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lTransformation in Unity

= Hierarchy

+v a
> Plane Scale (10, 10, 10) < SampieScene

Ff) Main Camera

® Create Plane, Capsule, Cube

ectional Light

» Capsule Position (0, 1, 0)
» Cube Position (5, 1, 0)

® Create Sphere under Cube
> Sphere Scale (0.7, 0.7, 0.7) Position (1, 0, 0)




lTransformation in Unity

® Add a C# script component, called Mover, on a cube.

public class Mover : MonoBehaviour

{

public float speed = 10.0f;
public float angle = 90.0f;
public bool isRotating = false;
[SerializeField]

private GameObject camera;
[SerializeField]

private GameObject capsule;

Drag and drop “MainCamera” (in
Hierarchy view) to “camera” (in
inspector view) of Mover

Drag and drop “Capsule”
(in Hierarchy view) to “capsule”
(in inspector view) of Mover




Transformation in Unity

void Update()

{
if (Input.GetKey(KeyCode.W))

// move forward
this.transform.Translate(speed * Vector3.forward * Time.deltaTime);
Debug.Log(this.transform.position);

}

else if (Input.GetKey(KeyCode.S))

{
// move backward
this.transform.Translate(speed * Vector3.back * Time.deltaTime); /
Debug.Log(this.transform.position);

}

else if (Input.GetKey(KeyCode.A))

{
// pan left
this.transform.Rotate(-angle * Vector3.up * Time.deltaTime);
Debug.Log(this.transform.position);

}

else if (Input.GetKey(KeyCode.D))

{
// pan right
this.transform.Rotate(angle * Vector3.up * Time.deltaTime);
Debug.Log(this.transform.position);

}

else if (Input.GetKey(KeyCode.L))

// look at
if (camera != null) this.transform.LookAt(camera.transform.position);
Debug.Log(this.transform.position);
}
else if (Input.GetKey(KeyCode.R))
{
isRotating = !isRotating;

}

if (isRotating)

{
// rotate around camera
if (capsule != null) this.transform.RotateAround(capsule.transform.position, Vector3.up, 100 * Time.deltaTime);
Debug.Log(this.transform.position);




Transformation in Unity

® Add a C# script component, called Orbit, on a sphere.

public class Orbit : MonoBehaviour { Dl’ag and dI’Op “CUbe”

'E;‘:ligl‘:‘;:?:eiz‘;e‘i = 100.0f; // orbit speed (in Hierarchy view) to “mainObject”

private GameObject mainObject; // the main object that we will orbit around (1n inSpeCtor VieW) of Orbit

// Use this for initialization
void Start () {

}

// Update is called once per frame
void Update () {
// this method will make this object orbit around the main object
if (mainObject != null) transform.RotateAround(mainObject.transform.position, Vector3.up, speed * Time.deltaTime);




Hierarchical Transformation

£ The Hierarchy and Parent-child relationships - Unity Official Tu

torials
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ILHS Coordinate System (Unity)

@ Left Hand Coordinate System (LHS) - z+ forward

@ Clockwise rotation y
@ If X-axis rotation MM y4
»Y — Z rotation is positive \
@ If Y-axis rotation \ Y
C X
»/ — X rotation is positive y

@ If Z-axis rotation

» X — Y rotation is positive



IRHS Coordinate System

@ Right Hand Coordinate System (RHS) - z+ coming out of the screen

® Counter clockwise rotation

@ If X-axis rotation 1
»Y — Z rotation is positive Qo
@ If Y-axis rotation
. (N p
»/ — X rotation is positive P v

@ If Z-axis rotation

» X — Y rotation is positive



Transformation




I Homogeneous Coordinates

@ Why 3D computer graphics uses 4 x 4 matrix?

¥ Because it can express all kinds of transformation matrices (including
translation, shearing, reflection, etc)

> |t also allows transformations to be concatenated easily
(by multiplying their matrices)

@ Non-homogeneous / Homogeneous coordinates convert

(X, Y, 2) > (X, Y, 2, 1) (2%, 2y, 2z, 2)

P(x/'w,y/'w,z/{/v)<—(x, Y, Z, W)
=1



Homogeneous Coordinates

Vector v = Zaivi=[a1 o

BN




Homogeneous Coordinates

U1
= (11171 +a2172 + agvg v
2
Vector v = Xa;v; =[a1 a, o3 OJ
U3
Py

= V1 +a,v, + azvs + py

Point P =P, + Za;v; =[a1 a, o3 1}

~ N e 3
aq aq
a a
P=|"%| v= 7
a3 as
1 0




IAffine Transformation

@ The affine transformation maintains collinearity.

»That is, every affine transformation preserves lines. All points on a line
exist on the transformed line.

@ Also, it maintains the ratio of distance.

¥ That is, the midpoint of a line is located at the midpoint of the
transformed line segment.

®P’ = f(P)

®P’ =1(aP, + BP,) = af(P) + B1(P,)



IAffine Transformation

@ Most transformation in computer graphics are affine transformation. Affine
transformation include translation, rotation, scaling, shearing.

@ The transformed point P’ (x’, y’, z’) can be expressed as a linear
combination of the original point P (x, vy, z), i.e.

x’= allx + alzy + a132 + a14
3N

(" e e N N
" | =1 s
(X T 1% Oy Oz Olgy i X

y Uz Oy Oaz Upy y
Z,

O3y O3z O3z O3y Z
1 0 0 0 1 1




IAffine Transformation

@ The transformed point P’ (x’, y’, z’) can be expressed as a linear
combination of the original point P (x, vy, z), i.e.,

(@] =[ (anxtagytag]
4 Op1 X+ Oy ¥ + Oy3
1
, _ ( ) w |
X | =10 V) A13 X
4 021 Y 23 y
0 0 1 1




IAffine Transformation

@ The transformed point P’ (x’, y’, z’) can be expressed as a linear
combination of the original point P (x, vy, z), i.e.,

X’ = Oy X+ 0,y + 0qs \
1
, _ ( ) w |
X |=| O V) A13 X
4 021 Y 23 y
0 0 1 1




IAffine Transformation

@ The transformed point P’ (x’, y’, z’) can be expressed as a linear
combination of the original point P (x, vy, z), i.e.,

X |= Oyg X+ 0Ogp ¥ + O3 |
y’ Olpp X+ Olgpp ¥ + Olp3
1
R 1.
X |=| O V) A13 X
4 21 22 23 y




IUnity Matrix Column - Major Order

@ Matrices in Unity are column major.

// member variables
X y Z

// MO0 MO1 MO2 MO3

// M10 M11 M12 M13

/1 M20 M21 M22 M23

/7 M30 M31 M32 M33

indices

00

M[row, column] == M[row + column * 4]



Unity Matrix Column - Major Order

@ Matrices in Unity are column major.

// member variables

————————————————————

\,

___________________

_________

_________

_________

__________

/1 M30 M31 M32 M33

||
1
s
1
|.

indices

______________

______________

______

.......

______

.......

03 07 11 15

M[row, column] == M[row + column * 4]



IUnity Matrix Column - Major Order

@ Matrices in Unity are column major.

// member variables

// MOO MO1 MO2 MO3
/7 M10 M11 M12 M13
/1 M20 M21 M22 M23
/7 M30 M31 M32 M33

indices

00

M[row, column] == M[row + column * 4]



IUnity Matrix Column - Major Order

@ Unity uses 4 x 4 matrix and 4 x 1 vector for transformation
»V=(2,6,-3,1)

¥ M = translate 10 units in x-axis

______

(MO0 sMOT vy MozvzemMosvw ) =[{ oo mor w2 mos | [ (vx
M10*vx +M11*vy+M12*vz+M13*vw M10 M11 M12 M13 vy
M20*vx +M21*vy+M22*vz+M23*vw M20 M21 M22 M23 vZ

L M30*vx +M31*vy+M32*vz+M33*vw IR M30 M31 M32 M33 ) VW




IUnity Matrix Column - Major Order

@ Unity uses 4 x 4 matrix and 4 x 1 vector for transformation
»vV=(2,6,-3,1)
»M = translate 10 units in x-axis

V' =M*v=(»12, 6, -3, 1)

(MO0 +MOT*vy+MO2*vZ+MO3*vw - Moo Mot moz  mo3 || (w
M10*vx +M11*vy+M12*vz+M13*vw ' M10  M11 M12 M13 vy
M20*vx +M21*vy+M22*vz+M23*vw M20 M21 M22 M23 vZ

L M30*vx +M31*vy+M32*vz+M33*vw )L M30  M31 M32  M33 ) VW




IUnity Matrix Column - Major Order

@ Unity uses 4 x 4 matrix and 4 x 1 vector for transformation
»vV=(2,6,-3,1)
»>M = translate 10 units in x-axis

V' =M*v=(»12, 6, -3, 1)

! MO0*vx +M01*vy+M02*vz+M03*vw ) = (‘ MOQ MO1 M02 MO3 [ VX
M10*vx +M1T*vy+M12*vz+M13*vw || I M10  M11  M12  MI3 ||| iwy
M20*vx +M21*vy+M22*vz+M23*vw || |l M20  M21  M22  M23 ||| vz

| L M0V +M31*Vy+M32" vz M33 VW j LM30 M3 M32 M33 / VW




Geometric Transformation

#® Geometric transformation refers to a function that transforms a group of
points describing a geometric object to new points.

@ At this time, the points are transformed to a new position while
maintaining the relationship between the vertices of the objects.

@ Basic transformation
> Translation
¥ Rotation

»>Scaling



ITranslation

#® Translation

// create a translation matrix

Matrix4x4 m = Matrix4x4.Translate(new Vector3(dx, dy, dz));
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ITranslation

#® Translation

// create a translation matrix

Matrix4x4 m = Matrix4x4.Translate(new Vector3(dx, dy, dz));
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ITranslation

#® Translation

// create a translation matrix

Matrix4x4 m = Matrix4x4.Translate(new Vector3(dx, dy, dz));

1 0 0 |dx 1 0 0 i-dx

0 1 0 ldy 0 1 0 i-dy
P=Tp T = T1 =

0 0 1 idz 0 0 1 -dz

o 0 0 1 o 0 0 1

~ / - /



Translation

#® Translation

» Matrices in Unity are column major; i.e. the position of a transformation matrix is in

the last column, and the first three columns contain x, y, and z-axes.

// get matrix from the Transform

var matrix = transform.localToWorldMatrix;

// get position from the last column

var position = new Vector3(matrix[0,3], matrix[1,3], matrix[2,3]);
// get position from the last column

var position = matrix.GetPosition();

o o o




Translation

#® Translation

» Matrices in Unity are column major; i.e. the position of a transformation matrix is in

the last column, and the first three columns contain x, y, and z-axes.

// get matrix from the Transform

var matrix = transform.localToWorldMatrix;

// get position from the last column

var position = new Vector3(matrix[0,3], matrix[1,3], matrix[2,3]);
// get position from the last column

var position = matrix.GetPosition();

= X

o o o

o<

o S N

dx




Translation

#® Translation

» Matrices in Unity are column major; i.e. the position of a transformation matrix is in

the last column, and the first three columns contain x, y, and z-axes.

// get matrix from the Transform

var matrix = transform.localToWorldMatrix;

// get position from the last column

var position = new Vector3(matrix[0,3], matrix[1,3], matrix[2,3]);
// get position from the last column

var position = matrix.GetPosition();

o o o




ITranslation

#® Translation

» Matrices in Unity are column major; i.e. the position of a transformation matrix is in
the last column, and the first three columns contain x, y, and z-axes.

// get matrix from the Transform ...~ |~

var matrix = transform.localToWorldMatrix;

// get position from the last column

var position = new Vector3(matrix[0,3], matrix[1,3], matrix[2,3]);
// get position from the last column

var position = matrix.GetPosition();



@ Scale

// create a scaling matrix
Matrix4x4 m = Matrix4x4.Scale(new Vector3(sx, sy, sz));




@ Scale

// create a scaling matrix
Matrix4x4 m = Matrix4x4.Scale(new Vector3(sx, sy, sz));
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Reflection

@ Reflection

// create a reflection matrix about the yz-plane (the plane x = 0)
Matrix4x4 m = Matrix4x4.Scale(new Vector3(-1, 0, 0));

// create a reflection matrix about the xz-plane (the plane y = 0)
Matrix4x4 m = Matrix4x4.Scale(new Vector3(0, -1, 0));

// create a reflection matrix about the xy-plane (the plane z = 0)
Matrix4x4 m = Matrix4x4.Scale(new Vector3(0, 0, -1));

// create a reflection matrix over (0, 0, 0)

Matrix4x4 m = Matrix4x4.Scale(new Vector3(-1, -1, -1));




@ Shear
y
A
xy) x,y)
| ,/’ ny(e) —
i 5 /‘\\9
v : X h
X =Xx+ycotB+0
Y=Y +0x+0
Z =7 +0x+0y
y x'—x

= cotf =

tanf = =

o o o B

cotd

o = O O
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Shear
@ Shear
y e
A
x,y) X, y)
E H,,(0) =
i 5 /‘\‘\9
w ' > X h
X ={x+ycotH
=y
Z =z
,_
tanf = ,y = cotf =—
x'—x y

1 cot6 O O

0 1 0 0

0 0 1 0
o 0 0 1




@ Shear
Y‘ 1 cotd O 0
£ X

xy) X-x (Xy) 7 0 1 0 0
QI—. y =Yy ny(e) —
i 0 0 1 0
it R
L\ o o0 o0 1
- ' > X - g
X =X+ ycotB

y =y

7 =7z

y x'—

tanf = —— = cotf = cotd -y=x"—x, x'=x+cotf -y




@ Rotation

> Unity uses Quaternion for rotation

// create a matrix that can be used to rotate a set of vertices
around the x / y / z-axis (Euler angle in degree)

// a rotation 30 degrees around the y-axis
Quaternion rotation = Quaternion.Euler(0, 30, 0);
Matrix4x4 m = Matrix4x4.Rotate(rotation);



@ Rotation in Z-axis (Unity LHS CW) R1(6) = R(-60)
R1(6) =RT(-6)

( |f_-} r, 1
=X’ = Xicosé i y $ind o

>y’ = xising +y ¢osH o

»7'=Z

// create a Rz matrix
Matrix4x4 rz = Matrix4x4.Rotate(Quaternion.Euler(0, 0, 45));

rx’\=([c059H-sin0} 0 0 /X\
y ' sinf | icosdi O 0 y
zZ 0 0 1 0 v/

\1J \ 0 0 1 1 )\1/

P’=R (6)-P



@ Rotation in X-axis (Unity LHS CW)

>y’ =y cosf - z sinf

7’ =ly sind + z cosf o

X =X

// create a Rx matrix
Matrix4x4 rx = Matrix4x4.Rotate(Quaternion.Euler(30, 0, 0));

(x|=[1 o o o |x
y’ 0 {cos® -sinf | O y
z 0 {sinf cosf | 0 Z

g 1 I 0 0 0 1 I 1 |

P’=R ()P



@ Rotation in Y-axis (Unity LHS CW)

\ cos sin
X’ ={x cosf +zsinf o /\ /\
, : ., _ Y7 _
»Z’ ={-Xsin@ + z cosf = ’ \/ \7
>y’ =ly!

// create a Ry matrix
Matrix4x4 ry = Matrix4x4.Rotate(Quaternion.Euler(0, 60, 0));

() =lest o (smg) o |[x
vl o o oy
;| [Sne o (o) 0 | 2
g 1 I 0 0 0 1 I 1 |

P'=R,(6) P



@ Rotation in arbitrary axis (Unity LHS CW)

// create a Ra matrix

Matrix4x4 ra = Matrix4x4.Rotate(Quaternion.Euler(30, 60, 45));
// create a Rb matrix

Matrix4x4 rz = Matrix4x4.Rotate(Quaternion.Euler(0, 0, 45));
Matrix4x4 rx = Matrix4x4.Rotate(Quaternion.Euler(30, 0, 0));
Matrix4x4 ry = Matrix4x4.Rotate(Quaternion.Euler(0, 60, 0));
Matrix4x4 rb=ry *rx*rz; // Z - X =Y

// ra == rb matrix

/]l ra==rb



I Composing Transformation

@ Composing transformation is a process of forming one transformation by
applying several transformation in sequence.

@ If you want to transform one point, apply one transformation at a time or
multiply the matrix and then multiply this matrix by the point.

S —
Q=(M3 - (M2:-(M1:-P)))=M3-M2-M1-P
| |

(pre-multiply) v
M




Composing Transformation

@ Matrix multiplication is associative.
M3 - M2 - M1 = (M3 - M2) - M1 = M3 - (M2 - M1)
@ Matrix multiplication is not commutative.

A-B!'=B-A



ITransformation Order Matters!

@ The multiplication of the transformation matrix is not commutative.

@ Even if the transformation matrix is the same, it may have completely
different results depending on the order of multiplication.

// original cube at the origin(0, 0, 0)
RT = Rz(45) * T(1.5, 0, 0) // T first, then Rz
TR=T(1.5, 0, 0) * Rz(45) // Rz first, then T

TRS = T(1,2,-3) * Rz(45) * S(1/5, 1/5,1/5) // S >R = T

SRT = S(1/5, 1/5, 1/5) * Rz(45) * T(1,2,-3) // T— R—>S

TRS! = SRT // Transformation Matrix Order Matter!




ITransformation Order Matters!

@ The multiplication of the transformation matrix is not commutative.

@ Even if the transformation matrix is the same, it may have completely
different results depending on the order of multiplication.

// original cube at the origin(0, 0, 0)
RT = Rz(45) * T(1.5, 0, 0) // T first, then Rz
TR=T(1.5, 0, 0) * Rz(45) // Rz first, then T

TRS = T(1,2,-3) * Rz(45) * S(1/5, 1/5,1/5) // S >R = T
SRT = S(1/5, 1/5, 1/5) * Rz(45) * T(1,2,-3) // T— R—>S

TRS! = SRT // Transformation Matrix Order Matter!



I Composing Transformation

@ TRS matrix
»For example, transforms a position p=(5, 0, 0)
»scale 1/5
»rotate /4 in y-axis
»>translate (1, 2, -3)

»Then, M = T(1, 2, -3) * Ry(45) * S(1/5, 1/5, 1/5)

®p’ = Mp = (1.707, 2, -3.707)



I Composing Transformation
@ Vector3 scale = new Vector3 (0.2, 0.2, 0.2);
@ Quaternion rotation = Quaternion.Euler (0, 45, 0);

@ Vector3 translation = new Vector3 (1, 2, -3);

// create a composing transformation Scale — Rotate — Translate

Matrix4x4 m = Matrix4x4.TRS(translation, rotation, scale);

/] create a composing transformation Scale — Rotate — Translate
Matrix4x4 m2 = Matrix4x4.Translate(translation) *
Matrix4x4.Rotate(rotation) * Matrix4x4.Scale(scale);

//m = m2

// get a new position by a composing transformation matrix, m
Vector3 pos = new Vector3(5, 0, 0);
Vector3 newpos = m.MultiplyPoint(pos);



MultiplyPoint

Matrix4x4.MultiplyPoint Transforms a position by this matrix (generic)

Matrix4x4.MultiplyPoint3x4 Transforms a position by this matrix (fast)

Matrix4x4.MultiplyVector Transforms a vector by this matrix




MultiplyPoint

Matrix4x4.MultiplyPoint Transforms a position by this matrix (generic)

Matrix4x4.MultiplyPoint3x4 Transforms a position by this matrix (fast)

Matrix4x4.MultiplyVector Transforms a vector by this matrix




MultiplyPoint

Matrix4x4.MultiplyPoint Transforms a position by this matrix (generic)

Matrix4x4.MultiplyPoint3x4 Transforms a position by this matrix (fast)

Matrix4x4.MultiplyVector Transforms a vector by this matrix
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lOrientation

® We will define orientation to mean an object’s instantaneous
rotational configuration.

® Think of it as the rotational equivalent of position

® Direction

> Vector has a direction but not orientation

® Rotation

> An orientation is given by a rotation from identity orientation

® Angular Displacement

> The amount of rotation is angular displacement




l Representing Orientations

® Is there a simple means of representing a 3D orientation (analogous
to Cartesian coordinates)?

® Not really

® There are several popular options though
> Euler angles - the simplest
> Rotation vectors (axis/angle)
> Rotation matrices
> Quaternions

> efc...




u...E..H.lEEf}E‘.%l.?E...

® Euler Angles

> Represent any arbitrary orientation as three rotations about
three mutually perpendicular axes (rotation about X, Y, Z)

> Sometimes described as “Yaw, Pitch, Roll” or similar

> A sequence of rotations around principle axes is called an
Euler Angle Sequence




» Axis order

> Euler angles represent three composed rotations that move a reference
frame to a given referred frame.

> Euler angles are used in a lot of applications, but they tend to
require some rather arbitrary decisions.

>(yJ X, Z); (X7 Y, Z); (Z, X, y), ... can be used

XYZ XZY XYX XZX
YXZ YZX YXY YZY
LXY ZYX IXL LYLZ



’Z.E!.J.!sr.éng!sﬁ...

® Yaw, Pitch, Roll

® Yaw (rotation about Y), Pitch (X), Roll (Z) sequence is used in
OpenGL/DirectX/Unity

Roll .==.. Yaw fvaw\

eed M
\ Pitch Roll

Pitch

I O|0|X] &4 :https://en.wikiversity.org/wiki/Flight_dynamics
https://www.faa.gov/



lEuler Angles to Matrix Conversion

® Any orientation can be achieved by composing three elemental rotations

>1i.e., Any rotation matrix can be decomposed as a product of three elemental
rotation matrices.

————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————
/’ \\

CyCy CySz —Sy
= |SxSyCz — CxSz  SxSySz + CxC; SxCy
CxSyCz t SxSz  CxSySz; — SxCz; CxCy

~ -
__________________________________________________________________________________________________________________________



l Euler Angle Order

® As matrix multiplication is not commutative,
The order of operations is important.

® Rotations are assumed to be relative to fixed world axes,
rather than local to the object.

® One can think of them as being local to the object
if the sequence order is reversed.

® Euler angle can be used differently by applications.
> XYZ convention is widely used in 3D graphics

> ZXZ convention is used in rigid-body dynamics



Euler Angle Order

® ZXZ convention
> XYZ (fixed) system is shown in blue.
> XYZ (rotated) system is shown in red.

» The line of nodes, N, is shown in green.

> (Z-rotation) Rotate about the Z-axis by «.

¢ The X-axis now lies on the line of nodes, N

> (X-rotation) Rotate again about the rotated
X-axis (i.e., N) by B.

¢ The Z-axis is now in its final orientation,
and the X-axis remains on the line of nodes

O8I https: //en.wikipedia.org/wiki/
=X : Euler_angles

> (Z-rotation) Rotate a third time about the new Z-axis by v.




lVehicle Orientation Using Euler Angles

® Generally, for vehicles, it is convenient to rotate in
roll (z), pitch (x) and then yaw (y) order.

® In situations where there is a definite ground plane,
Euler angles can actually be an intuitive representation.

A +y

front of vehicle

v

+X



lRotations not uniquely defined with Euler Angles
® Rotations are not uniquely defined with Euler Angles.

® Cartesian coordinates are independent of each other.

> Arbitrary position = x-axis position + y-axis position + z-axis position

® Euler angles do not act independently of each other.

> Arbitrary orientation = x-axis rotation matrix * y-axis rotation matrix * z-
axis rotation matrix

> For example, (z, x, y) = (90, 45, 45) = (45, 0, -45)



Gimbal Lock

® One potential problem is ‘gimbal lock’.

® ‘Gimbal Lock’ results when two axes effectively line up, resulting in a
temporary loss of a degree of freedom. Change to one of the angles affect to

the entire system.

> This is related to the singularities in longitude that you get at the north and
south poles.

(x=30, y=90, z=0)




Gimbal Lock

® One potential problem is ‘gimbal lock’.

® ‘Gimbal Lock’ results when two axes effectively line up, resulting in a
temporary loss of a degree of freedom. Change to one of the angles affect to

the entire system.

> Rotate 30 about X, then rotate 90 about Y. The current Z-axis is in line with
Xp-axis. This is what we call ‘gimbal lock’ situation.

(x=30, y=90, z=0)




Gimbal Lock

® One potential problem is ‘gimbal lock’.

® ‘Gimbal Lock’ results when two axes effectively line up, resulting in a
temporary loss of a degree of freedom. Change to one of the angles affect to

the entire system.

> Any further rotation about the Z-axis affects the same degree of freedom as
rotating about the X-axis - losing the third DOF.

(x=30, y=90, z=0)
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lProblem with Interpolating Euler Angles

® The second problem is with generating the in-between frames, due to the
fact that the Euler angles do not act independently of each other.

® Let say you have the object with (0,180,0) of rotation angles,
and the next keyframe rotation angles is in (0,0,0)

> (180,0,180) represents the same orientation of (0,180,0)

Halfway between
(0,0,0) and (0,180,0)

(x=0, y=90, 2=0)



*Problem with Interpolating Euler Angles

® The second problem is with generating the in-between frames, due to the
fact that the Euler angles do not act independently of each other.

® Let say you have the object with (0,180,0) of rotation angles,
and the next keyframe rotation angles is in (0,0,0)

> But, the halfway between (0,180,0) and (0,0,0) is not same orientation of
the halfway between (180,0,180) and (0,0,0)

Halfway between
(0,0,0) and (180,0,180)

(x=90, y=0, 2=90)



Euler Angles

® Euler angles are used in a lot of applications, but they tend to require some
rather arbitrary decisions.

® They also do not interpolate in a consistent way (but this isn’t always bad).

® They can suffer from Gimbal lock and related problems.

® There is no simple way to concatenate rotations.
® Conversion to/from a matrix requires several trigonometry operations.

® They are compact (requiring only 3 numbers).




lRotation Vectors and Axis/Angle

® Euler’s Theorem also shows that any two orientations can be related
by a single rotation about some axis (not necessarily a principle axis).

® This means that we can represent an arbitrary orientation as a rotation about
some unit axis by some angle (4 numbers) (Axis/Angle form).

® Alternately, we can scale the axis by the angle and compact it down to a
single 3D vector (Rotation vector).



Rotation Vectors and Axis/Angle

® To generate a matrix as a rotation q
around an arbitrary unit axis a :

R =1cos 6 + Symmetric (1 — cos6) + Skew sin 0

Axis of Rotation
Point rotates on
circle of rotation

\Pivot joint | OI0IXl EX :-—

[N ] l 1 (

: 2 |

LU0 0 | ax  axa, axa,| | 0 -a, a,

=[0~10ficosO 4 [aya, a5 aya,f(1—cosh)+| a, 0 —ay|sin®

i ~1F ‘ 2 | |—a, a 0

{10 01k A, G0, 4% o
5' az + cos (1 —a2) a,a,(1—cosf) —a,sin® a,a,(l—cosh)—a,sinb] |
i X X xUy z xUz y ;
. = |aya,(1 —cosB) +a,sinb a; + cos 0 (1 —a;) aya,(1 —cos@) —a,sinB| |
i aya,(1 —cosf) —a,sin® a,a,(l—cosf)+ a,sind az + cos 6 (1 — a2) §




l Rotation Vectors and Axis/Angle Rotation axig

® To generate a matrix as a rotation q
around an arbitrary unit axis a :

Rotation angle

R =1cos 6 + Symmetric (1 — cos6) + Skew sin 0

| 0| 0| X| = Xhttps: //www.opengl-tutorial.org/intermediate-
tutorials/tutorial-17-quaternions/

1 0 0 ay aya, aya,
=[0 1 0|cosf+|aya, a; aya,|(1—cosd)+| a, 0 —ax sin O
0 0 1 axa, a,a, az —ay ax 0
az + cos 9 (1 —a2) aya,(1 —cosf) —a,sin® aya,(1—cosf)—a,sinbd
= |a,a, (1 — cos6) + a,sin 6 a; + cosf (1 —a3) aya,(1 —cos@) —a, sin®
aya,(1—cosf)—ay,sinb a,a,(1—cosf)+ a,sinb az + cos 6 (1 — a2)




lBD Rotation as Vector Components

® Rotate O by an arbitrary axis a = [a,, a,, a,]

x’ Ay Ay X
y'| = (Symmetric ([%D (1 — cos ) + Skew ([%D sin 0 + I cos 9) [y]
7! a, a, Z




3D Rotation as Vector Components

® Rotate O by an arbitrary axis a = [a,, a,, a,]

x’ Ay Ay
y'| = (Symmetric ([%D (1 — cos ) + Skew ([%D sin 0 + I cos 9) [
7' a, a,

X

y
z

|

R (x)



lBD Rotation as Vector Components

‘W=dx#,
=ax(X—1)
=(@xx) - (@xx)

. =adXX

R(X,) =cos8x, +sinfw . |
R(X) :éR(f")H R(%,) R > o 5 o 9
=E\R(5c’"),§—l{cos 0%, +sinfw, ) !
=(a-x)d+cosf (¥ — (d-x)da) +sindw

=cosOx+ (1 —cosB)(a-x)da+sinf(ax x)




lBD Rotation as Vector Components

‘W=dx#,
=ax(X—1)
=(@xx) - (@xx)

. =adXX

R(X,) =cos8x, +sinfw
R(X) R(Xu) + R(Z,) .
= R(x") + cos 8 x xl + sinf w W

...................

N,

..................

= cosOx + (1 — COSH)(a-x)a+ sin 8 (a X x)



3D Rotation as Vector Components

cos 8 [|[R(x )|,

= cos 6 llegll 5

= cosbfx,;

lax |
: cos 8 =
IRGeLI
; = |lax || = cos 8 ||R(x)I|
- > X
\ ) 1
v av

.........



3D Rotation as Vector Components

= cos 0 ||21]| =2

cos 8 [|[R(x )|,

[Pz

= cosbfx,;

Sin 6 ||RCxp)|lw

= Sin 9 ||w]|

= Sinf w

IRCe I =l l = Nwll



lBD Rotation as Vector Components

‘W=dx#,
=ax(X—1)
=(@xx) - (@xx)

. =adXX

R(X,) =cos8x, +sinfw | .
R(f) R(X") + R(XJ_) ‘ > > 5> 5 S _)
= R(x") + cos 6 X xl + sinf w w \ '

...................

..................

N,

..................

...................



3D Rotation as Vector Components

Ax

aZ
® The vector a specifies the axis of rotation. This axis vector must be normalized.

® The rotation angle is given by 0.

® The basic idea is that any rotation can be decomposed into weighted
contributions from three different vectors.

ax
y'| = | Symmetric [ay‘ (1 —cos@) + Skew| 2| |sin® +IcosO
aZ

X

Z



lBD Rotation as Vector Components

® The symmetric matrix of a vector generates a vector in the direction of
the axis.

® The symmetric matrix is composed of the outer product of a row vector and
an column vector of the same value.

Ay ‘ a% axay a,a, X
Symmetric| |4, ]| | = = a.a, a)z/ aya,| |
tz a,a, aa, az Z
3 %3
a
Symmetric az: ;C/ = a(@- %) X' = agx+ Aedyy T x0,Z
a,|/ |z Y =aax +ayy+aya,z

!
— 2
Z =aya,x +ayay tazz



lBD Rotation as Vector Components

Symmetric = (a - x)a

l @
(@ +a) +a?) | &
a’Z

r— 2
y' = ayax +a3yy +aya,z

z' = aya,x + ayay +azz



lBD Rotation as Vector Components

® The symmetric matrix of a vector generates a vector in the direction of
the axis.

® The symmetric matrix is composed of the outer product of a row vector and
an column vector of the same value.

Ay Ay a_;zc axay a,a, X
Symmetric| |4, | | = |4, [[a, a, a,] =]|axa, az  ayal ¥

a, a, a,a, ayaz ag Z
Symmetric aai ;C/ = a(@- %) X' = agx + Axdyy * Az 0,2

a,]/ |z Y = x@yX + a3y +aya,z

Z = ayax + ayay +a;z



lBD Rotation as Vector Components

® Skew symmetric matrix of a vector generates a vector that is
perpendicular to both the axis and it's input vector.

Ay 0 -a, a,
Skew| |a,| | =] 4, 0 —a,
a, —ay Oy 0 _
-\ _ = — ax X
Skew(a) =a x x
ay Xy
a, VA
ayzZ — agy
= —a,z+ a,x

Ay — dyX



lBD Rotation as Vector Components

® First, consider a rotation by O :

_______
- ~.

- ~

”’ R,

ay @z  ayata, a, 1 0 0] /[t o o
Rotate([%],O)z axa, aya,|(1-1)+| a, —ax|0+]0 1 O]l &[0 1 0]/
a, , aa, a; y 0 0 0 1 00 ____ 1V
® For instance, a rotation about the x-axis:
1] 1 0 O 0O 0 O 1 0 O
Rotate( [0],0)=1]0 0 O|(1—cos@)+|0 O —-1|Sin6@+|0 1 O] cosb
10 0 0 O 0O 1 O 0O 0 1

17 1 0 0
Rotate(O ,9>= 0 cos@ —Sin@

10 Sin@ cos @



3D Rotation as Vector Components

® For instance, a rotation about the y-axis

0] 0 0 O
Rotate( 1 ,9) =10 1 O](l— cosO) +
0. 0 0 O
0] cosf 0 Sind
Rotate( 1 ,0) = 0 1 0 ]
10 |—Sin8 0 cos®@

0
0

-1

® For instance, a rotation about the z-axis

0 0 0 O
Rotate( 0 ,9) =10 0 O0|(1— cosB) +
111 0 0 1

(0] [cosd —Sin@ O
Rotate| |0],0 | = |Sin® cos® O

0 0 1

0
1
0

-1 0
0 O
0 O

] Sin @ +




¥ To convert a scaled rotation vector to a matrix, one would have to extract the
magnitude out of it and then rotate around the normalized axis

» Normally, rotation vector format is more useful for representing angular
velocities and angular accelerations, rather than angular position (orientation)

~



¥ Storing an orientation as an axis and an angle uses 4 numbers, but Euler’s
theorem says that we only need 3 numbers to represent an orientation

» Mathematically, this means that we are using 4 degrees of freedom to
represent a 3 degrees of freedom value

® This implies that there is possibly extra or redundant information in the
axis/angle format

» The redundancy manifests itself in the magnitude of the axis vector.
The magnitude carries no information, and so it is redundant.
To remove the redundancy, we choose to normalize the axis,
thus constraining the extra degree of freedom



» We can use a 3x3 matrix to represent an orientation as well.

® This means we now have 9 numbers instead of 3, and therefore,
we have 6 extra degrees of freedom.

¥ NOTE : We don’t use 4x4 matrices here, as those are mainly useful
because they give us the ability to combine translations.
We will just think of 3x3 matrices.



lMatrix Representation

® Those extra 6 DOFs manifest themselves as 3 scales (x, y, and z)
and 3 shears (xy, xz, and yz)

® If we assume the matrix represents a rigid transform (orthonormal),
then we can constrain the extra 6 DOFs

la| = |b| =|c| =1
a=DbxXc
b=cXxa
c=axb




¥ Matrices are usually the most computationally efficient way to apply rotations
to geometric data, and so most orientation representations ultimately need to
be converted into a matrix in order to do anything useful.

¥ Why then, shouldn’t we just always use matrices?
> Numerical issues
> Storage issues
> User interaction issues

> Interpolation issues



lQuaternions

® Quaternions are an interesting mathematical concept with a deep relationship
with the foundations of algebra and number theory

® Invented by W.R.Hamilton in 1843
® In practice, they are most useful as a means of representing orientations

® A quaternion has 4 components

qg=( ¥y z w




lQuaternions (Imaginary Space)

® Quaternions are actually an extension to complex numbers.

® Of the 4 components, one is a ‘real’ scalar number,
and the other 3 form a vector in imaginary ijk space!

q=xi+yj+zk+w
i2=j2=k?=ijk=-1
i = jk = —kj
j=ki=—ik

k=ij =—ji



lQuaternions

® Quaternions are an interesting mathematical concept with a deep relationship
with the foundations of algebra and number theory

® Invented by W.R.Hamilton in 1843
® In practice, they are most useful as a means of representing orientations

® A quaternion has 4 components




lQuaternions (Imaginary Space)

® Quaternions are actually an extension to complex numbers.

® Of the 4 components, one is a ‘real’ scalar number,
and the other 3 form a vector in imaginary ijk space!

q=xi+yj+zk+w

2 = j2 = k? = ijl ={~1)
i = jk = —kj
j=ki=—ik

k=ij =—ji



Quaternions (Imaginary Space)

® Quaternions are written as the combination of a scalar value s
and a vector value v, where

q =(v,s)
v=|xv,z|
S=w



l |ldentity Quaternions

® Unlike vectors, there are two identity quaternions.

® The multiplication identity quaternion is

q = (0,0,0,1) = 0i + 0j + Ok + 1]

__________________________________________________________________________

® The addition identity quaternion (which we do not use) is

q — (O)0;0;O>




Unit Quaternions

® For convenience, we will use only unit length quaternions,
as they will make things a little easier

ffff

|q|—\/x2+y2+zz+W2*-1

® These correspond to the set of yectors that form the ‘surface’
of a 4D hyper-sphere of radius ‘{ '

® The ‘surface’ is actually a 3D volume in 4D space, but it can sometimes be
visualized as an extension to the concept of a 2D surface on a 3D sphere

- Quaternion normalization

——————————————————————————————————————————————————————————————————————————




lQuaternions as Rotations

® A quaternion can represent a rotation by an angle q around a unit axis a

(ax, ay, az)

. 0 0 0 9]
q _axsmz, aysmz, azsmz, cos2
or

. 0 9]
q _a sin > CcoS >

® If a has unit length, then g will also has unit length



lQuaternions as Rotations

. 0 .0 .0 o
= \/a,zc sin? > + a; sin? = 4 aZ sin? = 4 cos? -
2 2 2 2

., 6 ‘i 0
= J51n2 ~(a% +af +a2) + cos?

=1

0 0
J51n2 |a|? + cos2 J31n2 + cos? =

2
=J1=1



lQuaternion to Matrix

® Equivalent rotation matrix representing a quaternion is

x? —y%—z% 4+ w? 2xy — 2wz 2xz + 2wy
2xy + 2wz —x2 +y?% —z2 + w? 2yz — 2wx
2xz — 2wy 2yz + 2wx —x? —y% 4+ z% + w?

® Using unit quaternion that x2+yZ+z2+w?=1, we can reduce the matrix to

1—2y%—2z% 2xy-—2wz 2xz + 2wy
2xy + 2wz  1—2x%—-2z% 2yz—2wx
2x7Z — 2wy 2yz + 2wx 1 —2x?%—2y?



Quaternion to Axis/Angle

® To convert a quaternions to a rotation axis, a (ax, ay, az) and an angle 0

Scale = \/x2 + y2 + z2 or Sin(acos(w))
_x

ax = /Scale
_Jy

ay = /Scale

az =%/ Scale

0 = 2acos(w)



lMatrix to Quaternion

® To convert a matrix to a quaternion

_\/m11+m22 +m33 +1
B 2

x_m23_m32 y_m31—m13 Z_m1z_mz1
4w 4w 4w

® If w=0, then the division is undefined. First, determining which q,, q,,9,, q;
is the largest, computing that component using the diagonal of the matrix.



lQuaternion Dot Product

® The dot product of two quaternions works in the same way as the dot product
of two vectors

P q=2x,Xq+¥Yq + Zpzg + wyw, =§;|p||q| cos ¢

® The angle between two quaternions in 4D space is half the angle one would
need to rotate from one orientation to the other in 3D space.



lQuaternion Multiplication

® If q represents a rotation and q’ represents a rotation,
then qq’ represents q rotated by q’

® This follows very similar rules as matrix multiplication
(I.e., non-commutative) qq’ # q’q

qQqq' = xi+yj+zk+w)X'i+yj+ 2’k +w)
=(sv' +s'v+Vv Xv,ss'—v-v')



lQuaternion Multiplication

® Note that two unit quaternions multiplied together will result in
another unit quaternion

® This corresponds to the same property of complex numbers

® Remember that multiplication by complex numbers can be thought
of as a rotation in the complex plane

® Quaternions extend the planar rotations of complex numbers to
3D rotations in space



lBasic Quaternion Mathematics

® Negation of quaternion, -q
>'[V S] = ['V 'S] = ['X) Y, -Z, 'W]
® Addition of two quaternion, p + q
>p+q= [py, ps] + [qV, gs] = [pv + qV, ps + gs]

® Magnitude of quaternion, |q|

>|ql = x2 +y2 + 22 + w?



lBasic Quaternion Mathematics

® Conjugate of quaternion, g* (Z&i At )
Pq* = [V S]* = ['V S] = ['X’ Y, -Z, W]

® Multiplicative inverse of quaternion, q' (=)
>q-1=q"/1q|
>qq-1=q-1q="1

® Exponential of quaternion

>exp(vq)=vsing+cos(q

® Logarithm of quaternion

>log(q) = log(v sin q + cos q) = log(exp(v q)) =v g
where q = [v sin q, cos q]



lQuaternion Interpolation

® One of the key benefits of using a quaternion representation is the ability
to interpolate between key frames.

> alpha = fraction value in between frame0 and frame1
»q, = Euler2Quaternion(frame0)

> (q, = Euler2Quaternion(frame1)

> q, = Quaternioninterpolation(q,, g,, alpha)

> (q,.Quaternion2Euler()

® Quaternion Interpolation 9 d

> Linear Interpolation (LERP)
> Spherical Linear Interpolation (SLERP)
> Spherical Cubic Interpolation (SQUAD)



lLinear Interpolation (LERP)

® If we want to do a direct interpolation between two quaternions
p and g by alpha

»>Lerp(p, q, t) = (1-t)p + (t)q
>where0<t <1

® Note that the Lerp operation can be thought of as a weighted average

(convex)
q
® We could also write it in it’s additive blend form
>Lerp(p, q, t) =p + t(q - p)
O<ts1



lwr\y SLERP?

® The set of quaternions live on the unit hypersphere. The direct interpolation
between quaternions would stray from the hypersphere.

L LD A

® An illustration in the plane of the difference between Lerp and Slerp

> The interpolation covers the angle v in three steps

> [Lerp] The secant across is split in four equal pieces The corresponding
angles are shown

> [Slerp] The angle is split in four equal angles



Spherical Linear Interpolation

® If we want to interpolate between two points on a sphere (or hypersphere), we
will travel across the surface of the sphere by following a ‘great arc.’

J

sind(1-t) sin &
= " | +— 2
sin@ sin@

a()

0= cos‘l(ql °q,)

k |0|n|x| EH o




Spherical Linear Interpolation

® We define the spherical linear interpolation of two quaternions
p and q by alpha

’
’
[

1

1

1

' sin((1 —t)6) sin(t0)
Slerp(p,q.t) 5 — = ———P+——

where 6 = acos(p - q)

® NOTE: if p, g are more than 90 degrees apart, it takes shorter path.



lSpherical Linear Interpolation

® Remember that there are two redundant vectors in quaternion space
for every unique orientation in 3D space

® What is the difference between : Slerp(p, q, t) and Slerp(-p, q, t) ?

> One of these will travel less than 90 1le the other will travel
more than 90 degrees across the sphere

> This corresponds to rotating the ‘short way’ or the ‘long way’

> Usually, we want to take the short way, so we negate one of them if
their dot product is < 0



2 why sausor

® Slerp produces smooth interpolation, but it always follows a great arc
connecting two quaternions - i.e. the animations change directions abruptly
at the control points. To smoothly interpolate through a series of quaternions,
use splines.

Q4

Spline Interpolation

ds

ds

,...,.:"|_1near Interpolation

G |F



lSpherical Cubic Interpolation (SQUAD)

® To achieve C2 continuity between curve segments, a cubic interpolation must
be done.

® Squad does a cubic interpolation between four quaternions by t

Squad(Q;, qi+1, i, Aj41,t)
= slerp(slerp(Q;, qi+1,t), slerp(a;, aj+1, t), 2t(1 — t))

B —log(q; ' * qi—1) +log(q;i ' * qiz1)
a; = q; * exp 1

B —log( g7 * q) +log(gih * qir2)
Ai+1 = (qi+1 * €XP 1



l Unity Quaternion

® p - q (dot product of two quaternions)

> static float Quaternion.Dot(Quaternion p, Quaternion q);
® yaw(y)/pitch(x)/roll(z) — quaternion

»>static Quaternion Euler(float x, float vy, float z);

® axis/angle — quaternion

> static Quaternion AxisAngle(float angle, Vector3 axis);

® lookat(forward) — quaternion

> static Quaternion LookRotation(Vector3 forward, Vector3 upward = Vector3.up);



l Unity Quaternion

® fromDirection/toDirection — quaternion

> static Quaternion FromToRotation(Vector3 from, Vector3 to);

®slerp(q,, q,, t) spherical linear interpolation between two quaternions
> Quaternion Quaternion.Slerp(Quaternion quaterniont,
Quaternion quaternion2,

float amount);

® // lerp(qq, q,, t) linear interpolation between two quaternions
> Quaternion Quaternion.Lerp(Quaternion quaterniont,
Quaternion quaternion2,

float amount);



lCatmull-Rom Spline Interpolation

® Given n+1 control points {P,, P,, .. P,}, you wish to find a curve that
interpolates these control points (and passes through them all), and is local in
nature (i.e. if one of the control points is moved, it only affects
the curve locally) - Catmull-Rom Spline.

® The Catmull-Rom Spline takes a set of keyframe points to describe a smooth
piecewise cubic curve that passes through all the points.
In order to use this routine we need four keyframe points.

® Given four keyframe points, P,, P,, P,, P5, the curve passes through P, at t=0
and it passes through P, at t=1 (0 <t < 1).

® The tangent vector at a point P is parallel to the line joining P’s two
surrounding points.



l Path Animation

Path Controlled Translation & Rotation
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