

2012/07/24 Kyoung Shin Park Dankook University

Large Public Display

- Digital Information Display (DID)
 - Digital information display (a.k.a. Digital Signage)
 in public spaces, e.g. airport, bank, shopping centers
 - Typically display only; No interactivity
- In Near Future
 - Interactive digital information displays everywhere,
 e.g. digital tables, digital façade, etc
 - High-resolution tiled display
 - Support user interaction

Tiled Display

- High-resolution, scalable, seamless tiled displays can be built using multiple projectors or LCD panels
- Advantages
 - High-resolution, Scalability, Cost efficiency
- Disadvantage
 - Difficult to manage multiple PC clusters
 - Difficult to develop applications for a cluster-based tiled display system
 - Difficult to support user interaction on a tiled display

LambdaVision

- NASA Hyperwall-2
 - 23 x 10 feet wide, 128 panels, 256 million pixels tiled display

Highly Interactive Parallelized Display Space (HIPerSpace)

- Stallion Visualization Cluster
 - 75 high-resolution Dell 30-inch displays, 307 million pixels tiled display by TACC (Texas Advanced Computing Center), U Texas

- Public Information Displays
- Scientific Visualization
- High-resolution Image Viewing
- High-Definition Video Streaming
- Interactive 3D Map
- Presentation & Collaboration
- Command & Control
- Art & Entertainment

Public Information Displays

CityWall(a large multi-touch display in a city center) in Helsinki, Finland

Scientific Visualization - Geographical Data Simulation

RainTable (using LambdaTable) by Electronic Visualization Laboratory at the University of Illinois at Chicago in collaboration with the Department of Geology at the University of Minnesota

http://www.youtube.com/watch?v=yaTovvEp7Ig

High-Resolution Image Viewing

High-Resolution Image Viewing

High-Definition Video Streaming

Google Earth & Interactive 3D Map

 Virtual Prototyping – View models in great detail while maintaining spatial reference

Presentation & Demonstration

Network Computing)
graphical desktop sharing
system, by EVL/UIC

Art & Entertainment

Interactive exploration of an image collection on HiPerSpace, by UC San Diego, Calit2, CRCA (Center for Research in Computing and the Arts) http://www.youtube.com/watch?feature=player_embedded&v=-YIT1qFhJhk

Art & Entertainment

Insect Safari, by DIS/Dankook University

 US Army's next generation artillery command and control environment – 3x3 UltraSlim 9xHD Video Wall

 US Air Force, Global Strike Command – 24x8 inch (9562x3072 resolution)

Video Security System

- There are some framework for tiled display application development.
 - Mostly focused on distributed rendering or scalability
 - Need to support multiple users to interactively view and use the multiple applications on the tiled display simultaneously at the same time
 - Need to support distributed rendering/system programming
 - Need to support various input devices
 - Need to support easy development of the interactive tiled display applications

- WireGL / Chromium, by Stanford University
 - 3D graphics parallel rendering toolkit on a cluster system
 - Distributed rendering mechanism by dividing a large image onto small sized image
 - But, performance degradation by increased image size

- Equalizer, by University of Zurich
 - OpenGL-based parallel rendering middleware by sharing a virtual camera information
 - Support the interface class for event handling
 - But, interface driver needed for a new input device

- GARUDA, by Deemed University
 - Open Scene Graph (OSG)-based tiled display framework targeted for low-end PC clusters
 - But, tightly-coupled with OSG, and only keyboard/mouse interaction

http://cvit.iiit.ac.in/projects/computationalDisplays/

SAGE, by EVL/UIC

- High-resolution video streaming middleware via an extremely fast network
- Use the virtual frame buffer similar to WireGL distributed rendering
- Support multiple application windows execution
- But, require very fast network for network streaming

- CGLX(Cross-Platform Cluster Graphics Library), by UCSD
 - 3D graphics parallel rendering framework for the development of large-scale, collaborative, multi-tile visualization systems
 - CGLX Core Engine API (Distributed parallel rendering of OpenGL applications), CGLX Tools, CGLX Apps, CGLX Knowledge Base

- DisplayCluster software, by TACC
 - Works in Linux and Mac OSX
 - Pixel Streaming (similar to SAGE)
 - Multiple interactive interfaces (Joysticks, Gamepad, iPhone/iPad/iTouch/Android devices, Microsoft Kinect gestures)
 - Scripting (via Python API)

- iTILE Framework
 - Support the construction of interactive tiled display applications
 - Multiple application windows
 - Window manager
 - Various input device on cluster-based tiled display
 - Input processor using shared memory
 - Rendering synchronization and distributed data sharing
 - Message passing
 - Distributed shared memory
 - Tiled display configuration
 - Configuration script

User Interactions

- Graphical User Interface
- Laser Pointer
- 3D Gyro Mouse (Wiimote, 3D wand, joystick, trackball, etc)
- Gesture (Kinect)
- Multi-touch
- Mobile Devices (PDA, Pad, etc)
- Physical Navigation
- etc (ChairMouse)

User Interactions: GUI

- DisplayCluster software GUI
- SAGE GUI
 - Cross-platform GUI window manager for SAGE (move, resize, maximize, minimize)
- SAGE web-based display controller

User Interactions: Laser Pointer

LumiPoint: Multi-user Laser-based interaction on tiled display, by Stanford University

 Laser Pointer on tiled displays, by UC Davis

http://www.idav.ucdavis.edu/publications/print_pub?pub_id=856

User Interactions: 3D Gyro Mouse

http://www.helixsoft.nl/blog/?tag=tiled-display

 3D Wand, joystick, trackball, Wiimote, etc

CCOM tiled display, showing Portsmouth, NH in GeoZui, controlled with Wiimote http://schwehr.org/blog/archives/2009-08.html

SAGE Direct Interaction Manager (DIM)

http://renambot.lakephoto.org/2010/07/direct-wall-interaction-in-sage/

User Interactions: Gestures

Using gestures and the Microsoft Kinect

http://www.youtube.com/watch?v=oFQeszkCaPU

User Interactions: Multi-Touch

Fleet Commander Game, on the Cyber-Common 20-foot wide multi-touch LCD wall by EVL/UIC.

http://www.youtube.com/watch?v=6V oo3TjB2Tw&feature=reImfu

TACC's Multi-touch Display System (12.5 megapixel, 6 monitors, 32-touch point capability using PQLabs)

http://www.youtube.com/watch?v=MFNe1 fv7P4k

User Interactions: Mobile Devices

 20 Foot Virtual Canvas uses iPad as a palette and multitouch for users to paint on the 20 ft virtual canvas, by EVL/UIC

 CGLXTouch, multi-user multi-touch devices (iPads, iPhone, mult-touch table) on high resolution tiled display, by UCSD

User Interactions: Physical Navigation

User Interactions: Chair Mouse

 Leveraging chair rotation for cursor movement on large high-resolution tiled display, by Virginia Tech

http://www.youtube.com/watch?v=xCDTl_gne_c&feature=youtu.be

User Interaction Challenges

- Large Display User Experience, CGA 2005
 - Cursor tracking problem
 - High-density cursor
 - Auto-locator cursor
 - Distal access problem (target acquisition)
 - Missile mouse
 - Drag-and-Pop interaction
 - Bezel problem
 - Mouse Ether
 - OneSpace
 - Window management problem
 - StartAnywhere
 - WinCuts
 - Task management problem

AMA

- Effects of Tiled High-Resolution Display on Basic Visualization and Navigation Tasks, CHI2005
 - 3x3 tiled display (3840 x 3072 pixels) vs. 2x2 display (2560 x 2048) vs. 1 display (1280 x 1024)
 - Small target vs. Medium target vs. Large target
 - High-resolution display (with physical navigation, i.e., no pan-and-zoom virtual navigation) significantly improve performance time

Find a single target task

Identify paired targets task

- Increased Display Size and Resolution Improve Task Performance in Information-Rich Virtual Environments, Gl2006
 - Small-size low-resolution vs. Small-size high-resolution vs.
 Large-size low-resolution vs. Large-size high-resolution display
 - Search task & Comparison task with/without Wayfinding aids in a 3D virtual environment

Figure 10: Subjective rating scores. Error bars show standard errors.

- Move to Improve: Promoting Physical Navigation to Increase User Performance with Large Displays, CHI2007
 - Physical navigation (moving eyes, head, body) vs. virtual navigation (zooming, panning, flying using 3D gyro mouse) on tiled display
 - Navigation task & Search task & Pattern finding task
 - Increased physical navigation on tiled displays correlates with reduced virtual navigation and improved user performance

each task and display width.

Figure 9. Average total X distance of participants in the search

Figure 10. Average total X distance of participants in the pattern task.

- A Multiscale Interaction Technique for Large, High-Resolution Displays, 3DUI 2009
 - Multiscale interaction (automatically changing the scale of 2D cursor according to the user's distance from the display) 4 levels
 - Physical navigation vs. Explicit (using menu on PDA) vs. Lasso (using VisionWand lasso gesture) interaction techniques
 - On multiscale interaction, physical navigation is natural to people although there is no significant difference on completion time among interaction techniques.

- Effects of Interior Bezels of Tiled-Monitor Large Displays on Visual Search, Tunnel Steering, and Target Selection, CH12010
 - 1x1 display vs. 2x2 tiled display vs. 3x3 tiled display
 - Visual search task & Tunnel steering task & Target selection task
 - Bezels are not detrimental to visual search performance but affect user's search strategies.
 - The presence of bezels hinders straight tunnel steering performance and also affects steering behaviors
 - The existence of bezels does not affect target selection performance

Figure 3. Visual search: (a) task – to identify if an IV exists symbols might be displayed apart across an interior bezel(s).

(b) among VI's in a given image, (b) the symbol-split condition – Figure 5. Deflected straight tunnels in (a) $[2\times2]$ and (b) $[3\times3]$ tiled displays.

Figure 9. Target selection task: (a) clicking the start circle at one of the four home positions to start a block of 10 trials, (b) clicking a target circle 640 pixels away from the start position (or previous target position).

- Mid-air Pan-and-Zoom on Wall-sized Displays, CHI2011
 - One-hand vs. Two hands
 - Linear gesture vs. Circular gesture
 - 1D path vs. 2D surface vs. 3D free hand
 - Significant effects were obtained for all three factors: bimanual interaction, linear gestures and a high level of guidance(3D free hand) resulted in significantly improved performance.

Q&A

