g)
S – a finite set of states, S = {s0, s1, …, sn}
s0 – initial state
I – a finite set of input, I = {i0, i1, …, in}
O – a finite set of output, O = {o0, o1, .., on}
f – S x I -> S (State transition function)f – S x I -> S (State transition function)
g – S -> O (Output function)

FSM M1==M2 (i.e., Equivalent):

6

q
Given the same input sequence, if it produces the same output
sequence, M1 is equivalent to M2

FSMs for Game ProgrammingFSMs for Game Programming

The game, as a whole, is an FSM.
Each phase of the game is an FSM.
Each object in each phase of the game is an FSM.
Hence in totality a game is a Hierarchy of FSM.

Intro

Game
loop

Start Game

Intro
screen

p

ESC key
Player Dies

Game
Over

QUIT
7

screenQUIT

Warning!Warning!

If your entire game isn’t designed as
a hierarchy of FSMs it will be very
difficult to add new features
as the game gets more complex.
Your code will be spaghettiYour code will be spaghetti…

8

Each object / entity in the game loop (e.g.
Tank or Bullet) contains within itself a FSMTank or Bullet) contains within itself, a FSM

Tank FSM Bullet1 FSM

Tank init

Enemy1 FSM

Tank drive

Tank explode

9

Consider the Game LoopConsider the Game Loop

Array(s) of objects/entities that are currently present in
the world and need to be processed.

Enemy1

Bullet1

E 2

Process
Entities Enemy2

Bullet2

Entities
repeatedly

Bullet2

10

Multiple Arrays for Groups of Entities
(e g Tanks and Bullets)(e.g. Tanks and Bullets)

Enemy1 Bullet1 Use arrays so that you game does not

enemyArray bulletArray

Enemy1 Bullet1

Bullet2Enemy2

Enemy3 Bullet3

Use arrays so that you game does not
do alloc and dealloc during runtime.
You cannot afford to have your program

Game Loop:

Enemy3

Enemy4

Bullet3

Bullet4

You cannot afford to have your program
fail if alloc == NULL

Game Loop:
While (not exit)
{

// Go thru enemyArray and process enemies (some may be dormant)
Call HandleEnemies() ;

// Do same for bulletArray
Call HandleBullets()

11Call HandleMyTank()
}

Data Structure & Member Functions
for an FSMfor an FSM

Class FSM {
currentState Usually an enum type
Input1 }Input2 Single value variable or queue of messages
Input3

}
p

Process() Perform all the work of the state machine
};};

12

Process()Process()

Switch (currentState):()
Case State1:

Check inputs or messages on input queue to see if any are
relevant to this state
If YES, do something (and perhaps change state)
Else BreakElse Break

Case State2:
etcetc..

13

E g Bullet in BZE.g. Bullet in BZ
DormantState: // Bullet is dormant

Hide particlesp
Stay in this state until it receives the activation input then set currentState = InitState
Break;

InitState: // Activate the bullet
Init bullet position; Show it on the screenp ;
currentState = MoveState
Break;

MoveState: // Move bullet
Move bullet along trajectoryMove bullet along trajectory
Check if collided with an object
If collided:

If object == tank then tank.input1=“hit” // Tell tank that it is hit so that tank’s FSM can deal with
it.

S ll l d ScurrentState = BulletExplodeState
Break;

BulletExplodeState: // Start explosion effect on bullet
Hide the bullet

bl i l l iEnable particle system explosion
currentState = WaitForExplosionState
Break;

WaitForExplosionState: // Wait till particle explosion is over

14

explosionCounter++;
If explosionCounter = 100 then explosion is over; currentState = DormantState

Maintaining Simulation Constancy in a
Game LoopGame Loop

Problem: Make sure your tank or car moves through
the scene at the same speed no matter how fast your
CPU is.
E i ll i if h h d dEspecially important if you have a non-threaded game
loop where reading inputs, computing, drawing all
take up time at each iteration of the game looptake up time at each iteration of the game loop .
This is a problem ignored by old computer games
because computers didn’t have such a wide range ofbecause computers didn t have such a wide range of
performance characteristics- e.g. 1GHz to 2GhZ .
So when they move for example a car across the y p
screen, the calculations would simply be:

PosX = PosX + some_unit_distance
Wh th bi th it di t th “f t ” th

15

Where the bigger the some_unit_distance the “faster” the car
moved

What You Should Do InsteadWhat You Should Do Instead

Each time thru the game loop takes a certain amount
of time.
That elapsed time (say dt) is needed to determine

h i i d bwhere your entities need to be next.
E.g. Car moving at 30 feet per second .
fIf the game loop takes dt to process, the next time
through the game you need to figure where the new
position of the car isposition of the car is

posX = posX + (speedX * dt)
posY = posY + (speedY * dt)p p (p)
posZ = posZ + (speedZ * dt)

16

Multi-Threaded Game LoopsMulti Threaded Game Loops

Tweening is fine if your game loop runs fast enough
to keep up with the desired FRAME RATE
But some times AI systems can get very complex and

k l itake a long time to compute.
E.g. an intelligent AI system that attempts to form high level
plans for an invasion armyplans for an invasion army .

A game cannot afford to have 1 loop since the slower
components of the loop can easily slow down the p p y
overall responsiveness of the game.
Also modern game systems have multiple cores and
can process things in parallel.

17http://en.wikipedia.org/wiki/Tweening

Multi-Threaded Game LoopsMulti Threaded Game Loops

Hence the need for multiple Threads or Processes for:
Input Loop
Compute Loop
D LDraw Loop
Sound Loop

Want each loop to progress independently and asWant each loop to progress independently and as
fast as possible.
E g If I press the SPACEBAR to fire a bullet, I want toE.g. If I press the SPACEBAR to fire a bullet, I want to
tell the sound loop to play the bullet sound and then
handle it on its own so I can go back to computing
the rest of the game.
Ie: Allow the OS to context switch at regular intervals

h li i
18

so that you application appears to operate at a
constant rate.

Sharing Variables EfficientlySharing Variables Efficiently

Global variables in threads are shared across threads.
Variables in forked processes are local to the process.
Hence in forked processes, variable sharing is done

i h d API (l i U i)using shared memory API (at least in Unix).
Threading and Forking are good BUT you don’t want

th d t h i bl hil th th done thread to change a variable while another thread
is using the variable.
You need to set up MUTEXesYou need to set up MUTEXes.
BUT you do not want mutexes for EVERY variable since
this can slow down your application (due to possiblethis can slow down your application (due to possible
blocks in mutexes).
Solution: TRIPLE BUFFERING

19

Solution: TRIPLE BUFFERING

Triple BufferingTriple Buffering

Init Step – Variables are copied 3 times.

Compute process
reads / updates these

variables

Buffer 1 Buffer 2 Buffer 3

20

Triple BufferingTriple Buffering

Compute and Draw Processes use independent copies

Compute process
reads / updates these

Draw process
reads these

of the data.

/ p
variables

reads these
variables

Buffer 1 Buffer 2 Buffer 3

NOTE: You should only triple buffer variables that you

21
expect to share with more than 1 thread/process- obviously.

Triple BufferingTriple Buffering

Compute process updates its own copy of the variables.

Compute process
reads / updates these

Draw process
d th/ p

variables
reads these
variables

Buffer 1 Buffer 2 Buffer 3

Compute process swaps these buffers

22
when it is done updating the variables

Triple BufferingTriple Buffering

Draw process is done drawing and ready to take in the

Compute process
reads / updates these

Draw process
d h

next update.

reads / updates these
variables

reads these
variables

Buffer 2 Buffer 1 Buffer 3

Draw process swaps buffers

23
and draws the new buffer

Triple Buffer ImplementationTriple Buffer Implementation

Compute & Draw processes
lock Mutex on the array of pointers to the 3 buffersoc ute o t e a ay o po te s to t e 3 bu e s

so that they can safely do the Swap

Array of pointersArray of pointers

Buffer 1 Buffer 2 Buffer 3

24

How I Wrote A Simple Game
Day 1: Testing the WatersDay 1: Testing the Waters

Considered design constraints of the game based on
how little time I had & how little DBPro or Blitz I knew :

1 bullet for user, 1 bullet for enemy, 1 enemy at a time

A l f i ll d l fi hA lot of testing smaller code samples to figure out how
specific capabilities in DBPro worked.
R f d li f l t f h lReferenced online forums a lot for help.
Build progressively more playable game to build
confidence & motivationconfidence & motivation.
Create tank model in 3D modeling tool.
Create driving simulator with camera tracking; tryCreate driving simulator with camera tracking; try
shadows.
Create terrain obstacles- tried my own landscape models

25

Create terrain obstacles tried my own landscape models.

Day 2 : Putting Together All the Basic
Game ElementsGame Elements

Add shooting of bullet – simple sphere
Att t lli i d t ti f h ith l dAttempt collision detection of sphere with landscape –
could not seem to get collision to function correctly so
simplified landscape to cubes
Add explosion effect of bullets (particles) on impacting
cubes and when bullets reach a max distance
Create enemy model in 3D modelingCreate enemy model in 3D modeling.
Add enemy & simple AI to move it around and shoot.
Add simple sounds for firing & bullet impact on cubesAdd simple sounds for firing & bullet impact on cubes.
Handle when I hit enemy

Create enemy explosion animation in 3D modelingy p g
Handle when enemy hits me

Create me exploding in 3D modeling
dd d i l di

26
Add more sounds – ie: me exploding

Day 3 : Tuning & Adding Finishing
TouchesTouches

Tuning – in your case remember to spend a good 2
k t iweeks tuning

Tweak AI – ie when to fire
Better bullet effectBetter bullet effect
Tweak lights
Tweak explosions effect
Add d l tt ti ith di tAdd enemy sound volume attenuation with distance

Finishing Touches
Add scoring scheme & score boardAdd scoring scheme & score board
Add intro & outtro/replay screen
Add background music
Add better randomnessAdd better randomness

Wishlist (if I had more time…)
More simultaneous enemies

27
More bullets
Level progression

TweeningTweening

Main idea:

While(1)

Game loop consists of:
Input/Calculation Part
Drawing Part While(1)

{

Drawing Part

Figure out how much time was spent in 1 loop
of the entire game loop (call this elapsedTime)

Input

Calc

(e.g. elapsedTime = 0.5 seconds)
Decide what is the update rate you want for your
calculations (e.g. 30 updates per second) [Note:

Draw

calculations (e.g. 30 updates per second) [Note:
this is not the same as FRAME-RATE which
typically denotes how fast the graphics refreshes]
Therefore given the elapsedTime figure out how }

Elapsed Time

Therefore given the elapsedTime figure out how
many update calculations you need to perform in
that elapsedTime (for 0.5 second elapsedTime

h ld b bl d 1 l l i
28

you should be able to do 15 calculations)

TweeningTweening

While(1)Do all 15 calculations and save the state ()

{
of the entire world (ie position and
orientation, etc of all objects in the
world) Input

Calc

world).
Find out how much time was taken in
actually doing 15 calculations (call this

Draw

}

CalcTime
actually doing 15 calculations (call this
calcTime).
Figure out the fraction of time it took to }

Elapsed Time

Figure out the fraction of time it took to
do the calculations vs the elapsedTime
(ie calcTime / elapsedTime) – this is the

Previous
State

Saved
State

calcTime / elapsedTimeTWEEN value
You use this tween value to interpolate
b h i f h ld

29

State Statebetween the previous state of the world
and the saved state of the world.

ReferenceReference

http://www.evl.uic.edu/spiff/class/cs426/

30

