

Vector space

> The vector space has scalars and vectors.

≻Scalars : α , β , δ [□]

► Vectors : u, v, w

Affine space

 \succ The affine space has point in addition to the vector space.

► Points : P, Q, R

Euclidean space

 \succ In Euclidean space, the concept of distance is added.

3 basic types needed to describe the geometric objects and their relations

- ≻Scalars: α , β , δ □ □
- ≻Points: P, Q, R
- ► Vectors: u, v, w
- Vector space
 - ➤ scalars & vectors
- Affine space
 - \succ Extension of the vector space that includes a point

Scalars. Points. Vectors

Addition identity is 0 and multiplication identity is 1.

$$rac{} \alpha + 0 = 0 + \alpha = \alpha$$

Scalars

 $\triangleright \alpha \cdot 1 = 1 \cdot \alpha = \alpha$

Inverse of addition and inverse of multiplication

 $\alpha + (-\alpha) = 0$ $\alpha \cdot \alpha^{-1} = 1$

▶ Vectors have magnitude (or length_크기) and direction (방향).

Physical quantities, such as velocity or force, are vectors.

Directed line segments used in computer graphics are vectors.

Vectors do not have a fixed position in space.

- Points have a position in space.
- Operations with points and vectors :
 - ► Point-point subtraction creates a vector.
 - ► Point-vector addition creates points.

- Points have a position in space.
- Operations with points and vectors :
 - ► Point-point subtraction creates a vector.
 - ► Point-vector addition creates points.

- Points have a position in space.
- Operations with points and vectors :
 - ► Point-point subtraction creates a vector.
 - ► Point-vector addition creates points.

2D Vector : (x, y)
 3D Vector : (x, y, z)

3D Vector Vector from the origin O(0, 0, 0)to the point P(1, -3, -4)

-Y

-Y

-Y

Vector Operations

zero vector

- vector negation
- vector/scalar multiply
- add & subtract two vectors
- vector magnitude (length)
- normalized vector (=normalization)
- distance formula
- vector product
 - ≻dot product
 - ➤ cross product

Vector Operations

> The three-dimensional zero vector is (0, 0, 0).

The zero vector has <u>zero magnitude</u>.

The zero vector has <u>no direction</u>.

Negative vector

>-(a₁, a₂, a₃, ..., a_n) = (-a₁, -a₂, -a₃, ..., -a_n)
≥ 2D, 3D, 4D vector negation
>-(x, y) = (-x, -y)
>-(x, y, z) = (-x, -y, -z)
>-(x, y, z, w) = (-x, -y, -z, -w)
(2, 2)

·-2, -2)

(0, -3)

Vector scalar multiplication

 $\succ \alpha * (x, y, z) = (\alpha x, \alpha y, \alpha z)$

Vector scale division

$$> 1/\alpha * (x, y, z) = (x/\alpha, y/\alpha, z/\alpha)$$

Example

> 2 * (4, 5, 6) = (8, 10, 12)
>
$$\frac{1}{2}$$
 * (4, 5, 6) = (2, 2.5, 3)
> -3 * (-5, 0, 0.4) = (15, 0, -1.2)
> 3u + v = (3u) + v

Vector scalar multiplication

 $\succ \alpha * (x, y, z) = (\alpha x, \alpha y, \alpha z)$

Vector scale division

$$> 1/\alpha * (x, y, z) = (x/\alpha, y/\alpha, z/\alpha)$$

⋗ Example

 $\triangleright 2 * (4, 5, 6) = (8, 10, 12)$ $\triangleright \frac{1}{2} * (4, 5, 6) = (2, 2.5, 3)$ $\triangleright -3 * (-5, 0, 0.4) = (15, 0, -1.2)$ $\triangleright 3\mathbf{u} + \mathbf{v} = (3\mathbf{u}) + \mathbf{v}$

Vector Addition

► Defined as a head-to-tail axiom

d

Vector Addition

····

► Defined as a head-to-tail axiom

.

d

Vector Subtraction

····⁄Ó

Vector Subtraction

.

Vector Subtraction

Vector Subtraction

.

Vector Addition

Defined as a head-to-tail axiom

 $(x_1, y_1, z_1) + (x_2, y_2, z_2) = (x_1 + x_2, y_1 + y_2, z_1 + z_2)$

 $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$

.....

> The displacement vector from the point P to the point Q is calculated as q - p.

> The displacement vector from the point P to the point Q is calculated as q - p.

> The displacement vector from the point P to the point Q is calculated as q - p.

Vector magnitude(or length)

► Examples

$$\|v\| = \sqrt{v_1^2 + v_2^2 + \dots + v_{n-1}^2 + v_{n-2}^2}$$
$$\|(5, -4, 7)\| = \sqrt{5^2 + (-4)^2 + 7^2}$$
$$= \sqrt{25 + 16 + 49}$$
$$= \sqrt{90}$$
$$= 3\sqrt{10}$$
$$\approx 9.4868$$

 $\|v\|^{2} = |v_{x}|^{2} + |v_{y}|^{2}$ $\sqrt{\|v\|^{2}} = \sqrt{v_{x}^{2} + v_{y}^{2}}$ $\|v\| = \sqrt{v_{x}^{2} + v_{y}^{2}}$

Vector Magnitude

 $\|v\|^{2} = |v_{x}|^{2} + |v_{y}|^{2}$ $\sqrt{\|v\|^{2}} = \sqrt{v_{x}^{2} + v_{y}^{2}}$ $\|v\| = \sqrt{v_{x}^{2} + v_{y}^{2}}$

There is case where you only need the direction of the vector, regardless of the vector length.

- The unit vector has a magnitude of 1.
- The unit vector is also called as <u>normalized vectors or</u> <u>normal.</u>
- > "Normalizing" a vector :

- There is case where you only need the direction of the vector, regardless of the vector length.
- The unit vector has a magnitude of 1.
- The unit vector is also called as <u>normalized vectors or</u> <u>normal.</u>
- "Normalizing" a vector :

$$v_{norm} = \frac{v}{\|v\|}, v \neq 0$$

- The distance between two points P and Q is calculated as follows.
 - ► Vector p
 - ► Vector q
 - ightarrow Displacement vector d = q p
 - \succ Find the length of the vector d.
 - ► distance(P, Q) = || d || = || q p ||

- The distance between two points P and Q is calculated as follows.
 - ► Vector p
 - ► Vector q
 - ightarrow Displacement vector d = q p
 - \succ Find the length of the vector d.
 - ► <u>distance(P, Q) = || d || = || q p ||</u>

Dot product between two vectors : $\mathbf{u} \cdot \mathbf{v} = \mathbf{scalar}$

 $(u_1, u_2, u_3, \dots, u_n) \cdot (v_1, v_2, v_3, \dots, v_n) = u_1 v_1 + u_2 v_2 + \dots + u_{n-1} v_{n-1} + u_n v_n$

$$u \bullet v = \sum_{i=1}^{n} u_i v_i$$

 $u \bullet v = \|u\|^2$

Example

>
$$(4, 6) \cdot (-3, 7) = 4 \cdot (-3) + 6 \cdot 7 = 30$$

> $(3, -2, 7) \cdot (0, 4, -1) = 3 \cdot 0 + (-2) \cdot 4 + 7 \cdot (-1) = -15$

The dot product of the two vectors is the cosine of the angle between two vectors (assuming they are normalized).

The following is the characteristics of the dot product.

 $w = w_{par} + w_{per}$

 $w = w_{par} + w_{per}$

$$w = w_{par} + w_{per}$$

 $w = \alpha v + u$

 $w = w_{par} + w_{per}$

 $w = \alpha v + u$

 $w = w_{par} + w_{per}$

 $w = \alpha v + u$

$$w \cdot v = (\alpha v + u) \cdot v = \alpha v \cdot v + u \cdot v = \alpha v \cdot v$$

 $w = w_{par} + w_{per}$

 $w = \alpha v + u$

$$w \cdot v = (\alpha v + u) \cdot v = \alpha v \cdot v + u \cdot v = \alpha v \cdot v$$
$$\alpha = \frac{w \cdot v}{v \cdot v}$$

 $w = w_{par} + w_{per}$

 $w = \alpha v + u$

$$w \cdot v = (\alpha v + u) \cdot v = \alpha v \cdot v + u \cdot v = \alpha v \cdot v$$
$$\alpha = \frac{w \cdot v}{v \cdot v}$$
$$u = w - \alpha v = w - \frac{w \cdot v}{v \cdot v} v = w - \frac{w \cdot v}{\|v^2\|} v$$

 $w = w_{par} + w_{per}$

 $w = \alpha v + u$

u must be orthogonal to v, $u \cdot v = 0$

 $w \cdot v = (\alpha v + u) \cdot v = \alpha v \cdot v + u \cdot v = \alpha v \cdot v$ $\alpha = \frac{w \cdot v}{v \cdot v}$ $u = w - \alpha v = w - \frac{w \cdot v}{v \cdot v} v = w - \frac{w \cdot v}{\|v^2\|} v$ $\alpha v = w - u = w - w + \frac{w \cdot v}{v \cdot v} v = \frac{w \cdot v}{v \cdot v} v = \frac{w \cdot v}{\|v^2\|}$

If v is a unit vector, then ||v|| = 1

 $w_{per} = u = w - (\underline{w \cdot v})v$

If v is a unit vector, then ||v|| = 1

 $w_{per} = u = \boxed{w - (w \cdot v)v}$ $w_{par} = \alpha v = \boxed{(w \cdot v)v}$

If v is a unit vector, then ||v|| = 1

 $w_{per} = u = \left[w - (w \cdot v)v \right]$ $w_{par} = \alpha v = \left[(w \cdot v)v \right]$

$$cos\theta = \frac{\|\alpha v\|}{\|w\|} \Rightarrow \|\alpha v\| = \|w\|cos\theta$$
$$sin\theta = \frac{\|u\|}{\|w\|} \Rightarrow \|u\| = \|w\|sin\theta$$

≥Cross product (외적) : u x v

 \succ (x₁, y₁, z₁) x (x₂, y₂, z₂) = (y₁z₂ - z₁y₂, z₁x₂ - x₁z₂, x₁y₂ - y₁x₂)

▶ Dot Product (내적) : u•v

u x v

▶ Cross product (외적) : u x v = w

 \succ (x₁, y₁, z₁) x (x₂, y₂, z₂) = (y₁z₂ - z₁y₂, z₁x₂ - x₁z₂, x₁y₂ - y₁x₂)

≫ Dot Product (내적) : u•v = α

▶ Cross product (외적): u x v = w
▶ (x₁, y₁, z₁) x (x₂, y₂, z₂) = (y₁z₂ - z₁y₂, z₁x₂ - x₁z₂, x₁y₂ - y₁x₂)
▶ Dot Product (내적): u•v = α

▶ Cross product (외적): u x v = w
▶ (x₁, y₁, z₁) x (x₂, y₂, z₂) = (y₁z₂ - z₁y₂, z₁x₂ - x₁z₂, x₁y₂ - y₁x₂)
▶ Dot Product (내적): u•v = α

▶ Cross product (외적): u x v = w
▶ (x₁, y₁, z₁) x (x₂, y₂, z₂) = (y₁z₂ - z₁y₂, z₁x₂ - x₁z₂, x₁y₂ - y₁x₂)
▶ Dot Product (내적): u•v = α = -x₁z₂ + z₁x₂

▶ Cross product (외적) : u x v = w

 \succ (x₁, y₁, z₁) x (x₂, y₂, z₂) = (y₁z₂ - z₁y₂, z₁x₂ - x₁z₂, x₁y₂ - y₁x₂)

≫Dot Product (내적) : u•v = α

Example

The magnitude of the cross product between two vectors, |(u x v)|, is the product of the magnitude of each other and the sine of the angle between the two vectors.

$$\left(\|u \times v\| = \|u\| \|v\| \sin\theta \right)$$

Vector Cross Product

> The area of the parallogram is calculated as bh.

- In the left-handed coordinate system, when the vectors u and v move in a clockwise turn, u x v points in the direction toward us, and when moving in a counter-clockwise turn, u x v points in the direction away from us.
- ▶ In the right-handed coordinate system, when the vectors u and v move in a <u>counter-clockwise (반시계)</u> turn, u x v points in the direction toward us, and when moving in a clockwise turn, u x v points in the direction away from us.

Identity	Comments
u + v = v + u	Vector addition commutative law
u - v = u + (-v)	Vector subtraction
(u+v)+w=u+(v+w)	Vector addition associative law
$\alpha(\beta u) = (\alpha\beta)u$	Scalar-Vector multiplication association
$\alpha(u+v) = \alpha u + \alpha v$ $(\alpha + \beta)u = \alpha u + \beta u$	Scalar-Vector distribution law
$\ \alpha v\ = \ \alpha\ \ v\ $	Scalar product
$\ v\ \ge 0$	The magnitude of vector is nonnegative
$ u ^2 + v ^2 = u + v ^2$	Pythagorean theorem
$ u + v \ge u + v $	Vector addition triangle rule
$u \cdot v = v \cdot u$	Dot product commutative law
$\ v\ = \sqrt{w \cdot v}$	Vector magnitude using dot product

.....

Identity Comments Vector addition commutative law u + v = v + uVector subtraction u - v = u + (-v)(u + v) + w = u + (v + w)Vector addition associative law $\alpha(\beta u) = (\alpha\beta)u$ Scalar-Vector multiplication association $\alpha(u+v) = \alpha u + \alpha v$ Scalar-Vector distribution law $(\alpha + \beta)u = \alpha u + \beta u$ $\|\alpha v\| = \|\alpha\| \|v\|$ Scalar product The magnitude of vector is nonnegative $||v|| \geq 0$ $||u||^2 + ||v||^2 = ||u + v||^2$ Pythagorean theorem $||u|| + ||v|| \ge ||u + v||$ Vector addition triangle rule Dot product commutative law $u \cdot v = v \cdot u$ Vector magnitude using dot product $\|v\| = \sqrt{w \cdot v}$

Identity Comments Vector addition commutative law u + v = v + uVector subtraction u - v = u + (-v)(u + v) + w = u + (v + w)Vector addition associative law $\alpha(\beta u) = (\alpha\beta)u$ Scalar-Vector multiplication association $\alpha(u+v) = \alpha u + \alpha v$ Scalar-Vector distribution law $(\alpha + \beta)u = \alpha u + \beta u$ $\|\alpha v\| = \|\alpha\| \|v\|$ Scalar product The magnitude of vector is nonnegative $||v|| \geq 0$ $||u||^2 + ||v||^2 = ||u + v||^2$ Pythagorean theorem $||u|| + ||v|| \ge ||u + v||$ Vector addition triangle rule Dot product commutative law $u \cdot v = v \cdot u$ Vector magnitude using dot product $\|v\| = \sqrt{w \cdot v}$

Identity	Comments
u + v = v + u	Vector addition commutative law
u - v = u + (-v)	Vector subtraction
(u+v)+w=u+(v+w)	Vector addition associative law
$\alpha(\beta u) = (\alpha\beta)u$	Scalar-Vector multiplication association
$\alpha(u+v) = \alpha u + \alpha v$ $(\alpha + \beta)u = \alpha u + \beta u$	Scalar-Vector distribution law
$\ \alpha v\ = \ \alpha\ \ v\ $	Scalar product
$\ v\ \ge 0$	The magnitude of vector is nonnegative
$ u ^2 + v ^2 = u + v ^2$	Pythagorean theorem
$ u + v \ge u + v $	Vector addition triangle rule
$u \cdot v = v \cdot u$	Dot product commutative law
$\ v\ = \sqrt{w \cdot v}$	Vector magnitude using dot product

.....

Identity	Comments
u + v = v + u	Vector addition commutative law
u - v = u + (-v)	Vector subtraction
(u+v)+w=u+(v+w)	Vector addition associative law
$\alpha(\beta u) = (\alpha\beta)u$	Scalar-Vector multiplication association
$\alpha(u+v) = \alpha u + \alpha v$ $(\alpha + \beta)u = \alpha u + \beta u$	Scalar-Vector distribution law
$\ \alpha v\ = \ \alpha\ \ v\ $	Scalar product
$\ v\ \ge 0$	The magnitude of vector is nonnegative
$ u ^2 + v ^2 = u + v ^2$	Pythagorean theorem
$ u + v \ge u + v $	Vector addition triangle rule
$u \cdot v = v \cdot u$	Dot product commutative law
$\ v\ = \sqrt{w \cdot v}$	Vector magnitude using dot product

Identity	Comments
u + v = v + u	Vector addition commutative law
u - v = u + (-v)	Vector subtraction
(u+v)+w=u+(v+w)	Vector addition associative law
$\alpha(\beta u) = (\alpha\beta)u$	Scalar-Vector multiplication association
$\alpha(u+v) = \alpha u + \alpha v$ $(\alpha + \beta)u = \alpha u + \beta u$	Scalar-Vector distribution law
$\ \alpha v\ = \ \alpha\ \ v\ $	Scalar product
$ v \ge 0$	The magnitude of vector is nonnegative
$ u ^2 + v ^2 = u + v ^2$	Pythagorean theorem
$ u + v \ge u + v $	Vector addition triangle rule
$u \cdot v = v \cdot u$	Dot product commutative law
$\ v\ = \sqrt{w \cdot v}$	Vector magnitude using dot product

Identity	Comments
u + v = v + u	Vector addition commutative law
u - v = u + (-v)	Vector subtraction
(u+v)+w=u+(v+w)	Vector addition associative law
$\alpha(\beta u) = (\alpha\beta)u$	Scalar-Vector multiplication association
$ \begin{aligned} \alpha(u+v) &= \alpha u + \alpha v \\ (\alpha+\beta)u &= \alpha u + \beta u \end{aligned} $	Scalar-Vector distribution law
$\ \alpha v\ = \ \alpha\ \ v\ $	Scalar product
$ v \ge 0$	The magnitude of vector is nonnegative
$ u ^2 + v ^2 = u + v ^2$	Pythagorean theorem
$ u + v \ge u + v $	Vector addition triangle rule
$u \cdot v = v \cdot u$	Dot product commutative law
$\ v\ = \sqrt{w \cdot v}$	Vector magnitude using dot product

Identity	Comments
u + v = v + u	Vector addition commutative law
u-v=u+(-v)	Vector subtraction
(u+v)+w=u+(v+w)	Vector addition associative law
$\alpha(\beta u) = (\alpha\beta)u$	Scalar-Vector multiplication association
$\alpha(u+v) = \alpha u + \alpha v$ $(\alpha + \beta)u = \alpha u + \beta u$	Scalar-Vector distribution law
$\ \alpha v\ = \ \alpha\ \ v\ $	Scalar product
$ v \ge 0$	The magnitude of vector is nonnegative
$ u ^2 + v ^2 = u + v ^2$	Pythagorean theorem
$ u + v \ge u + v $	Vector addition triangle rule
$u \cdot v = v \cdot u$	Dot product commutative law
$\ v\ = \sqrt{w \cdot v}$	Vector magnitude using dot product

·····Q

Identity	Comments
u + v = v + u	Vector addition commutative law
u - v = u + (-v)	Vector subtraction
(u+v)+w=u+(v+w)	Vector addition associative law
$\alpha(\beta u) = (\alpha\beta)u$	Scalar-Vector multiplication association
$\alpha(u+v) = \alpha u + \alpha v$ $(\alpha + \beta)u = \alpha u + \beta u$	Scalar-Vector distribution law
$\ \alpha v\ = \ \alpha\ \ v\ $	Scalar product
$\ v\ \ge 0$	The magnitude of vector is nonnegative
$ u ^2 + v ^2 = u + v ^2$	Pythagorean theorem
$ u + v \ge u + v $	Vector addition triangle rule
$u \cdot v = v \cdot u$	Dot product commutative law
$\ v\ = \sqrt{w \cdot v}$	Vector magnitude using dot product

·····Q

Identity	Comments
u + v = v + u	Vector addition commutative law
u - v = u + (-v)	Vector subtraction
(u+v)+w=u+(v+w)	Vector addition associative law
$\alpha(\beta u) = (\alpha\beta)u$	Scalar-Vector multiplication association
$\alpha(u+v) = \alpha u + \alpha v$ $(\alpha + \beta)u = \alpha u + \beta u$	Scalar-Vector distribution law
$\ \alpha v\ = \ \alpha\ \ v\ $	Scalar product
$ v \ge 0$	The magnitude of vector is nonnegative
$ u ^2 + v ^2 = u + v ^2$	Pythagorean theorem
$ u + v \ge u + v $	Vector addition triangle rule
$u \cdot v = v \cdot u$	Dot product commutative law
$\ v\ = \sqrt{w \cdot v}$	Vector magnitude using dot product

Identity	Comments
u + v = v + u	Vector addition commutative law
u-v=u+(-v)	Vector subtraction
(u+v)+w=u+(v+w)	Vector addition associative law
$\alpha(\beta u) = (\alpha\beta)u$	Scalar-Vector multiplication association
$\alpha(u+v) = \alpha u + \alpha v$ $(\alpha + \beta)u = \alpha u + \beta u$	Scalar-Vector distribution law
$\ \alpha v\ = \ \alpha\ \ v\ $	Scalar product
$ v \ge 0$	The magnitude of vector is nonnegative
$ u ^2 + v ^2 = u + v ^2$	Pythagorean theorem
$ u + v \ge u + v $	Vector addition triangle rule
$u \cdot v = v \cdot u$	Dot product commutative law
$\ v\ = \sqrt{w \cdot v}$	Vector magnitude using dot product

·····Q

Identity	Comments
u + v = v + u	Vector addition commutative law
u - v = u + (-v)	Vector subtraction
(u+v)+w=u+(v+w)	Vector addition associative law
$\alpha(\beta u) = (\alpha\beta)u$	Scalar-Vector multiplication association
$\alpha(u+v) = \alpha u + \alpha v$ $(\alpha + \beta)u = \alpha u + \beta u$	Scalar-Vector distribution law
$\ \alpha v\ = \ \alpha\ \ v\ $	Scalar product
$ v \ge 0$	The magnitude of vector is nonnegative
$ u ^2 + v ^2 = u + v ^2$	Pythagorean theorem
$ u + v \ge u + v $	Vector addition triangle rule
$u \cdot v = v \cdot u$	Dot product commutative law
$\ v\ = \sqrt{w \cdot v}$	Vector magnitude using dot product

Identity	Comments	
$\alpha(u \cdot v) = (\alpha u) \cdot v = u \cdot (\alpha v)$	Vector dot product and scalar product associative l	law
$u \cdot (v + w) = u \cdot v + u \cdot w$	Vector addition and dot product distribution law	
$u \times u = 0$	Cross product of the vector itself is 0.	
$u \times v = -(v \times u)$	Cross product is anti-commutative.	
$u \times v = (-u) \times _(-v)$	Cross product of a vector is equal to the cross product of inverse of each vector.	
$\alpha(u \times v) = (\alpha u) \times v = u \times (\alpha v)$	Scalar and cross product multiplication associative law	
$u \times (v + w) = (u \times v) + (u \times w)$	Cross product of vector and the addition of two vector establish the distribution law	
$u \cdot (u \times v) = 0$ $v \cdot (u \times v) = 0$	Dot product of any vector with cross product of that vector & another vector is 0	
Identity	Comments	
--	---	
$\alpha(u \cdot v) = (\alpha u) \cdot v = u \cdot (\alpha v)$	Vector dot product and scalar product associative law	
$u \cdot (v + w) = u \cdot v + u \cdot w$	Vector addition and dot product distribution law	
$u \times u = 0$	Cross product of the vector itself is 0.	
$u \times v = -(v \times u)$	Cross product is anti-commutative.	
$u \times v = (-u) \times _{-}(-v)$	Cross product of a vector is equal to the cross product of inverse of each vector.	
$\alpha(u \times v) = (\alpha u) \times v = u \times (\alpha v)$	Scalar and cross product multiplication associative law	
$u \times (v + w) = (u \times v) + (u \times w)$	Cross product of vector and the addition of two vector establish the distribution law	
$u \cdot (u imes v) = 0$ $v \cdot (u imes v) = 0$	Dot product of any vector with cross product of that vector $\&$ another vector is 0	

.....

Identity	Comments	
$\alpha(u \cdot v) = (\alpha u) \cdot v = u \cdot (\alpha v)$	Vector dot product and scalar product associative la	aw
$u \cdot (v + w) = u \cdot v + u \cdot w$	Vector addition and dot product distribution law	
$u \times u = 0$	Cross product of the vector itself is 0.	
$u \times v = -(v \times u)$	Cross product is anti-commutative.	
$u \times v = (-u) \times _(-v)$	Cross product of a vector is equal to the cross prod inverse of each vector.	uct of
$\alpha(u \times v) = (\alpha u) \times v = u \times (\alpha v)$	Scalar and cross product multiplication associative	law
$u \times (v + w) = (u \times v) + (u \times w)$	Cross product of vector and the addition of two vec establish the distribution law	tor
$u \cdot (u \times v) = 0$ $v \cdot (u \times v) = 0$	Dot product of any vector with cross product of tha another vector is 0	at vector &

Identity	Comments	
$\alpha(u \cdot v) = (\alpha u) \cdot v = u \cdot (\alpha v)$	Vector dot product and scalar product associative la	W
$u \cdot (v + w) = u \cdot v + u \cdot w$	Vector addition and dot product distribution law	
$u \times u = 0$	Cross product of the vector itself is 0.	
$u \times v = -(v \times u)$	Cross product is anti-commutative.	
$u \times v = (-u) \times _(-v)$	Cross product of a vector is equal to the cross produinverse of each vector.	ict of
$\alpha(u \times v) = (\alpha u) \times v = u \times (\alpha v)$	Scalar and cross product multiplication associative la	aw
$u \times (v + w) = (u \times v) + (u \times w)$	Cross product of vector and the addition of two vector establish the distribution law	tor
$u \cdot (u \times v) = 0$ $v \cdot (u \times v) = 0$	Dot product of any vector with cross product of that another vector is 0	t vector &

.....

Identity	Comments
$\alpha(u \cdot v) = (\alpha u) \cdot v = u \cdot (\alpha v)$	Vector dot product and scalar product associative law
$u \cdot (v + w) = u \cdot v + u \cdot w$	Vector addition and dot product distribution law
$u \times u = 0$	Cross product of the vector itself is 0.
$u \times v = -(v \times u)$	Cross product is anti-commutative.
$u \times v = (-u) \times _(-v)$	Cross product of a vector is equal to the cross product of inverse of each vector.
$\alpha(u \times v) = (\alpha u) \times v = u \times (\alpha v)$	Scalar and cross product multiplication associative law
$u \times (v + w) = (u \times v) + (u \times w)$	Cross product of vector and the addition of two vector establish the distribution law
$u \cdot (u \times v) = 0$ $v \cdot (u \times v) = 0$	Dot product of any vector with cross product of that vector & another vector is 0

Identity	Comments	
$\alpha(u \cdot v) = (\alpha u) \cdot v = u \cdot (\alpha v)$	Vector dot product and scalar product associative lav	v
$u \cdot (v + w) = u \cdot v + u \cdot w$	Vector addition and dot product distribution law	
$u \times u = 0$	Cross product of the vector itself is 0.	
$u \times v = -(v \times u)$	Cross product is anti-commutative.	
$u \times v = (-u) \times _(-v)$	Cross product of a vector is equal to the cross product inverse of each vector.	ct of
$\alpha(u \times v) = (\alpha u) \times v = u \times (\alpha v)$	Scalar and cross product multiplication associative la	W
$u \times (v + w) = (u \times v) + (u \times w)$	Cross product of vector and the addition of two vector establish the distribution law	or
$u \cdot (u imes v) = 0$ $v \cdot (u imes v) = 0$	Dot product of any vector with cross product of that another vector is 0	vector &

Identity	Comments	
$\alpha(u \cdot v) = (\alpha u) \cdot v = u \cdot (\alpha v)$	Vector dot product and scalar product associative law	
$u \cdot (v + w) = u \cdot v + u \cdot w$	Vector addition and dot product distribution law	
$u \times u = 0$	Cross product of the vector itself is 0.	
$u \times v = -(v \times u)$	Cross product is anti-commutative.	
$u \times v = (-u) \times _(-v)$	Cross product of a vector is equal to the cross product of inverse of each vector.	
$\alpha(u \times v) = (\alpha u) \times v = u \times (\alpha v)$	Scalar and cross product multiplication associative law	
$u \times (v + w) = (u \times v) + (u \times w)$	Cross product of vector and the addition of two vector establish the distribution law	
$u \cdot (u \times v) = 0$ $v \cdot (u \times v) = 0$	Dot product of any vector with cross product of that vecto another vector is 0	r &

•••••

Identity	Comments	
$\alpha(u \cdot v) = (\alpha u) \cdot v = u \cdot (\alpha v)$	Vector dot product and scalar product associative l	aw
$u \cdot (v + w) = u \cdot v + u \cdot w$	Vector addition and dot product distribution law	
$u \times u = 0$	Cross product of the vector itself is 0.	
$u \times v = -(v \times u)$	Cross product is anti-commutative.	
$u \times v = (-u) \times _(-v)$	Cross product of a vector is equal to the cross prod inverse of each vector.	luct of
$\alpha(u \times v) = (\alpha u) \times v = u \times (\alpha v)$	Scalar and cross product multiplication associative	law
$u \times (v + w) = (u \times v) + (u \times w)$	Cross product of vector and the addition of two vec establish the distribution law	ctor
$u \cdot (u \times v) = 0$ $v \cdot (u \times v) = 0$	Dot product of any vector with cross product of that another vector is 0	at vector &

Identity	Comments	
$\alpha(u \cdot v) = (\alpha u) \cdot v = u \cdot (\alpha v)$	Vector dot product and scalar product associative law	
$u \cdot (v + w) = u \cdot v + u \cdot w$	Vector addition and dot product distribution law	
$u \times u = 0$	Cross product of the vector itself is 0.	
$u \times v = -(v \times u)$	Cross product is anti-commutative.	
$u \times v = (-u) \times (-v)$	Cross product of a vector is equal to the cross product of inverse of each vector.	
$\alpha(u \times v) = (\alpha u) \times v = u \times (\alpha v)$	Scalar and cross product multiplication associative law	
$u \times (v + w) = (u \times v) + (u \times w)$	Cross product of vector and the addition of two vector establish the distribution law	
$u \cdot (u \times v) = 0$ $v \cdot (u \times v) = 0$	Dot product of any vector with cross product of that vector another vector is 0	or &

•••••

Line

► 2points

⋗ Plane

► 3points

3D objects

Defined by a set of triangles

▶Simple convex flat polygons (볼록다각형) ▶hollow (비어 있음)

Geometric Objects

Line is point-vector addition (or subtraction of two points).

Solution Line parametric form : $P(\alpha) = P_0 + \alpha v$

 $> P_0$ is arbitrary point, and v is arbitrary vector

> Points are created on a straight line by changing the parameter.

v = R - Q $P = Q + \alpha v = Q + \alpha (R - Q) = Q + \alpha R - \alpha Q = \alpha R + (1 - \alpha)Q$ $\alpha = 1 \sqrt{R}$ $\alpha = 0$

Line is point-vector addition (or subtraction of two points).

Solution Line parametric form : $P(\alpha) = P_0 + \alpha v$

 $> P_0$ is arbitrary point, and v is arbitrary vector

> Points are created on a straight line by changing the parameter.

v = R - Q $P = Q + \alpha v = Q + \alpha (R - Q) = Q + \alpha R - \alpha Q = \alpha R + (1 - \alpha)Q$ $\alpha = 1$ R $\alpha = 0$ Q

Line is point-vector addition (or subtraction of two points).

Solution Line parametric form : $P(\alpha) = P_0 + \alpha v$

 $> P_0$ is arbitrary point, and v is arbitrary vector

> Points are created on a straight line by changing the parameter.

The line is infinitely long in both directions.

> A line segment is a piece of line between two endpoints. 0 <= α <= 1

> A ray has one end point and continues infinitely in one direction. $\alpha \ge 0$

、D. ク、

Ø

d: distance

n:normal

Line

The line is infinitely long in both directions.

▶ A line segment is a piece of line between two endpoints. 0 <= α <= 1

> A ray has one end point and continues infinitely in one direction. $\alpha \ge 0$

Line

 $p(\alpha) = p_0 + \alpha d \text{ (parametric)}$ y = mx + b (explicit) ax + by = d (implicit) $p \cdot n = d$ $(x, y) \cdot (a, b) = d$

