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Identity Comments

𝑢 + 𝑣 = 𝑣 + 𝑢 Vector addition commutative law

𝑢 − 𝑣 = 𝑢 + (−𝑣) Vector subtraction

𝑢 + 𝑣 + 𝑤 = 𝑢 + (𝑣 + 𝑤) Vector addition associative law

𝛼(𝛽𝑢) = (𝛼𝛽)𝑢 Scalar-Vector multiplication association

𝛼 𝑢 + 𝑣 = 𝛼𝑢 + 𝛼𝑣
(𝛼 + 𝛽)𝑢 = 𝛼𝑢 + 𝛽𝑢

Scalar-Vector distribution law

𝛼𝑣 = 𝛼 𝑣 Scalar product

𝑣 ≥ 0 The magnitude of vector is nonnegative

𝑢 2 + 𝑣 2 = 𝑢 + 𝑣 2 Pythagorean theorem

𝑢 + 𝑣 ≥ 𝑢 + 𝑣 Vector addition triangle rule

Dot product commutative law

𝑣 = 𝑤 ∙ 𝑣 Vector magnitude using dot product
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𝛼 𝑢 𝑣 = 𝛼𝑢 𝑣 = 𝑢 𝛼𝑣 Vector dot product and scalar product associative law

𝑢 𝑣 + 𝑢 Vector addition and dot product distribution law

𝑢 × 𝑢 = 0 Cross product of the vector itself is 0.

𝑢 × 𝑣 = −(𝑣 × 𝑢) Cross product is anti-commutative.

𝑢 × 𝑣 = (−𝑢) × _(−𝑣)
Cross product of a vector is equal to the cross product of 

inverse of each vector.

𝛼 𝑢 × 𝑣 = (𝛼𝑢) × 𝑣 = 𝑢 × (𝛼𝑣) Scalar and cross product multiplication associative law

𝑢 × 𝑣 + 𝑤 = 𝑢 × 𝑣 + (𝑢 × 𝑤)
Cross product of vector and the addition of two vector 

establish the distribution law

𝑢 𝑢 × 𝑣 = 0
𝑣 𝑢 × 𝑣 = 0

Dot product of any vector with cross product of that vector & 

another vector is 0
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