Gualumanage 그래늑그뜨로그래밈

03 Geometric Objects-Spaces and Matrix(1)

Geometry

Spaces

\$ Vector space
$>$ The vector space has scalars and vectors.
$>$ Scalars: $\alpha, \beta, \delta \square$
\rightarrow Vectors: u, v, w
» Affine space
$>$ The affine space has point in addition to the vector space.
$>$ Points : P, Q, R
» Euclidean space
$>$ In Euclidean space, the concept of distance is added.

Scalars, Points, Vectors
$\otimes 3$ basic types needed to describe the geometric objects and their relations
$>$ Scalars: $\alpha, \beta, \delta \square \square$
\triangleright Points: P, Q, R
\rightarrow Vectors: u, v, w
\$ Vector space
>scalars \& vectors
» Affine space
\triangleright Extension of the vector space that includes a point

Scalars

》Commutative (교환), associative (결합), and distribution (분배) laws are established for addition and multiplication
$\left.\begin{array}{l}\triangleright \alpha+\beta=\beta+\alpha \\ >\alpha \cdot \beta=\beta \cdot \alpha\end{array}\right]$ commutative (교환)
$>\alpha+(\beta+\gamma)=(\alpha+\beta)+\gamma$
$>\alpha \cdot(\beta \cdot \gamma)=(\alpha \cdot \beta) \cdot \gamma \quad$ associative (결합)
$>\alpha \cdot(\beta+\gamma)=(\alpha \cdot \beta)+(\alpha \cdot \gamma)$ - distribution (분배)
®Addition identity is 0 and multiplication identity is 1 .

$$
\begin{aligned}
& >\alpha+0=0+\alpha=\alpha \\
& >\alpha \cdot 1=1 \cdot \alpha=\alpha
\end{aligned}
$$

\geqslant Inverse of addition and inverse of multiplication

$$
\begin{aligned}
& >\alpha+(-\alpha)=0 \\
& >\alpha \cdot \alpha^{-1}=1
\end{aligned}
$$

Vectors

》Vectors have magnitude（or length＿크기）and direction（방향）．
》Physical quantities，such as velocity or force，are vectors．
》 Directed line segments used in computer graphics are vectors．
\rrbracket Vectors do not have a fixed position in space．

Points

®Points have a position in space.
》Operations with points and vectors :
$>$ Point-point subtraction creates a vector.
\triangle Point-vector addition creates points.

Points

®Points have a position in space.
》Operations with points and vectors :
$>$ Point-point subtraction creates a vector.
\triangle Point-vector addition creates points.

Points

®Points have a position in space.
》Operations with points and vectors :
$>$ Point-point subtraction creates a vector.
\triangle Point-vector addition creates points.

Specifying Vectors

(2D Vector: (x, y)
© 3D Vector: ($\mathrm{x}, \mathrm{y}, \mathrm{z}$)

2D Vector

3D Vector
Vector from the origin $O(0,0,0)$
to the point $\mathrm{P}(1,-3,-4)$

Examples of 2D vectors

Vector Operations

》 zero vector
》 vector negation
》 vector／scalar multiply
» add $\&$ subtract two vectors
》 vector magnitude（length）
》normalized vector（＝normalization）
》 distance formula
》 vector product
\rightarrow dot product
－cross product

The Zero Vector

\# The three-dimensional zero vector is $(0,0,0)$.
》 The zero vector has zero magnitude.
\geqslant The zero vector has no direction.

Negating a Vector

\# Every vector \mathbf{v} has a negative vector $\mathbf{- v}: \quad \mathrm{v}+(-\mathrm{v})=0$
$»$ Negative vector

$$
\triangleright-\left(a_{1}, a_{2}, a_{3}, \ldots, a_{n}\right)=\left(-a_{1},-a_{2},-a_{3}, \ldots,-a_{n}\right)
$$

$\geqslant 2 \mathrm{D}, 3 \mathrm{D}, 4 \mathrm{D}$ vector negation

$$
\Delta-(x, y)=(-x,-y)
$$

$$
\triangleright-(x, y, z)=(-x,-y,-z)
$$

$$
>-(x, y, z, w)=(-x,-y,-z,-w)
$$

Vector-Scalar Multiplication

® Vector scalar multiplication
$>\alpha^{*}(\mathrm{x}, \mathrm{y}, \mathrm{z})=(\alpha \mathrm{x}, \alpha \mathrm{y}, \alpha \mathrm{z})$
》Vector scale division
$>1 / \alpha *(\mathrm{x}, \mathrm{y}, \mathrm{z})=(\mathrm{x} / \alpha, \mathrm{y} / \alpha, \mathrm{z} / \alpha)$
» Example
$\Delta 2^{*}(4,5,6)=(8,10,12)$
$>1 / 2 *(4,5,6)=(2,2.5,3)$
$>-3^{*}(-5,0,0.4)=(15,0,-1.2)$
$\rightarrow 3 \mathbf{u}+\mathbf{v}=(3 \mathbf{u})+\mathbf{v}$

Vector-Scalar Multiplication

\# Vector scalar multiplication
$>\alpha^{*}(\mathrm{x}, \mathrm{y}, \mathrm{z})=(\alpha \mathrm{x}, \alpha \mathrm{y}, \alpha \mathrm{z})$
》Vector scale division

$$
\triangleright 1 / \alpha *(\mathrm{x}, \mathrm{y}, \mathrm{z})=(\mathrm{x} / \alpha, \mathrm{y} / \alpha, \mathrm{z} / \alpha)
$$

』 Example

$>2 *(4,5,6)=(8,10,12)$
$\Delta 1 / 2 *(4,5,6)=(2,2.5,3)$
$>-3^{*}(-5,0,0.4)=(15,0,-1.2)$
$>3 \mathbf{u}+\mathbf{v}=(3 \mathbf{u})+\mathbf{v}$

Vector Addition and Subtraction

》 Vector Addition
$>$ Defined as a head-to-tail axiom

$$
\begin{aligned}
& \left(x_{1}, y_{1}, z_{1}\right)+\left(x_{2}, y_{2}, z_{2}\right)=\left(x_{1}+x_{2}, y_{1}+y_{2}, z_{1}+z_{2}\right) \\
& \mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{-} \mathbf{-} \text { - 교환법칙 }
\end{aligned}
$$

Vector Addition and Subtraction

》 Vector Addition
$>$ Defined as a head-to-tail axiom

$$
\begin{aligned}
& \left(x_{1}, y_{1}, z_{1}\right)+\left(x_{2}, y_{2}, z_{2}\right)=\left(x_{1}+x_{2}, y_{1}+y_{2}, z_{1}+z_{2}\right) \\
& \mathbf{u}+-\mathbf{v}=\mathbf{v}+-\mathbf{u}-\text { 교환법칙 }
\end{aligned}
$$

Vector Addition and Subtraction
Vector Subtraction

$$
\triangleright\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)-\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)=\left(\mathrm{x}_{1}-\mathrm{x}_{2}, \mathrm{y}_{1}-\mathrm{y}_{2}, \mathrm{z}_{1}-\mathrm{z}_{2}\right)
$$

$\mathbf{u}-\mathbf{v}=-(\mathbf{v}-\mathbf{u}) \quad-$ 교환법칙의 역이 성립

Vector Addition and Subtraction

』 Vector Subtraction
$>\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)-\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)=\left(\mathrm{x}_{1}-\mathrm{x}_{2}, \mathrm{y}_{1}-\mathrm{y}_{2}, \mathrm{z}_{1}-\mathrm{z}_{2}\right)$
$\mathbf{u - v}=-(\mathbf{v}-\mathbf{u}) \quad$ - 교환법칙의 역이 성립

Vector Addition and Subtraction

』 Vector Subtraction
$>\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)-\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)=\left(\mathrm{x}_{1}-\mathrm{x}_{2}, \mathrm{y}_{1}-\mathrm{y}_{2}, \mathrm{z}_{1}-\mathrm{z}_{2}\right)$
$\mathbf{u - v}=-(\mathbf{v}-\mathbf{u}) \quad$ - 교환법칙의 역이 성립

Vector Addition and Subtraction
Vector Subtraction

$$
\triangleright\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)-\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)=\left(\mathrm{x}_{1}-\mathrm{x}_{2}, \mathrm{y}_{1}-\mathrm{y}_{2}, \mathrm{z}_{1}-\mathrm{z}_{2}\right)
$$

$\mathbf{u}-\mathbf{v}=-(\mathbf{v}-\mathbf{u}) \quad-$ 교환법칙의 역이 성립

Vector Addition and Subtraction
Vector Addition
$>$ Defined as a head-to-tail axiom

$$
\begin{aligned}
& \left(x_{1}, y_{1}, z_{1}\right)+\left(x_{2}, y_{2}, z_{2}\right)=\left(x_{1}+x_{2}, y_{1}+y_{2}, z_{1}+z_{2}\right) \\
& \mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}
\end{aligned}
$$

Vector Addition and Subtraction

》 The displacement vector from the point P to the point Q is calculated as $\mathrm{q}-\mathrm{p}$.

Vector Addition and Subtraction

$»$ The displacement vector from the point P to the point Q is calculated as $\mathrm{q}-\mathrm{p}$.

Vector Addition and Subtraction

$»$ The displacement vector from the point P to the point Q is calculated as $\mathrm{q}-\mathrm{p}$.

Vector Magnitude(Length)

\$ Vector magnitude(or length)

- Examples

$$
\begin{aligned}
&\|v\|=\sqrt{v_{1}^{2}+v_{2}^{2}+\cdots+v_{n-1}^{2}+v_{n-2}^{2}} \\
&=\sqrt{25+16+49} \\
&=\sqrt{90} \\
&=3 \sqrt{10} \\
& \approx 9.4868
\end{aligned}
$$

Vector Magnitude

$$
\begin{aligned}
& \|v\|^{2}=\left|v_{x}\right|^{2}+\left|v_{y}\right|^{2} \\
& \sqrt{\|v\|^{2}}=\sqrt{v_{x}^{2}+v_{y}^{2}} \\
& \|v\|=\sqrt{v_{x}^{2}+v_{y}^{2}}
\end{aligned}
$$

Vector Magnitude

Normalized Vectors

\$There is case where you only need the direction of the vector, regardless of the vector length.
\geqslant The unit vector has a magnitude of 1.
» The unit vector is also called as normalized vectors or normal.
© "Normalizing" a vector :

Normalized Vectors

\$There is case where you only need the direction of the vector, regardless of the vector length.
\geqslant The unit vector has a magnitude of 1.
» The unit vector is also called as normalized vectors or normal.
© "Normalizing" a vector :

$$
v_{\text {norm }}=\frac{v}{\|v\|}, v \neq 0
$$

Distance

》 The distance between two points P and Q is calculated as follows.
\rightarrow Vector p
\rightarrow Vector q
\triangleright Displacement vector $\mathrm{d}=\mathrm{q}-\mathrm{p}$
$>$ Find the length of the vector d .
\rightarrow distance $(P, Q)=\|d\|=\|q-p\|$

Distance

》 The distance between two points P and Q is calculated as follows.
\rightarrow Vector p
\rightarrow Vector q
\triangleright Displacement vector $\mathrm{d}=\mathrm{q}-\mathrm{p}$
$>$ Find the length of the vector d .
\rightarrow distance $(P, Q)=\|d\|=\|q-p\|$

Vector Dot Product
\#Dot product between two vectors: $u \bullet v=$ scalar

$$
\left(u_{1}, u_{2}, u_{3}, \ldots, u n\right) \cdot\left(v_{1}, v_{2}, v_{3}, \ldots, v n\right)=u_{1} v_{1}+u_{2} v_{2}+\ldots+u_{n-1} v_{n-1}+u_{n} v_{n}
$$

$$
u \cdot v=\sum_{i=1}^{n} u_{i} v_{i}
$$

$$
u \bullet v=\|u\|^{2}
$$

© Example
$\Rightarrow(4,6) \cdot(-3,7)=4$ * $(-3)+6 * 7=30$
$\triangleright(3,-2,7) \cdot(0,4,-1)=3 * 0+(-2) * 4+7 *(-1)=-15$

Vector Dot Product

》 The dot product of the two vectors is the cosine of the angle between two vectors (assuming they are normalized).
$u \cdot v=\|u\|\|v\| \cos \theta$
$\theta=\operatorname{acos}\left(\frac{u \bullet v}{\|u\|\|v\|}\right)$

$\theta=\operatorname{acos}(u \bullet v)$, where u, v are $\frac{\text { unit vectors }}{\text { Length }=1}$

Dot Product as Measurement of Angle

\$The following is the characteristics of the dot product.

Projecting One Vector onto Another
® Given two vectors, w and v, one vector w can be divided into parallel and orthogonal to the other vector v.

$$
w=w_{p a r}+w_{p e r}
$$

Projecting One Vector onto Another

® Given two vectors, w and v , one vector w can be divided into parallel and orthogonal to the other vector v.

$$
w=w_{p a r}+w_{p e r}
$$

Projecting One Vector onto Another

® Given two vectors, w and v, one vector w can be divided into parallel and orthogonal to the other vector v.

$$
\begin{aligned}
& w=w_{p a r}+w_{p e r} \\
& w=\alpha v+u
\end{aligned}
$$

Projecting One Vector onto Another

® Given two vectors, w and v, one vector w can be divided into parallel and orthogonal to the other vector v.

$$
\begin{aligned}
& w=w_{p a r}+w_{p e r} \\
& w=\alpha v+u
\end{aligned}
$$

u must be orthogonal to $v, u \cdot v=0$

Projecting One Vector onto Another

® Given two vectors, w and v, one vector w can be divided into parallel and orthogonal to the other vector v.

$$
\begin{aligned}
& w=w_{p a r}+w_{p e r} \\
& w=\alpha v+u
\end{aligned}
$$

u must be orthogonal to $v, u \cdot v=0$

$$
w \cdot v=(\alpha v+u) \cdot v=\alpha v \cdot v+u \cdot v=\alpha v \cdot v
$$

Projecting One Vector onto Another

® Given two vectors, w and v, one vector w can be divided into parallel and orthogonal to the other vector v.

$$
\begin{aligned}
& w=w_{p a r}+w_{p e r} \\
& w=\alpha v+u
\end{aligned}
$$

u must be orthogonal to $v, u \cdot v=0$
$w \cdot v=(\alpha v+u) \cdot v=\alpha v \cdot v+u \cdot v=\alpha v \cdot v$

$$
\alpha=\frac{w \cdot v}{v \cdot v}
$$

Projecting One Vector onto Another

» Given two vectors, w and v , one vector w can be divided into parallel and orthogonal to the other vector v.

$$
\begin{aligned}
& w=w_{p a r}+w_{p e r} \\
& w=\alpha v+u
\end{aligned}
$$

u must be orthogonal to $v, u \cdot v=0$
$w \cdot v=(\alpha v+u) \cdot v=\alpha v \cdot v+u \cdot v=\alpha v \cdot v$
$\alpha=\frac{w \cdot v}{v \cdot v}$
$u=w-\alpha v=w-\frac{w \cdot v}{v \cdot v} v=w-\frac{w \cdot v}{\left\|v^{2}\right\|} v$

Projecting One Vector onto Another

® Given two vectors, w and v, one vector w can be divided into parallel and orthogonal to the other vector v.

$$
\begin{aligned}
& w=w_{p a r}+w_{p e r} \\
& w=\alpha v+u
\end{aligned}
$$

u must be orthogonal to $v, u \cdot v=0$
$w \cdot v=(\alpha v+u) \cdot v=\alpha v \cdot v+u \cdot v=\alpha v \cdot v$
$\alpha=\frac{w \cdot v}{v \cdot v}$
$u=w-\alpha v=w-\frac{w \cdot v}{v \cdot v} v=w-\frac{w \cdot v}{\left\|v^{2}\right\|} v$
$\alpha v=w-u=w-w+\frac{w \cdot v}{v \cdot v} v=\frac{w \cdot v}{v \cdot v} v=\frac{w \cdot v}{\left\|v^{2}\right\|}$

Projecting One Vector onto Another

® Given two vectors, w and v , one vector w can be divided into parallel and orthogonal to the other vector v .

$$
\text { If } v \text { is a unit vector, then }\|v\|=1
$$

$$
w_{p e r}=u=w-\frac{(w \cdot v) v}{L_{=}=1}
$$

Projecting One Vector onto Another

® Given two vectors, w and v, one vector w can be divided into parallel and orthogonal to the other vector v .

$$
\text { If } v \text { is a unit vector, then }\|v\|=1
$$

$$
w_{p e r}=u=w-(w \cdot v) v
$$

$$
w_{p a r}=\alpha v=(w \cdot v) v
$$

Projecting One Vector onto Another

® Given two vectors, w and v, one vector w can be divided into parallel and orthogonal to the other vector v .

$$
\text { If } v \text { is a unit vector, then }\|v\|=1
$$

$$
\begin{aligned}
& w_{\text {per }}=u=w-(w \cdot v) v \\
& w_{\text {par }}=\alpha v=(w \cdot v) v
\end{aligned}
$$

$$
\begin{aligned}
& \cos \theta=\frac{\|\alpha v\|}{\|w\|} \Rightarrow\|\alpha v\|=\|w\| \cos \theta \\
& \sin \theta=\frac{\|u\|}{\|w\|} \Rightarrow\|u\|=\|w\| \sin \theta
\end{aligned}
$$

Vector Cross Product

》 Cross product (외적) : u x v

$$
\triangleright\left(x_{1}, y_{1}, z_{1}\right) x\left(x_{2}, y_{2}, z_{2}\right)=\left(y_{1} z_{2}-z_{1} y_{2}, z_{1} x_{2}-x_{1} z_{2}, x_{1} y_{2}-y_{1} x_{2}\right)
$$

》 Dot Product (내적) : u•v

Vector Cross Product

》Cross product (외적) : uxv=w

$$
\Delta\left(x_{1}, y_{1}, z_{1}\right) x\left(x_{2}, y_{2}, z_{2}\right)=\left(y_{1} z_{2}-z_{1} y_{2}, z_{1} x_{2}-x_{1} z_{2}, x_{1} y_{2}-y_{1} x_{2}\right)
$$

》 Dot Product (내적) : u•v = α

Vector Cross Product

»Cross product (외적) : uxv=w

$$
\triangleright\left(x_{1}, y_{1}, z_{1}\right) x\left(x_{2}, y_{2}, z_{2}\right)=\left(y_{1} z_{2}-z_{1} y_{2}, z_{1} x_{2}-x_{1} z_{2}, x_{1} y_{2}-y_{1} x_{2}\right)
$$

『Dot Product (내적) : u•v = α

Vector Cross Product

® Cross product (외적) : uxv=w

$$
\triangleright\left(x_{1}, y_{1}, z_{1}\right) \times\left(x_{2}, y_{2}, z_{2}\right)=\left(y_{1} z_{2}-z_{1} y_{2}, z_{1} x_{2}-x_{1} z_{2}, x_{1} y_{2}-y_{1} x_{2}\right)
$$

』Dot Product (내적) : u•v = α

$\left(z_{1}\right)$
Z_{2}

Vector Cross Product

»Cross product (외적) : uxv=w
$>\left(x_{1}, y_{1}, z_{1}\right) \times\left(x_{2}, y_{2}, z_{2}\right)=\left(y_{1} z_{2}-z_{1} y_{2}, z_{1} x_{2}-x_{1} z_{2}, x_{1} y_{2}-y_{1} x_{2}\right)$
》Dot Product (내적) : u•v = $\alpha \quad=-x_{1} \mathrm{z}_{2}+\mathrm{z}_{1} \mathrm{x}_{2}$

Vector Cross Product

》Cross product（외적）：uxv＝w

$$
\triangleright\left(x_{1}, y_{1}, z_{1}\right) x\left(x_{2}, y_{2}, z_{2}\right)=\left(y_{1} z_{2}-z_{1} y_{2}, z_{1} x_{2}-x_{1} z_{2}, x_{1} y_{2}-y_{1} x_{2}\right)
$$

》 Dot Product（내적）：u•v＝α
》Example

$$
\begin{aligned}
> & (1,3,-4) \times(2,-5,8) \\
& =(3 * 8-(-4) *(-5),(-4) * 2-1 * 8,1 *(-5)-3 * 2) \\
& =(4,-16,-11)
\end{aligned}
$$

Vector Cross Product

\geqslant The magnitude of the cross product between two vectors, $|(u \times v)|$, is the product of the magnitude of each other and the sine of the angle between the two vectors.
$\|u \times v\|=\|u\|\|v\| \sin \theta$

Vector Cross Product

$»$ The area of the parallogram is calculated as bh.

$$
\begin{aligned}
A & =b h \\
& =b(a \sin \theta) \\
& =\|a\|\|\mathrm{b}\| \sin \theta \\
& =\|a \times \mathrm{b}\|
\end{aligned}
$$

Vector Cross Product

\geqslant In the left-handed coordinate system, when the vectors u and v move in a clockwise turn, $u x v$ points in the direction toward us, and when moving in a counter-clockwise turn, $u \times v$ points in the direction away from us.
\geqslant In the right-handed coordinate system, when the vectors u and v move in a counter-clockwise (반시계) turn, $u x v$ points in the direction toward us, and when moving in a clockwise turn, $u x v$ points in the direction away from us.

Left-handed Coordinates

Right-handed Coordinates

Linear Algebra Identities

Identity	Comments									
$u+v=v+u$	Vector addition commutative law									
$u-v=u+(-v)$	Vector subtraction									
$(u+v)+w=u+(v+w)$	Vector addition associative law									
$\alpha(\beta u)=(\alpha \beta) u$	Scalar-Vector multiplication association									
$\alpha(u+v)=\alpha u+\alpha v$										
$(\alpha+\beta) u=\alpha u+\beta u$		$)$ Scalar-Vector distribution law \quad	$\\|\alpha v\\|=\\|\alpha\\|\\|v\\|$	Scalar product						
:---:	:---									
$\\|v\\| \geq 0$	The magnitude of vector is nonnegative									
$\\|u\\|^{2}+\\|v\\|^{2}=\\|u+v\\|^{2}$	Pythagorean theorem									
$\\|u\\|+\\|v\\| \geq\\|u+v\\|$	Vector addition triangle rule									
$u \cdot v=v \cdot u$	Dot product commutative law									
$\\|v\\|=\sqrt{w \cdot v}$	Vector magnitude using dot product									

Linear Algebra Identities

Identity	Comments						
$u+v=v+u$	Vector addition commutative law						
$u-v=u+(-v)$	Vector subtraction						
$(u+v)+w=u+(v+w)$	Vector addition associative law						
$\alpha(\beta u)=(\alpha \beta) u$	Scalar-Vector multiplication association						
$\alpha(u+v)=\alpha u+\alpha v$							
$(\alpha+\beta) u=\alpha u+\beta u$	Scalar-Vector distribution law						
$\\|\alpha v\\|=\\|\alpha\\|\\|v\\|$	Scalar product						
$\\|v\\| \geq 0$	The magnitude of vector is nonnegative						
$\\|u\\|^{2}+\\|v\\|^{2}=\\|u+v\\|^{2}$	Pythagorean theorem						
$\\|u\\|+\\|v\\| \geq\\|u+v\\|$	Vector addition triangle rule						
$u \cdot v=v \cdot u$	Dot product commutative law						
$\\|v\\|=\sqrt{w \cdot v}$	Vector magnitude using dot product						

Linear Algebra Identities

Identity	Comments						
$u+v=v+u$	Vector addition commutative law						
$u-v=u+(-v)$	Vector subtraction						
$(u+v)+w=u+(v+w)$	Vector addition associative law						
$\alpha(\beta u)=(\alpha \beta) u$	Scalar-Vector multiplication association						
$\begin{aligned} & \alpha(u+v)=\alpha u+\alpha v \\ & (\alpha+\beta) u=\alpha u+\beta u \end{aligned}$	Scalar-Vector distribution law						
$\\|\alpha v\\|=\\|\alpha\\|\\|v\\|$	Scalar product						
$\\|v\\| \geq 0$	The magnitude of vector is nonnegative						
$\\|u\\|^{2}+\\|v\\|^{2}=\\|u+v\\|^{2}$	Pythagorean theorem						
$\\|u\\|+\\|v\\| \geq\\|u+v\\|$	Vector addition triangle rule						
$u \cdot v=v \cdot u$	Dot product commutative law						
$\\|v\\|=\sqrt{w \cdot v}$	Vector magnitude using dot product						

Linear Algebra Identities

Identity	Comments						
$u+v=v+u$	Vector addition commutative law						
$u-v=u+(-v)$	Vector subtraction						
$(u+v)+w=u+(v+w)$	Vector addition associative law						
$\alpha(\beta u)=(\alpha \beta) u$	Scalar-Vector multiplication association						
$\alpha(u+v)=\alpha u+\alpha v$							
$(\alpha+\beta) u=\alpha u+\beta u$	Scalar-Vector distribution law						
$\\|\alpha v\\|=\\|\alpha\\|\\|v\\|$	Scalar product						
$\\|v\\| \geq 0$	The magnitude of vector is nonnegative						
$\\|u\\|^{2}+\\|v\\|^{2}=\\|u+v\\|^{2}$	Pythagorean theorem						
$\\|u\\|+\\|v\\| \geq\\|u+v\\|$	Vector addition triangle rule						
$u \cdot v=v \cdot u$	Dot product commutative law						
$\\|v\\|=\sqrt{w \cdot v}$	Vector magnitude using dot product						

Linear Algebra Identities

Identity	Comments									
$u+v=v+u$	Vector addition commutative law									
$u-v=u+(-v)$	Vector subtraction									
$(u+v)+w=u+(v+w)$	Vector addition associative law									
$\alpha(\beta u)=(\alpha \beta) u$	Scalar-Vector multiplication association									
$\alpha(u+v)=\alpha u+\alpha v$										
$(\alpha+\beta) u=\alpha u+\beta u$		$]$ Scalar-Vector distribution law \quad	$\\|\alpha v\\|=\\|\alpha\\|\\|v\\|$	Scalar product						
:---:	:---									
$\\|v\\| \geq 0$	The magnitude of vector is nonnegative									
$\\|u\\|^{2}+\\|v\\|^{2}=\\|u+v\\|^{2}$	Pythagorean theorem									
$\\|u\\|+\\|v\\| \geq\\|u+v\\|$	Vector addition triangle rule									
$u \cdot v=v \cdot u$	Dot product commutative law									
$\\|v\\|=\sqrt{w \cdot v}$	Vector magnitude using dot product									

Linear Algebra Identities

Identity	Comments						
$u+v=v+u$	Vector addition commutative law						
$u-v=u+(-v)$	Vector subtraction						
$(u+v)+w=u+(v+w)$	Vector addition associative law						
$\alpha(\beta u)=(\alpha \beta) u$	Scalar-Vector multiplication association						
$\alpha(u+v)=\alpha u+\alpha v$							
$(\alpha+\beta) u=\alpha u+\beta u$	Scalar-Vector distribution law						
$\\|\alpha v\\|=\\|\alpha\\|\\|v\\|$	Scalar product						
$\\|v\\| \geq 0$	The magnitude of vector is nonnegative						
$\\|u\\|^{2}+\\|v\\|^{2}=\\|u+v\\|^{2}$	Pythagorean theorem						
$\\|u\\|+\\|v\\| \geq\\|u+v\\|$	Vector addition triangle rule						
$u \cdot v=v \cdot u$	Dot product commutative law						
$\\|v\\|=\sqrt{w \cdot v}$	Vector magnitude using dot product						

Linear Algebra Identities

Identity	Comments						
$u+v=v+u$	Vector addition commutative law						
$u-v=u+(-v)$	Vector subtraction						
$(u+v)+w=u+(v+w)$	Vector addition associative law						
$\alpha(\beta u)=(\alpha \beta) u$	Scalar-Vector multiplication association						
$\alpha(u+v)=\alpha u+\alpha v$							
$(\alpha+\beta) u=\alpha u+\beta u$	Scalar-Vector distribution law						
$\\|\alpha v\\|=\\|\alpha\\|\\|v\\|$	Scalar product						
$\\|v\\| \geq 0$	The magnitude of vector is nonnegative						
$\\|u\\|^{2}+\\|v\\|^{2}=\\|u+v\\|^{2}$	Pythagorean theorem						
$\\|u\\|+\\|v\\| \geq\\|u+v\\|$	Vector addition triangle rule						
$u \cdot v=v \cdot u$	Dot product commutative law						
$\\|v\\|=\sqrt{w \cdot v}$	Vector magnitude using dot product						

Linear Algebra Identities

Identity	Comments									
$u+v=v+u$	Vector addition commutative law									
$u-v=u+(-v)$	Vector subtraction									
$(u+v)+w=u+(v+w)$	Vector addition associative law									
$\alpha(\beta u)=(\alpha \beta) u$	Scalar-Vector multiplication association									
$\alpha(u+v)=\alpha u+\alpha v$										
$(\alpha+\beta) u=\alpha u+\beta u$		$]$ Scalar-Vector distribution law \quad	$\\|\alpha v\\|=\\|\alpha\\|\\|v\\|$	Scalar product						
:---:	:---									
$\\|v\\| \geq 0$	The magnitude of vector is nonnegative									
$\\|u\\|^{2}+\\|v\\|^{2}=\\|u+v\\|^{2}$	Pythagorean theorem									
$\\|u\\|+\\|v\\| \geq\\|u+v\\|$	Vector addition triangle rule									
$u \cdot v=v \cdot u$	Dot product commutative law									
$\\|v\\|=\sqrt{w \cdot v}$	Vector magnitude using dot product									

Linear Algebra Identities

Identity	Comments									
$u+v=v+u$	Vector addition commutative law									
$u-v=u+(-v)$	Vector subtraction									
$(u+v)+w=u+(v+w)$	Vector addition associative law									
$\alpha(\beta u)=(\alpha \beta) u$	Scalar-Vector multiplication association									
$\alpha(u+v)=\alpha u+\alpha v$										
$(\alpha+\beta) u=\alpha u+\beta u$		$]$ Scalar-Vector distribution law \quad	$\\|\alpha v\\|=\\|\alpha\\|\\|v\\|$	Scalar product						
:---:	:---									
$\\|v\\| \geq 0$	The magnitude of vector is nonnegative									
$\\|u\\|^{2}+\\|v\\|^{2}=\\|u+v\\|^{2}$	Pythagorean theorem									
$\\|u\\|+\\|v\\| \geq\\|u+v\\|$	Vector addition triangle rule									
$u \cdot v=v \cdot u$	Dot product commutative law									
$\\|v\\|=\sqrt{w \cdot v}$	Vector magnitude using dot product									

Linear Algebra Identities

Identity	Comments									
$u+v=v+u$	Vector addition commutative law									
$u-v=u+(-v)$	Vector subtraction									
$(u+v)+w=u+(v+w)$	Vector addition associative law									
$\alpha(\beta u)=(\alpha \beta) u$	Scalar-Vector multiplication association									
$\alpha(u+v)=\alpha u+\alpha v$										
$(\alpha+\beta) u=\alpha u+\beta u$		$]$ Scalar-Vector distribution law \quad	$\\|\alpha v\\|=\\|\alpha\\|\\|v\\|$	Scalar product						
:---:	:---									
$\\|v\\| \geq 0$	The magnitude of vector is nonnegative									
$\\|u\\|^{2}+\\|v\\|^{2}=\\|u+v\\|^{2}$	Pythagorean theorem									
$\\|u\\|+\\|v\\| \geq\\|u+v\\|$	Vector addition triangle rule									
$u \cdot v=v \cdot u$	Dot product commutative law									
$\\|v\\|=\sqrt{w \cdot v}$	Vector magnitude using dot product									

Linear Algebra Identities

Identity	Comments									
$u+v=v+u$	Vector addition commutative law									
$u-v=u+(-v)$	Vector subtraction									
$(u+v)+w=u+(v+w)$	Vector addition associative law									
$\alpha(\beta u)=(\alpha \beta) u$	Scalar-Vector multiplication association									
$\alpha(u+v)=\alpha u+\alpha v$										
$(\alpha+\beta) u=\alpha u+\beta u$		$]$ Scalar-Vector distribution law \quad	$\\|\alpha v\\|=\\|\alpha\\|\\|v\\|$	Scalar product						
:---:	:---									
$\\|v\\| \geq 0$	The magnitude of vector is nonnegative									
$\\|u\\|^{2}+\\|v\\|^{2}=\\|u+v\\|^{2}$	Pythagorean theorem									
$\\|u\\|+\\|v\\| \geq\\|u+v\\|$	Vector addition triangle rule									
$u \cdot v=v \cdot u$	Dot product commutative law									
$\\|v\\|=\sqrt{w \cdot v}$	Vector magnitude using dot product									

Linear Algebra Identities

Identity	Comments									
$u+v=v+u$	Vector addition commutative law									
$u-v=u+(-v)$	Vector subtraction									
$(u+v)+w=u+(v+w)$	Vector addition associative law									
$\alpha(\beta u)=(\alpha \beta) u$	Scalar-Vector multiplication association									
$\alpha(u+v)=\alpha u+\alpha v$										
$(\alpha+\beta) u=\alpha u+\beta u$		$]$ Scalar-Vector distribution law \quad	$\\|\alpha v\\|=\\|\alpha\\|\\|v\\|$	Scalar product						
:---:	:---									
$\\|v\\| \geq 0$	The magnitude of vector is nonnegative									
$\\|u\\|^{2}+\\|v\\|^{2}=\\|u+v\\|^{2}$	Pythagorean theorem									
$\\|u\\|+\\|v\\| \geq\\|u+v\\|$	Vector addition triangle rule									
$u \cdot v=v \cdot u$	Dot product commutative law									
$\\|v\\|=\sqrt{w \cdot v}$	Vector magnitude using dot product									

Linear Algebra Identities

Identity	Comments
$\alpha(u \cdot v)=(\alpha u) \cdot v=u \cdot(\alpha v)$	Vector dot product and scalar product associative law
$u \cdot(v+w)=u \cdot v+u \cdot w$	Vector addition and dot product distribution law
$u \times u=0$	Cross product of the vector itself is 0.
$u \times v=-(v \times u)$	Cross product is anti-commutative.
$u \times v=(-u) \times(-v)$	Cross product of a vector is equal to the cross product of inverse of each vector.
$\alpha(u \times v)=(\alpha u) \times v=u \times(\alpha v)$	Scalar and cross product multiplication associative law
$u \times(v+w)=(u \times v)+(u \times w)$	Cross product of vector and the addition of two vector establish the distribution law
$u \cdot(u \times v)=0$ $v \cdot(u \times v)=0$	 another vector is 0

Linear Algebra Identities

Identity	Comments
$\alpha(u \cdot v)=(\alpha u) \cdot v=u \cdot(\alpha v)$	Vector dot product and scalar product associative law
$u \cdot(v+w)=u \cdot v+u \cdot w$	Vector addition and dot product distribution law
$u \times u=0$	Cross product of the vector itself is 0.
$u \times v=-(v \times u)$	Cross product is anti-commutative.
$u \times v=(-u) \times(-v)$	Cross product of a vector is equal to the cross product of inverse of each vector.
$\alpha(u \times v)=(\alpha u) \times v=u \times(\alpha v)$	Scalar and cross product multiplication associative law
$u \times(v+w)=(u \times v)+(u \times w)$	Cross product of vector and the addition of two vector establish the distribution law
$u \cdot(u \times v)=0$ $v \cdot(u \times v)=0$	 another vector is 0

Linear Algebra Identities

Identity	Comments
$\alpha(u \cdot v)=(\alpha u) \cdot v=u \cdot(\alpha v)$	Vector dot product and scalar product associative law
$u \cdot(v+w)=u \cdot v+u \cdot w$	Vector addition and dot product distribution law
$u \times u=0$	Cross product of the vector itself is 0.
$u \times v=-(v \times u)$	Cross product is anti-commutative.
$u \times v=(-u) \times(-v)$	Cross product of a vector is equal to the cross product of inverse of each vector.
$\alpha(u \times v)=(\alpha u) \times v=u \times(\alpha v)$	Scalar and cross product multiplication associative law
$u \times(v+w)=(u \times v)+(u \times w)$	Cross product of vector and the addition of two vector establish the distribution law
$u \cdot(u \times v)=0$ $v \cdot(u \times v)=0$	 another vector is 0

Linear Algebra Identities

Identity	Comments
$\alpha(u \cdot v)=(\alpha u) \cdot v=u \cdot(\alpha v)$	Vector dot product and scalar product associative law
$u \cdot(v+w)=u \cdot v+u \cdot w$	Vector addition and dot product distribution law
$u \times u=0$	Cross product of the vector itself is 0.
$u \times v=-(v \times u)$	Cross product is anti-commutative.
$u \times v=(-u) \times(-v)$	Cross product of a vector is equal to the cross product of inverse of each vector.
$\alpha(u \times v)=(\alpha u) \times v=u \times(\alpha v)$	Scalar and cross product multiplication associative law
$u \times(v+w)=(u \times v)+(u \times w)$	Cross product of vector and the addition of two vector establish the distribution law
$u \cdot(u \times v)=0$ $v \cdot(u \times v)=0$	 another vector is 0

Linear Algebra Identities

Identity	Comments
$\alpha(u \cdot v)=(\alpha u) \cdot v=u \cdot(\alpha v)$	Vector dot product and scalar product associative law
$u \cdot(v+w)=u \cdot v+u \cdot w$	Vector addition and dot product distribution law
$u \times u=0$	Cross product of the vector itself is 0.
$u \times v=-(v \times u)$	Cross product is anti-commutative.
$u \times v=(-u) \times(-v)$	Cross product of a vector is equal to the cross product of inverse of each vector.
$\alpha(u \times v)=(\alpha u) \times v=u \times(\alpha v)$	Scalar and cross product multiplication associative law
$u \times(v+w)=(u \times v)+(u \times w)$	Cross product of vector and the addition of two vector establish the distribution law
$u \cdot(u \times v)=0$ $v \cdot(u \times v)=0$	 another vector is 0

Linear Algebra Identities

Identity	Comments
$\alpha(u \cdot v)=(\alpha u) \cdot v=u \cdot(\alpha v)$	Vector dot product and scalar product associative law
$u \cdot(v+w)=u \cdot v+u \cdot w$	Vector addition and dot product distribution law
$u \times u=0$	Cross product of the vector itself is 0.
$u \times v=-(v \times u)$	Cross product is anti-commutative.
$u \times v=(-u) \times(-v)$	Cross product of a vector is equal to the cross product of inverse of each vector.
$\alpha(u \times v)=(\alpha u) \times v=u \times(\alpha v)$	Scalar and cross product multiplication associative law
$u \times(v+w)=(u \times v)+(u \times w)$	Cross product of vector and the addition of two vector establish the distribution law
$u \cdot(u \times v)=0$ $v \cdot(u \times v)=0$	 another vector is 0

Linear Algebra Identities

Identity	Comments
$\alpha(u \cdot v)=(\alpha u) \cdot v=u \cdot(\alpha v)$	Vector dot product and scalar product associative law
$u \cdot(v+w)=u \cdot v+u \cdot w$	Vector addition and dot product distribution law
$u \times u=0$	Cross product of the vector itself is 0.
$u \times v=-(v \times u)$	Cross product is anti-commutative.
$u \times v=(-u) \times(-v)$	Cross product of a vector is equal to the cross product of inverse of each vector.
$\alpha(u \times v)=(\alpha u) \times v=u \times(\alpha v)$	Scalar and cross product multiplication associative law
$u \times(v+w)=(u \times v)+(u \times w)$	Cross product of vector and the addition of two vector establish the distribution law
$u \cdot(u \times v)=0$ $v \cdot(u \times v)=0$	 another vector is 0

Linear Algebra Identities

Identity	Comments
$\alpha(u \cdot v)=(\alpha u) \cdot v=u \cdot(\alpha v)$	Vector dot product and scalar product associative law
$u \cdot(v+w)=u \cdot v+u \cdot w$	Vector addition and dot product distribution law
$u \times u=0$	Cross product of the vector itself is 0.
$u \times v=-(v \times u)$	Cross product is anti-commutative.
$u \times v=(-u) \times(-v)$	Cross product of a vector is equal to the cross product of inverse of each vector.
$\alpha(u \times v)=(\alpha u) \times v=u \times(\alpha v)$	Scalar and cross product multiplication associative law
$u \times(v+w)=(u \times v)+(u \times w)$	Cross product of vector and the addition of two vector establish the distribution law
$u \cdot(u \times v)=0$ $v \cdot(u \times v)=0$	 another vector is 0

Linear Algebra Identities

Identity	Comments
$\alpha(u \cdot v)=(\alpha u) \cdot v=u \cdot(\alpha v)$	Vector dot product and scalar product associative law
$u \cdot(v+w)=u \cdot v+u \cdot w$	Vector addition and dot product distribution law
$u \times u=0$	Cross product of the vector itself is 0.
$u \times v=-(v \times u)$	Cross product is anti-commutative.
$u \times v=(-u) \times _(-v)$	Cross product of a vector is equal to the cross product of inverse of each vector.
$\alpha(u \times v)=(\alpha u) \times v=u \times(\alpha v)$	Scalar and cross product multiplication associative law
$u \times(v+w)=(u \times v)+(u \times w)$	Cross product of vector and the addition of two vector establish the distribution law
$u \cdot(u \times v)=0$	Dot product of any vector with cross product of that vector $\&$ another vector is 0
$v \cdot(u \times v)=0$	

Comments

$$
\begin{aligned}
& u \cdot(u \times v)=0 \\
& v \cdot(u \times v)=0
\end{aligned}
$$

Geometric Objects

» Line
$>$ 2points
® Plane
$>$ 3points
》3D objects
$>$ Defined by a set of triangles
$>$ Simple convex flat polygons (볼록다각형)
$>$ hollow (비어 있음)
$\$$ Line is point-vector addition (or subtraction of two points).
》Line parametric form: $\mathrm{P}(\alpha)=\mathrm{P}_{0}+\alpha \mathrm{v}$
ΔP_{0} is arbitrary point, and v is arbitrary vector
Δ Points are created on a straight line by changing the parameter.

$$
\begin{aligned}
& v=R-Q \\
& P=Q+\alpha v=Q+\alpha(R-Q)=Q+\alpha R-\alpha Q=\alpha R+(1-\alpha) Q
\end{aligned}
$$

$\$$ Line is point-vector addition (or subtraction of two points).
\$ Line parametric form : $\mathrm{P}(\alpha)=\mathrm{P}_{0}+\alpha \mathrm{v}$
ΔP_{0} is arbitrary point, and v is arbitrary vector
Δ Points are created on a straight line by changing the parameter.

$$
\begin{aligned}
& v=R-Q \\
& P=Q+\alpha v=Q+\alpha(R-Q)=Q+\alpha R-\alpha Q=\alpha R+(1-\alpha) Q
\end{aligned}
$$

\$ Line is point-vector addition (or subtraction of two points).
》Line parametric form : $\mathrm{P}(\alpha)=\mathrm{P}_{0}+\alpha \mathrm{v}$
ΔP_{0} is arbitrary point, and v is arbitrary vector
Δ Points are created on a straight line by changing the parameter.

$$
\begin{aligned}
& v=R-Q \\
& P=Q+\alpha v=Q+\alpha(R-Q)=Q+\alpha R-\alpha Q=\alpha R+(1-\alpha) Q \\
& P=\alpha_{1} R+\alpha_{2} Q \text { where } \alpha_{1}+\alpha_{2}=1
\end{aligned}
$$

Lines, Rays, Line Segments

\# The line is infinitely long in both directions.
》A line segment is a piece of line between two endpoints. $0<=\alpha<=1$
\# A ray has one end point and continues infinitely in one direction. $\alpha>=0$
© Line

$$
\begin{aligned}
& \triangleright p(\alpha)=p_{0}+\alpha d \text { (parametric) } \\
& \triangleright y=m x+b \text { (explicit) } \\
& \triangleright a x+b y=d \text { (implicit) } \\
& \triangleright p \cdot n=d \\
& \quad(x, y) \cdot(a, b)=d
\end{aligned}
$$

Lines, Rays, Line Segments

\# The line is infinitely long in both directions.
\otimes A line segment is a piece of line between two endpoints. $0<=\alpha<=1$
\# A ray has one end point and continues infinitely in one direction. $\alpha>=0$
© Line

$$
\begin{aligned}
& \triangleright p(\alpha)=p_{0}+\alpha d \text { (parametric) } \\
& \triangleright y=m x+b \text { (explicit) } \\
& \triangleright a x+b y=d \text { (implicit) } \\
& \triangleright p \cdot n=d \\
& \quad(x, y) \cdot(a, b)=d
\end{aligned}
$$

