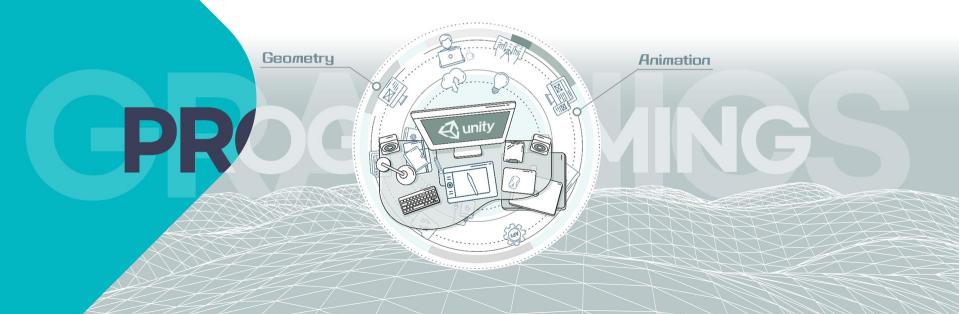


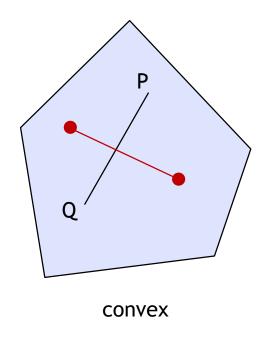
그래픽/그절로그래밍

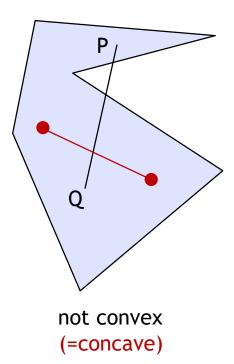
04 Geometric Objects-Spaces and Matrix(2)



Convexity

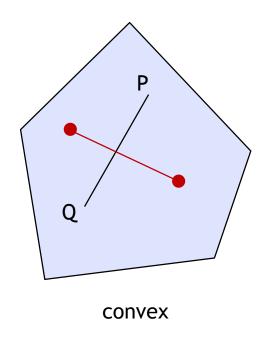
➤ An object is <u>convex</u> if only if for any two points in the object all points on the line segment between these points are also in the object.

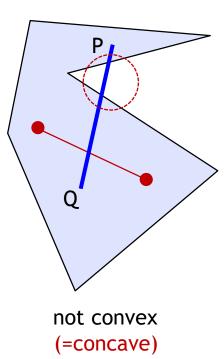




Convexity

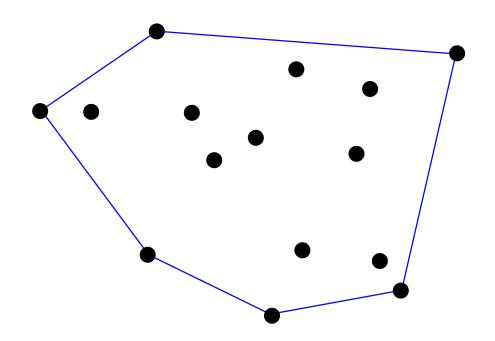
➤ An object is <u>convex</u> if only if for any two points in the object all points on the line segment between these points are also in the object.





Convex Hull

- **Smallest convex object** containing P₁,P₂...P_n
- > Formed by "shrink wrapping" points



Affine Sums

ightharpoonup The affine sum of the points defined by $P_1, P_2...P_n$ is

$$P = \alpha_1 P_1 + \alpha_2 P_2 + \dots + \alpha_n P_n$$

Can show by induction that this sum makes sense iff

$$\alpha_1 + \alpha_2 + \cdots + \alpha_n = 1$$

If, in addition, $\alpha_i > 0$, i = 1, 2, ...n, we have the <u>convex hull</u> of

 $P_1, P_2...P_n$. $P_1, P_2...P_n$. P_2, P_2, P_3 . P_1, P_2, P_3 . P_2, P_3, P_4 .
Convex hull P_1, P_2, P_3, P_4 , you can see that it includes all the line segments connecting the pairs of points.

Linear/Affine Combination of Vectors

- Linear combination of m vectors
 - \triangleright Vector $v_1, v_2 \dots v_m$
 - $ightharpoonup w = \alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_m v_m \text{ where } \alpha_1, \alpha_2 \dots \alpha_m \text{ are scalars}$
- ▶ If the sum of the scalar values, α_1 , α_2 ... α_m is 1, it becomes an affine combination.

$$ightharpoonup \alpha_1 + \alpha_2 + \cdots + \alpha_m = 1$$

Convex Combination

- ▶ If, in addition, $\alpha_i > 0$, i = 1, 2, ...n, we have the <u>convex hull</u> of $P_1, P_2 ... P_n$.
- ▶ Therefore, the linear combination of vectors satisfying the following condition is a convex.

$$\alpha_1 + \alpha_2 + \cdots + \alpha_m = 1$$

and
 $\alpha_i \ge 0$ for $i = 1, 2 \dots m$
 α_i is between 0 and 1

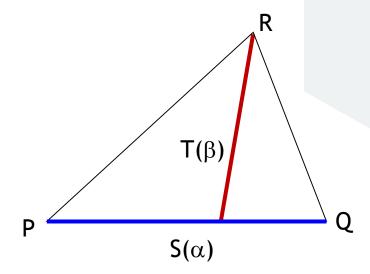
- Convexity
 - ➤ Convex hull

- > A plane can be defined by a point and two vectors or by three points.
- **>** Suppose 3 points, P, Q, R
- ▶ Line segment PQ

$$\triangleright S(\alpha) = \alpha P + (1 - \alpha)Q$$

▶ Line segment SR

$$ightharpoonup T(\beta) = \beta S + (1 - \beta)R$$



- > A plane can be defined by a point and two vectors or by three points.
- Suppose 3 points, P, Q, R
- ▶ Line segment PQ

$$\triangleright S(\alpha) = \alpha P + (1 - \alpha)Q$$

▶ Line segment SR

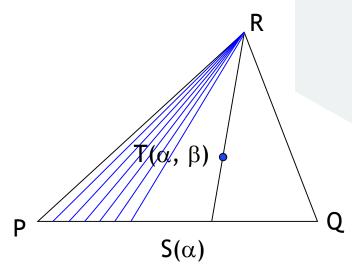
$$ightharpoonup T(\beta) = \beta S + (1 - \beta)R$$

▶ Plane defined by P, Q, R

$$T(\alpha, \beta) = \beta(\alpha P + (1 - \alpha)Q) + (1 - \beta)R$$

= P + β(1 - α)(Q - P) + (1 - β)(R - P)

ightharpoonup for 0 ≤ α, β ≤ 1, we get all points in triangle, T(α, β)



- A plane can be defined by a point and two vectors or by three points.
- Suppose 3 points, P, Q, R
- ▶ Line segment PQ

$$\triangleright S(\alpha) = \alpha P + (1 - \alpha)Q$$

▶ Line segment SR

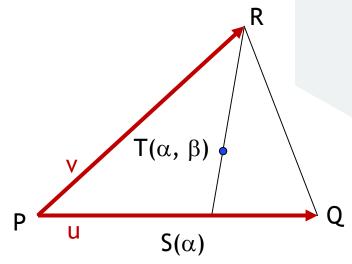
$$ightharpoonup T(\beta) = \beta S + (1 - \beta)R$$

▶ Plane defined by P, Q, R

$$T(\alpha, \beta) = \beta(\alpha P + (1 - \alpha)Q) + (1 - \beta)R$$

$$= P + \beta(1 - \alpha)(Q - P) + (1 - \beta)(R - P) = P + \beta(1 - \alpha)u + (1 - \beta)v$$

ightharpoonup for 0 ≤ α, β ≤ 1, we get all points in triangle, T(α, β)



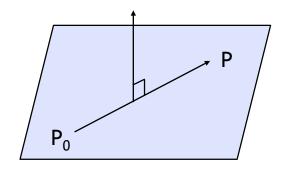
ightharpoonup Plane equation defined by a point P_0 and two non parallel vectors, u, v

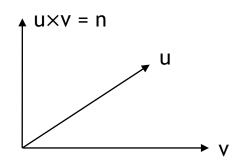
$$ightharpoonup T(\alpha, \beta) = P_0 + \alpha u + \beta v$$

$$\triangleright P - P_0 = \alpha u + +\beta v$$
 (P is point on the plane)

■ Using n (the cross product of u, v), the plane equation is as follows

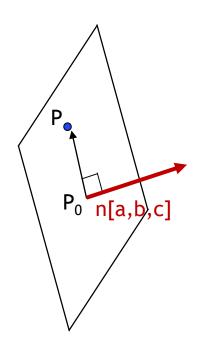
$$\triangleright n \cdot (P - P_0) = 0$$
 (where $n = u \times v$ and n is a normal vector)



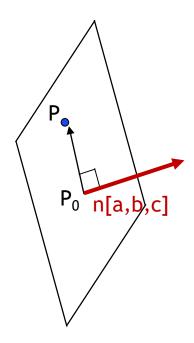


- ightharpoonup The plane is represented by a normal vector n and a point P_0 on the plane.
 - \triangleright *Plane* (n,d) *where* n(a,b,c)

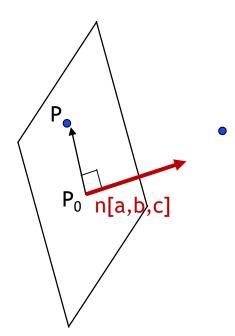
 - $\triangleright n \cdot P + d = 0$
 - $\triangleright d = n \cdot P$
- ▶ For point p on the plane, $n \cdot (p p_0) = 0$
- If the plane normal n is a unit vector, then n•p + d gives the shortest signed distance from the plane to point p : d = -n•p



- Relationship between Point and Plane
- ▶ Relationship between point p and plane (n, d)
 - $ightharpoonup If n \cdot P + d = 0$, then p is in the plane.

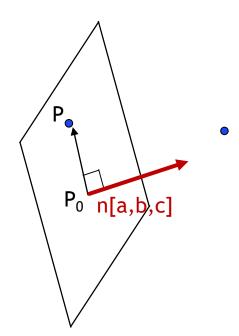


- Relationship between point p and plane (n, d)
 - $ightharpoonup If n \cdot P + d = 0$, then p is in the plane.
 - $ightharpoonup If n \cdot P + d > 0$, then p is outside the plane.



Relationship between Point and Plane

- Relationship between point p and plane (n, d)
 - $ightharpoonup If n \cdot P + d = 0$, then p is in the plane.
 - $ightharpoonup If n \cdot P + d > 0$, then p is <u>outside the plane</u>.
 - $ightharpoonup If n \cdot P + d < 0$, then p is <u>inside the plane</u>.



Plane Normalization

- ▶ Plane normalization
 - ➤ Normalize the plane normal vector
 - Since the length of the normal vector affects the constant d, d is also normalized.

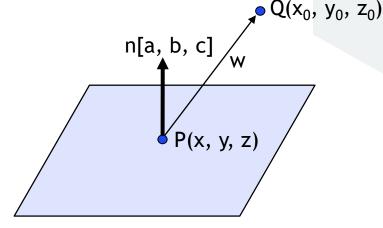
$$\frac{1}{\|n\|}(n,d) = \left(\frac{n}{\|n\|}, \frac{d}{\|n\|}\right)$$

Computing a Normal from 3 Points in Plane

- > Find the normal from the polygon's vertices.
 - ➤ The polygon's normal computes two non-collinear edges. (assuming that no two adjacent edges will be collinear)
 - > Then, normalize it after the cross product.

- ▶ Find the closest distance to a <u>plane (n, d)</u> in space and a <u>point Q</u> out of the plane.
 - ➤ The plane's normal is n, and D is the distance between a point P and a point Q on the plane.

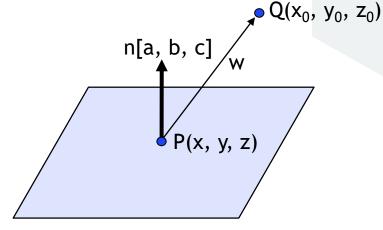
$$w = Q - P = [x_0 - x, y_0 - y, z_0 - z]$$



Projecting w onto
$$n : w = n \frac{\|w \cdot n\|}{\|n^2\|} \& \|w\| = \frac{|w \cdot n|}{\|n\|}$$

- ▶ Find the closest distance to a <u>plane (n, d)</u> in space and a <u>point Q</u> out of the plane.
 - ➤ The plane's normal is n, and D is the distance between a point P and a point Q on the plane.

$$w = Q - P = [x_0 - x, y_0 - y, z_0 - z]$$

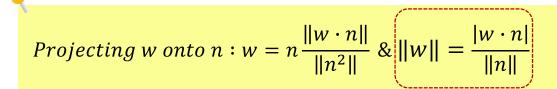


Projecting w onto
$$n: w = n \frac{\|w \cdot n\|}{\|n^2\|} \& \|w\| = \frac{|w \cdot n|}{\|n\|}$$

- ▶ Find the closest distance to a <u>plane (n, d)</u> in space and a <u>point Q</u> out of the plane.
 - ➤ The plane's normal is n, and D is the distance between a point P and a point Q on the plane.

$$w = Q - P = [x_0 - x, y_0 - y, z_0 - z]$$

$$D = \frac{|n \cdot w|}{\|n\|}$$



 \circ Q(x₀, y₀, z₀)

- ▶ Find the closest distance to a <u>plane (n, d)</u> in space and a <u>point Q</u> out of the plane.
 - ➤ The plane's normal is n, and D is the distance between a point P and a point Q on the plane.

$$w = Q - P = [x_0 - x, y_0 - y, z_0 - z]$$

$$D = \frac{|n \cdot w|}{||n||}$$

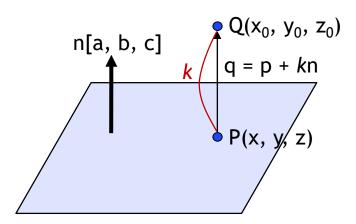
$$= \frac{|a(x_0 - x) + b(y_0 - y) + c(z_0 - z)|}{\sqrt{a^2 + b^2 + c^2}}$$

$$= \frac{ax_0 + by_0 + cz_0 + d}{\sqrt{a^2 + b^2 + c^2}}$$

Closest Point on the Plane

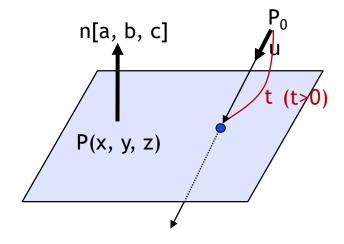
- ▶ Find a point P on the plane (n, d) closest to one point Q in space.
 - ightharpoonup p = q kn (k is the shortest signed distance from point Q to the plane)
 - \triangleright If n is a uint,

$$k = n \cdot q + d$$
$$p = q - (n \cdot q + d)n$$



$$Distance(q, plane) = \frac{ax_0 + by_0 + cz_0 + d}{\sqrt{a^2 + b^2 + c^2}}$$
 where $q(x_0, y_0, z_0)$ and $Plane \ ax + by + cz + d = 0$
$$Distance(q, plane) = n \cdot q + d \ (n \ is \ a \ unit \ vector)$$

> Ray
$$p(t) = p_0 + tu \& plane p \cdot n + d = 0$$



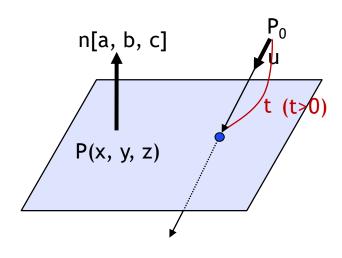
- $ightharpoonup Ray p(t) = p_0 + tu \& plane p n + d = 0$
- ▶ Ray/Plane intersection :

$$(p_0+tu) \cdot n + d = 0$$

$$p_0 \cdot n + tu \cdot n + d = 0$$

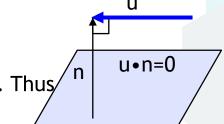
$$tu \cdot n = -d - p_0 \cdot n$$

$$t = \frac{-(p_0 \cdot n + d)}{u \cdot n}$$



$$t = \frac{-(p_0 \cdot n + d)}{u \cdot n}$$

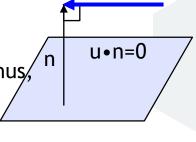
If the ray is parallel to the plane, the denominator $\underline{u \cdot n=0}$. Thus the ray does not intersect the plane.



$$t = \frac{-(p_0 \cdot n + d)}{u \cdot n}$$

- If the ray is parallel to the plane, the denominator $u \cdot n = 0$. Thus, n the ray does not intersect the plane.
- If the value of t is not in the range $[0, \infty)$, the ray does not intersect the plane.

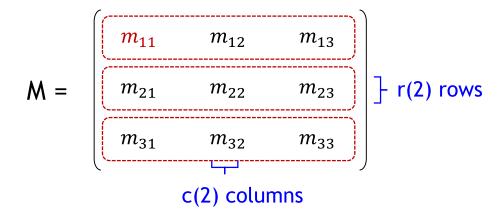
$$p\left(\frac{-(p_0\cdot n+d)}{u\cdot n}\right) = p_0 + \frac{-(p_0\cdot n+d)}{u\cdot n}u$$



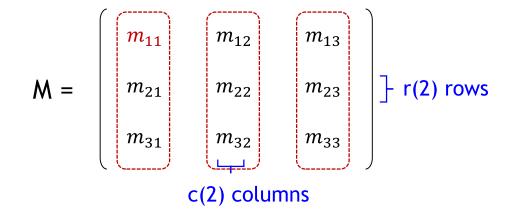
- Matrix M (<u>r</u>×<u>c</u> matrix)
 - ➤ **Row** of horizontally arranged matrix elements
 - **▶ Column** of vertically arranged matrix elements
 - $ightharpoonup \underline{M}_{ij}$ is the **element** in row <u>i</u> and column <u>j</u>

$$M = \begin{pmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \\ & & &$$

- Matrix M (r×c matrix)
 - ➤ **Row** of horizontally arranged matrix elements
 - **Column** of vertically arranged matrix elements
 - $ightharpoonup \underline{M}_{ij}$ is the **element** in row <u>i</u> and column <u>j</u>



- Matrix M (<u>r×c</u> matrix)
 - ➤ **Row** of horizontally arranged matrix elements
 - **Column** of vertically arranged matrix elements
 - $ightharpoonup \underline{M}_{ij}$ is the **element** in row <u>i</u> and column <u>j</u>



- Matrix M (<u>r×c</u> matrix)
 - ➤ **Row** of horizontally arranged matrix elements
 - **▶ Column** of vertically arranged matrix elements
 - ▶ M_{ii} is the **element** in row <u>i</u> and column <u>j</u> (원소)

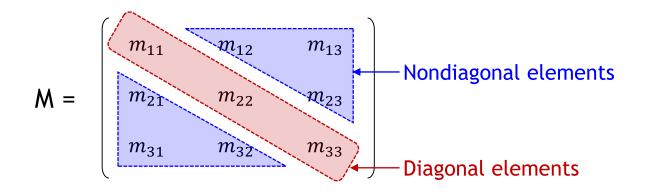
The element in row 1 and column 1
$$(22)$$

$$M = \begin{pmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{pmatrix} + r(2) \text{ rows}$$

$$c(2) \text{ columns}$$

 $m_{11} = 2$ $m_{12} = -4$

Square Matrix



- ▶ The n×n matrix is called an n-th square matrix. e.g. 2x2, 3x3, 4x4
- ▶ Diagonal elements vs. Non-diagonal elements

Identity Matrix

$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- The identity matrix is expressed as I.
- ightharpoonup All of the diagonals are 1, the remaining elements are 0 in $\mathbf{n} \times \mathbf{n}$ square matrix.
- **™** M I = I M = M

Vectors as Matrices

- ▶ The n-dimension vector is expressed as a $1 \times n$ matrix or an $n \times 1$ matrix.
 - ➤ 1×n matrix is a row vector (also called a row matrix)
 - ➤ n×1 matrix is a column vector (also called a column matrix)

$$\mathbf{A} = \left(\begin{array}{c} a_{11} \\ a_{21} \\ a_{31} \end{array}\right) \qquad \mathbf{A} = \left(\begin{array}{ccc} a_{11} & a_{12} & a_{13} \end{array}\right)$$

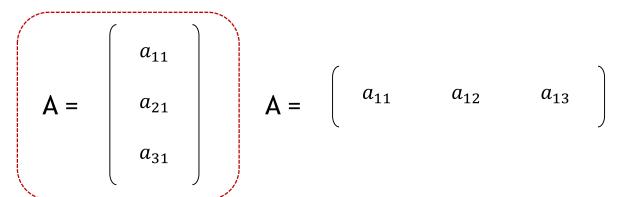
Vectors as Matrices

- ▶ The n-dimension vector is expressed as a $1 \times n$ matrix or an $n \times 1$ matrix.
 - ightharpoonup 1 imes n matrix is a row vector (also called a row matrix)
 - ➤ n×1 matrix is a column vector (also called a column matrix)

$$\mathbf{A} = \begin{pmatrix} a_{11} \\ a_{21} \\ a_{31} \end{pmatrix} \qquad \mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ \end{pmatrix}$$

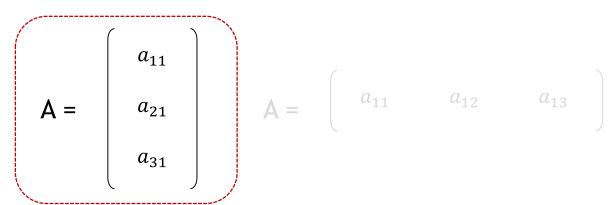
Vectors as Matrices

- ▶ The n-dimension vector is expressed as a $1 \times n$ matrix or an $n \times 1$ matrix.
 - ➤ 1×n matrix is a row vector (also called a row matrix)
 - \triangleright n×1 matrix is a column vector (also called a column matrix)



Vectors as Matrices

- ▶ The n-dimension vector is expressed as a $1 \times n$ matrix or an $n \times 1$ matrix.
 - ➤ 1×n matrix is a row vector (also called a row matrix)
 - \triangleright n×1 matrix is a column vector (also called a column matrix)



Transpose Matrix

- Transpose of M (rxc matrix) is denoted by M^T and is converted to $c \times r$ matrix.
 - $ightharpoonup M^{\mathsf{T}}_{ij} = M_{ji}$
 - \rightarrow $(M^T)^T = M$
 - $\triangleright D^T = D$ for any diagonal matrix D.

$$\begin{bmatrix} a & m & c \\ d & e & f \\ g & h & i \end{bmatrix} = \begin{bmatrix} a & d & g \\ m & e & h \\ c & f & i \end{bmatrix}$$

Transposing Matrix

$$\begin{bmatrix}
1 & 4 & 7 & 10 \\
2 & 5 & 8 & 11 \\
3 & 6 & 9 & 12
\end{bmatrix} = \begin{bmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9 \\
10 & 11 & 12
\end{bmatrix}$$

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x & y & z \\ \end{pmatrix}$$

Transpose Matrix

▶ Multiplying a matrix M with a scalar $\alpha = \alpha M$

$$\alpha \mathbf{M} = \alpha \begin{bmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{bmatrix} = \begin{bmatrix} \alpha m_{11} & \alpha m_{12} & \alpha m_{13} \\ \alpha m_{21} & \alpha m_{22} & \alpha m_{23} \\ \alpha m_{31} & \alpha m_{32} & \alpha m_{33} \end{bmatrix}$$

Two Matrices Addition

- Matrix C is the addition of A ($\underline{r \times c \text{ matrix}}$) and B ($\underline{r \times c \text{ matrix}}$), which is a $\underline{r \times c \text{ matrix}}$.
- ightharpoonup Each element c_{ij} is the sum of the ij^{th} element of A and the ij^{th} element of B.
- $\triangleright c_{ij} = a_{ij} + b_{ij}$

Two Matrices Addition

- Matrix C is the addition of A ($\underline{r \times c \text{ matrix}}$) and B ($\underline{r \times c \text{ matrix}}$), which is a $\underline{r \times c \text{ matrix}}$.
- **▶** Each element c_{ij} is the sum of the ij^{th} element of A and the ij^{th} element of B.

$$\triangleright c_{ij} = a_{ij} + b_{ij}$$

$$\begin{bmatrix} 1 & 3 & 6 \\ 10 & 0 & -5 \\ 4 & 7 & 2 \end{bmatrix} + \begin{bmatrix} 3 & 7 & 1 \\ 6 & 4 & 9 \\ 8 & -9 & 4 \end{bmatrix} = \begin{bmatrix} 4 & 10 & 7 \\ 16 & 4 & 4 \\ 12 & -2 & 6 \end{bmatrix}$$

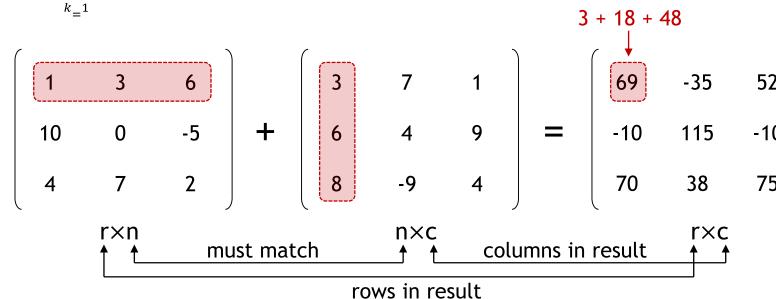
$$r \times c \qquad r \times c \qquad r \times c$$

- ▶ Matrix $C(\underline{r \times c \text{ matrix}})$ is the product of A $(\underline{r \times n \text{ matrix}})$ and B $(\underline{n \times c \text{ matrix}})$.
- **▶** Each element c_{ij} is the vector dot product of the ith row of A and the jth column of B.
- $c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$

Two Matrices Multiplication

- Matrix $C(\underline{r \times c \text{ matrix}})$ is the product of A ($\underline{r \times n \text{ matrix}}$) and B ($\underline{n \times c \text{ matrix}}$).
- **≥** Each element c_{ij} is the vector dot product of the ith row of A and the jth column of B.

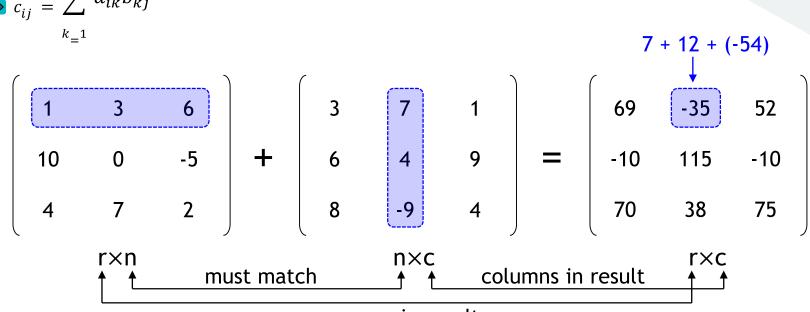
$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{k}$$



Two Matrices Multiplication

- Matrix $C(\underline{r \times c \text{ matrix}})$ is the product of A ($\underline{r \times n \text{ matrix}}$) and B ($\underline{n \times c \text{ matrix}}$).
- Each element c_{ii} is the vector dot product of the ith row of A and the jth column of B.

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_k$$



rows in result

Two Matrices Multiplication

- Matrix $C(\underline{r \times c \text{ matrix}})$ is the product of A ($\underline{r \times n \text{ matrix}}$) and B ($\underline{n \times c \text{ matrix}}$).
- **≥** Each element c_{ij} is the vector dot product of the ith row of A and the jth column of B.

$$c_{ij} = \sum_{k=1}^{\infty} a_{ik} b_{ik}$$

$$\begin{bmatrix} 1 & 3 & 6 \\ 10 & 0 & -5 \\ 4 & 7 & 2 \end{bmatrix} + \begin{bmatrix} 3 & 7 & 1 \\ 6 & 4 & 9 \\ 8 & -9 & 4 \end{bmatrix} = \begin{bmatrix} 69 & -35 & 52 \\ -10 & 115 & -10 \\ 70 & 38 & 75 \end{bmatrix}$$

$$\xrightarrow{r \times n} \quad \xrightarrow{must \ match} \quad \xrightarrow{n \times c} \quad \xrightarrow{columns \ in \ result} \quad \xrightarrow{r \times c}$$

rows in result

Multiplying Two Matrices

$$\begin{pmatrix} c_{11} & c_{12} & c_{13} & c_{14} & c_{15} \\ c_{21} & c_{22} & c_{23} & c_{24} & c_{25} \\ c_{31} & c_{32} & c_{33} & c_{34} & c_{35} \\ c_{41} & c_{42} & c_{43} & c_{44} & c_{45} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \\ a_{41} & a_{42} \end{pmatrix} \begin{pmatrix} m_{11} & m_{12} & m_{13} & m_{14} & m_{15} \\ m_{21} & m_{22} & m_{23} & m_{24} & m_{25} \\ m_{21} & m_{22} & m_{23} & m_{24} & m_{25} \end{pmatrix}$$

$$4 \times 5 \qquad \qquad 4 \times 2 \qquad \qquad 4 \times 2$$

$$c_{24} = a_{21} m_{14} + a_{22} m_{24}$$

Matrix Operation

- MI = IM = M (I is identity matrix)
- ▶ A + B = B + A : matrix addition commutative law
- A + (B + C) = (A + B) + C : matrix addition associative law
- <u>> AB ≠BA</u>: <u>Not</u> hold matrix <u>product commutative law</u>
- Arr ABCDEF = ((((AB)C)D)E)F = A((((BC)D)E)F) = (AB)(CD)(EF)

Matrix Operation

$$\triangleright \alpha(AB) = (\alpha A)B = A(\alpha B)$$
: Scalar-matrix product

$$\triangleright \alpha(\beta A) = (\alpha \beta) A$$

$$\triangleright$$
 (vA)B = v(AB)

$$(AB)^T = B^T A^T$$

$$(M_1M_2M_3 ... M_{n-1}M_n)^T = M_n^TM_{n-1}^T ... M_3^TM_2^TM_1^T$$

- ▶ The determinant of a square matrix M is denoted by M or "det M".
- ▶ The determinant of non-square matrix is not defined.

- ▶ The determinant of a square matrix M is denoted by M or "det M".
- ▶ The determinant of non-square matrix is not defined.

$$|\mathsf{M}| = \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix} = m_{11}m_{22} - m_{12}m_{21}$$

- ▶ The determinant of a square matrix M is denoted by M or "det M".
- ▶ The determinant of non-square matrix is not defined.

$$|\mathsf{M}| = \left(\begin{array}{cc} m_{11} & m_{12} \\ m_{21} & m_{22} \end{array} \right) = m_{11} m_{22} - m_{12} m_{21}$$

$$|\mathsf{M}| = \begin{pmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{pmatrix} = \begin{pmatrix} m_{11} (m_{22} m_{33} - m_{23} m_{32}) + \\ m_{12} (m_{23} m_{31} - m_{21} m_{33}) + \\ m_{13} (m_{21} m_{32} - m_{22} m_{31}) \end{pmatrix}$$

- ▶ The determinant of a square matrix M is denoted by M or "det M".
- ▶ The determinant of non-square matrix is not defined.

$$|\mathsf{M}| = \left(\begin{array}{cc} m_{11} & m_{12} \\ m_{21} & m_{22} \end{array} \right) = m_{11} m_{22} - m_{12} m_{21}$$

$$|\mathsf{M}| = \begin{pmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{pmatrix} = m_{11}(m_{22}m_{33} - m_{23}m_{32}) + m_{12}(m_{23}m_{31} - m_{21}m_{33}) + m_{13}(m_{21}m_{32} - m_{22}m_{31})$$

- ▶ The determinant of a square matrix M is denoted by M or "det M".
- ▶ The determinant of non-square matrix is not defined.

$$|\mathsf{M}| = \left(\begin{array}{cc} m_{11} & m_{12} \\ m_{21} & m_{22} \end{array} \right) = m_{11} m_{22} - m_{12} m_{21}$$

$$|\mathsf{M}| = \begin{pmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{pmatrix} = m_{11}(m_{22}m_{33} - m_{23}m_{32}) + m_{12}(m_{23}m_{31} - m_{21}m_{33}) + m_{13}(m_{21}m_{32} - m_{22}m_{31})$$

- ▶ The determinant of a square matrix M is denoted by M or "det M".
- ▶ The determinant of non-square matrix is not defined.

$$|\mathsf{M}| = \left(\begin{array}{cc} m_{11} & m_{12} \\ m_{21} & m_{22} \end{array} \right) = m_{11} m_{22} - m_{12} m_{21}$$

$$|\mathsf{M}| = \begin{pmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{pmatrix} = m_{11}(m_{22}m_{33} - m_{23}m_{32}) + m_{12}(m_{23}m_{31} - m_{21}m_{33}) + m_{13}(m_{21}m_{32} - m_{22}m_{31})$$

ightharpoonup Inverse of M (square matrix) is denoted by ightharpoonup.

$$M^{-1} = \frac{adjM}{|M|}$$

- $(M^{-1})^{-1} = M$
- $M(M^{-1}) = M^{-1}M = 1$
- ▶ The determinant of a non-singular matrix (i.e, invertible) is nonzero.
- The adjoint of M, denoted "adj M" is the transpose of the matrix of cofactors.

anspose
$$\begin{bmatrix} 1 & 3 & 6 \\ 10 & 0 & -5 \\ 4 & 7 & 2 \end{bmatrix}$$

Cofactor of a Square Matrix & Computing Determinant using Cofactor

- ➤ Cofactor of a square matrix M at a given row and column is the signed determinant of the corresponding Minor of M.

Cofactor of a Square Matrix & Computing Determinant using Cofactor

▶ Calculation of n×n determinant using cofactor:

$$|\mathsf{M}| = \sum_{j=1}^{n} m_{ij} c_{ij} = \sum_{j=1}^{n} m_{ij} (-1)^{i+j} |M^{\{ij\}}|$$

$$|\mathsf{M}| = \begin{pmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \\ m_{41} & m_{42} & m_{43} & m_{44} \end{pmatrix} = \begin{pmatrix} m_{11} & m_{22} & m_{23} & m_{24} \\ m_{32} & m_{33} & m_{34} \\ m_{42} & m_{43} & m_{44} \end{pmatrix} - m_{12} |M^{\{12\}}| + m_{13} |M^{\{13\}}| + m_{14} |M^{\{14\}}|$$

Cofactor of a Square Matrix & Computing Determinant using Cofactor

Calculation of n×n determinant using cofactor:

$$|\mathsf{M}| = \sum_{j=1}^{n} m_{ij} c_{ij} = \sum_{j=1}^{n} m_{ij} (-1)^{i+j} |M^{\{ij\}}|$$

$$|\mathsf{M}| = \begin{pmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ \hline m_{21} & m_{22} & m_{23} & m_{24} \\ \hline m_{31} & m_{32} & m_{33} & m_{34} \\ \hline m_{41} & m_{42} & m_{43} & m_{44} \end{pmatrix} = m_{11} \begin{pmatrix} m_{22} & m_{23} & m_{24} \\ m_{32} & m_{33} & m_{34} \\ \hline m_{42} & m_{43} & m_{44} \end{pmatrix} - m_{12} |M^{\{12\}}| + m_{13} |M^{\{13\}}| + m_{14} |M^{\{14\}}|$$

Cofactor of a Square Matrix & Computing Determinant using Cofactor

Calculation of n×n determinant using cofactor:

$$|\mathsf{M}| = \sum_{j=1}^{n} m_{ij} c_{ij} = \sum_{j=1}^{n} m_{ij} (-1)^{i+j} |M^{\{ij\}}|$$

$$|\mathsf{M}| = \begin{pmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ \hline m_{21} & m_{22} & m_{23} & m_{24} \\ \hline m_{31} & m_{32} & m_{33} & m_{34} \\ \hline m_{41} & m_{42} & m_{43} & m_{44} \end{pmatrix} = m_{11} \begin{pmatrix} m_{22} & m_{23} & m_{24} \\ m_{32} & m_{33} & m_{34} \\ \hline m_{42} & m_{43} & m_{44} \end{pmatrix} - m_{12} |M^{\{12\}}| + m_{13} |M^{\{13\}}| + m_{14} |M^{\{14\}}|$$

Cofactor of a Square Matrix & Computing Determinant using Cofactor

Calculation of n×n determinant using cofactor:

$$|\mathsf{M}| = \sum_{j=1}^{n} m_{ij} c_{ij} = \sum_{j=1}^{n} m_{ij} (-1)^{i+j} |M^{\{ij\}}|$$

$$|\mathsf{M}| = \begin{pmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \\ m_{41} & m_{42} & m_{43} & m_{44} \end{pmatrix} = m_{11} \begin{pmatrix} m_{22} & m_{23} & m_{24} \\ m_{32} & m_{33} & m_{34} \\ m_{42} & m_{43} & m_{44} \end{pmatrix}$$

$$-m_{12} |M^{\{12\}}| + m_{13} |M^{\{13\}}| - m_{14} |M^{\{14\}}|$$

$$M^{\{14\}}$$

Minor of a Matrix

▶ The submatrix M^{ij} is known as a minor of M, obtained by deleting row i and column j from M.

$$M = \begin{pmatrix} -4 & -3 & 3 \\ 0 & 2 & -2 \\ 1 & 4 & -1 \end{pmatrix}$$

$$M^{\{12\}} = \begin{pmatrix} 0 & -2 \\ 1 & -1 \end{pmatrix}$$

$$M = \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix}$$

$$\det M = m_{11}m_{22} - m_{12}m_{21}$$

$$\mathsf{M} = \left(\begin{array}{c|c} m_{11} & m_{12} \\ \hline m_{21} & m_{22} \end{array} \right)$$

$$\det M = m_{11}m_{22} - m_{12}m_{21}$$

$$\mathsf{M} = \left(\begin{array}{c} m_{11} & m_{12} \\ m_{21} & m_{22} \end{array} \right)$$

$$\det M = m_{11}m_{22} - m_{12}m_{21}$$

$$C = \begin{pmatrix} m_{22} & -m_{21} \\ -m_{12} & m_{11} \end{pmatrix}$$

$$\mathsf{M} = \left(\begin{array}{c|c} m_{11} & m_{12} \\ \hline m_{21} & m_{22} \end{array} \right)$$

$$\det M = m_{11}m_{22} - m_{12}m_{21}$$

$$C = \begin{pmatrix} m_{22} & -m_{21} \\ -m_{12} & m_{11} \end{pmatrix}$$

$$\mathsf{M} = \left(\begin{array}{c} m_{11} & m_{12} \\ m_{21} & m_{22} \end{array} \right)$$

$$\det M = m_{11}m_{22} - m_{12}m_{21}$$

$$C = \begin{pmatrix} m_{22} & -m_{21} \\ -m_{12} & m_{11} \end{pmatrix}$$

$$\mathsf{M} = \left(\begin{array}{c|c} m_{11} & m_{12} \\ \hline m_{21} & m_{22} \end{array} \right)$$

$$\det M = m_{11}m_{22} - m_{12}m_{21}$$

$$C = \begin{pmatrix} m_{22} & -m_{21} \\ -m_{12} & m_{11} \end{pmatrix}$$

$$\mathsf{M} = \left(\begin{array}{cc} m_{11} & m_{12} \\ m_{21} & m_{22} \end{array} \right)$$

$$\det M = m_{11}m_{22} - m_{12}m_{21}$$

$$C = \begin{pmatrix} m_{22} & -m_{21} \\ -m_{12} & m_{11} \end{pmatrix}$$

$${\rm adjM} = \left(\begin{array}{ccc} m_{22} & -m_{12} \\ -m_{21} & m_{11} \end{array} \right) \qquad {\rm M}^{\text{-1}} = \frac{1}{\det M} \left(\begin{array}{ccc} m_{22} & -m_{12} \\ -m_{21} & m_{11} \end{array} \right)$$

$$M = \begin{pmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{pmatrix}$$

$$M = \begin{pmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{pmatrix}$$

$$\det \mathbf{M} = m_{11}(m_{22}m_{33} - m_{23}m_{32})$$
$$-m_{12}(m_{21}m_{33} - m_{23}m_{31})$$
$$+m_{13}(m_{21}m_{32} - m_{22}m_{31})$$

$$A = \begin{pmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{pmatrix}$$

$$\det \mathbf{M} = m_{11}(m_{22}m_{33} - m_{23}m_{32})$$

$$-m_{12}(m_{21}m_{33} - m_{23}m_{31})$$

$$+m_{13}(m_{21}m_{32} - m_{22}m_{31})$$

$$\mathsf{C} = \left(\begin{array}{c} (m_{22}m_{33} - m_{23}m_{32}) & -(m_{21}m_{33} - m_{23}m_{31}) & (m_{21}m_{32} - m_{22}m_{31}) \\ \\ -(m_{12}m_{33} - m_{13}m_{32}) & (m_{11}m_{33} - m_{13}m_{31}) & -(m_{11}m_{32} - m_{21}m_{31}) \\ \\ (m_{12}m_{23} - m_{22}m_{13}) & -(m_{11}m_{23} - m_{13}m_{21}) & (m_{11}m_{22} - m_{12}m_{21}) \end{array} \right)$$

$$M = \begin{pmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{pmatrix}$$

$$\det \mathbf{M} = m_{11}(m_{22}m_{33} - m_{23}m_{32})$$

$$-m_{12}(m_{21}m_{33} - m_{23}m_{31})$$

$$+m_{13}(m_{21}m_{32} - m_{22}m_{31})$$

$$\mathbf{C} = \begin{pmatrix} (m_{22}m_{33} - m_{23}m_{32}) & -(m_{21}m_{33} - m_{23}m_{31}) & (m_{21}m_{32} - m_{22}m_{31}) \\ -(m_{12}m_{33} - m_{13}m_{32}) & (m_{11}m_{33} - m_{13}m_{31}) & -(m_{11}m_{32} - m_{21}m_{31}) \\ (m_{12}m_{23} - m_{22}m_{13}) & -(m_{11}m_{23} - m_{13}m_{21}) & (m_{11}m_{22} - m_{12}m_{21}) \end{pmatrix}$$

$$M = \begin{pmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{pmatrix}$$

$$\det M = m_{11}(m_{22}m_{33} - m_{23}m_{32})$$
$$-m_{12}(m_{21}m_{33} - m_{23}m_{31})$$
$$+m_{13}(m_{21}m_{32} - m_{22}m_{31})$$

$$\mathsf{C} = \left(\begin{array}{c} (m_{22}m_{33} - m_{23}m_{32}) & -(m_{21}m_{33} - m_{23}m_{31}) & (m_{21}m_{32} - m_{22}m_{31}) \\ \\ -(m_{12}m_{33} - m_{13}m_{32}) & (m_{11}m_{33} - m_{13}m_{31}) & -(m_{11}m_{32} - m_{21}m_{31}) \\ \\ (m_{12}m_{23} - m_{22}m_{13}) & -(m_{11}m_{23} - m_{13}m_{21}) & (m_{11}m_{22} - m_{12}m_{21}) \end{array} \right)$$

$$C = \begin{pmatrix} (m_{22}m_{33} - m_{23}m_{32}) & -(m_{21}m_{33} - m_{23}m_{31}) & (m_{21}m_{32} - m_{22}m_{31}) \\ -(m_{12}m_{33} - m_{13}m_{32}) & (m_{11}m_{33} - m_{13}m_{31}) & -(m_{11}m_{32} - m_{21}m_{31}) \\ (m_{12}m_{23} - m_{22}m_{13}) & -(m_{11}m_{23} - m_{13}m_{21}) & (m_{11}m_{22} - m_{12}m_{21}) \end{pmatrix}$$

$$\mathsf{adjM} = \left(\begin{array}{c} (m_{22}m_{33} - m_{23}m_{32}) & -(m_{21}m_{33} - m_{13}m_{32}) & (m_{21}m_{23} - m_{22}m_{13}) \\ \\ -(m_{21}m_{33} - m_{23}m_{31}) & (m_{11}m_{33} - m_{13}m_{31}) & -(m_{11}m_{23} - m_{13}m_{21}) \\ \\ (m_{21}m_{32} - m_{22}m_{31}) & -(m_{11}m_{32} - m_{21}m_{31}) & (m_{11}m_{22} - m_{12}m_{21}) \end{array} \right)$$

$$M^{-1} = \frac{adj}{det}$$

$$\begin{pmatrix} x & y & z \end{pmatrix} \begin{pmatrix} p_x & p_y & p_z \\ q_x & q_y & q_z \\ r_x & r_y & r_z \end{pmatrix}$$

$$= \begin{pmatrix} xp_x + yq_x + zr_x & xp_y + yq_y + zr_y & xp_z + yq_z + zr_z \end{pmatrix}$$

$$= xp + yq + zr$$

- A coordinate space transformation can be expressed using a vector-matrix product.
 - **►uM** = v // matrix M converts vector u to vector v

Multiplying a Vector and a Matrix

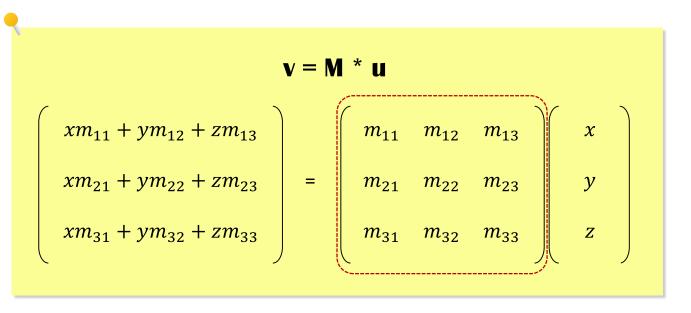
- Vector-matrix multiplication in OpenGL (Column-Major Order)
 - ▶ v = M * u // matrix M converts vector u to vector v

$$\mathbf{v} = \mathbf{M} * \mathbf{u}$$

$$\begin{pmatrix} xm_{11} + ym_{12} + zm_{13} \\ xm_{21} + ym_{22} + zm_{23} \\ xm_{31} + ym_{32} + zm_{33} \end{pmatrix} = \begin{pmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{pmatrix} z$$

Multiplying a Vector and a Matrix

- Vector-matrix multiplication in OpenGL (Column-Major Order)
 - >v = M * u // matrix M converts vector u to vector v



Multiplying a Vector and a Matrix

- Vector-matrix multiplication in OpenGL (Column-Major Order)
 - ▶ v = M * u // matrix M converts vector u to vector v

$$\mathbf{v} = \mathbf{M} * \mathbf{u}$$

$$\begin{pmatrix} xm_{11} + ym_{12} + zm_{13} \\ xm_{21} + ym_{22} + zm_{23} \\ xm_{31} + ym_{32} + zm_{33} \end{pmatrix} = \begin{pmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$