What is Interaction Design?
From Preece, Rogers & Sharp's Interaction Design
And Norman's The Design of Everyday Things

071010-1 2018년 가을학기 9/19/2018 박경신

Bad Design: Elevator Controls

■ Elevator controls and labels on the bottom row all look the same, so it is easy to push a label by mistake instead of a control button

■ People do not make same mistake for the labels and buttons on the top row. Why not?

http://www.baddesigns.com/elecon.html

Good and Bad Design

- A central concern of interaction design is to develop interactive product that are usable.
 - Usable = easy to learn + effective to use + enjoyable experience
- A good way to start to think about how to design a usable interactive product is to compare examples.
- Bad examples are often more instructive
 - www.baddesigns.com
 - Interface Hall of Shame http://homepage.mac.com/braster/iarchitect/shame.htm (original domain abandoned) http://hallofshame.gp.co.at/index.php?file=shame.htm&mode= original

Bad Design: Vending Machine

- Parking permit machine
- One needs to push button first to activate reader
- Normally, one inserts a bill first before making selection
- Contravenes well known convention

www.baddesigns.com/parking2.html

Good Design: Marble Answering Machine

- Marble answering machine (Bishop, 1995)
 - When one leaves a message, a marble comes out and stays in the tray
 - One can check a message by placing a marble on the speaker.
- Based on how everyday objects behave
- Easy, intuitive and a pleasure to use
- Only requires one-step actions to perform core tasks

Also see https://vimeo.com/19930744

Good and Bad Design

- What is wrong with the remote on the right?
- Why is the TiVo remote so much better designed?
 - Peanut shaped to fit in hand
 - Logical layout and colorcoded, distinctive buttons
 - Easy to locate buttons

What to Design

- Need to take into account:
 - Who the users are
 - What activities are being carried out
 - Where the interaction is taking place
- Need to optimize the interactions users have with a product
 - So that they match the users' activities and needs
- Design decisions based on understanding users' needs
 - Know what people are good and bad at
 - Consider what might help people in the way they currently do things
 - Think through what might provide quality user experiences
 - Listen to what people want and get them involved
 - Use tried-and-tested user-centered methods

What is Interaction Design?

- □ "Designing interactive products to support the way people communicate and interact in their everyday and working lives"
 - Sharp. Rogers and Preece (2007)
- □ "The design of spaces for human communication and interaction"
 - Winograd (1997)

Interaction Design?

- Number of other terms used emphasizing what is being designed, e.g.
 - User interface design
 - Software design
 - User-centered design
 - Product design
 - Web design
 - Experience design (UX)
 - Interactive system design
- □ Interaction design is the umbrella term covering all of these aspects
 - Fundamental to all disciplines, fields, and approaches concerned with researching and designing computer-based systems for people

The User Experience

- How a product behaves and is used by people in the real world
 - The way people feel about it and their pleasure and satisfaction when using it, looking at it, holding it, and opening or closing it
 - "Every product that is used by someone has a user experience: newspapers, ketchup bottles, reclining armchairs, cardigan sweaters." (Garrett, 2003)
- □ Down to the sensual effect small details have on them
 - Such as how smoothly a switch rotates or the sound of a click and the touch of a button
- □ Cannot design a user experience, only design for a user experience

What do professionals do in the Interaction Design business?

- Interaction designers
 - People involved in the design of all the interactive aspects of a product
- Usability engineers
 - People who focus on evaluating products, using usability methods and principles
- Web designers
 - People who develop and create the visual design of websites, such as layouts
- Information architects
 - People who come up with ideas of how to plan and structure interactive products
- □ User experience designers (UX)
 - People who do all the above but who may also carry out field studies to inform the design of products

iOS11 (June 5, 2017)

Why was the iPhone user experience such a success?

- Quality user experience from the start
- □ Simple, elegant, distinct brand, pleasurable, must have fashion item, catchy names, cool, etc.,

The Design of Everyday Things

- □ Don Norman pioneering book [1988]
- Originally published as *The* psychology of everyday things
- Motivates and explains usability principles

Norman, Donald A. (2013). *The Design of Everyday Things*. New York: Basic Books.

Design Principles

- Generalizable abstractions for thinking about different aspects of design
- The do's and don'ts of interaction design
- Suggest to designers what to provide and what to avoid at the interface
- □ Intended to help designers explain and improve the design
- Derived from a mix of theory-based knowledge, experience and common-sense

5 Design Principles

- Affordance
- Visibility
- Feedback
- Constraints
- Consistency

Explained in Norman, Donald A. The Design of Everyday Things. New York: Basic Books.

Affordances

- □ Concept from **Gibson**'s ecological psychology [1977]
- Norman refers to "perceived or actual properties of a thing, primarily those fundamental properties that determine just how the thing could possibly be used" [1988]
 - Refers to an attribute of an object that allows people to know how to use it
 - Plates (on doors) are for pushing
 - Knobs are for turning
 - Slots are for inserting things into
- □ Since has been much popularised in interaction design to discuss how to design interface objects
 - Scrollbars to afford moving up and down
 - Icons to afford clicking on

What does 'Affordance' have to offer Interaction Design?

- □ Interfaces are virtual and do not have affordances like physical objects
- □ Norman argues it does not make sense to talk about interfaces in terms of 'real' affordances
- Instead interfaces are better conceptualised as 'perceived' affordances
 - Learned conventions of arbitrary "mappings between action and effect" at the interface
 - Some mappings are better than others

Affordances

- Physical Affordances
 - How do the following physical objects afford? Are they obvious?

Affordances

- Virtual Affordances
 - How do the following screen objects afford?
 - What if you were a novice user?
 - Would you know what to do with them?

Affordances

- Poor affordances
 - Doors push or pull?
 - Where to push?
- Good affordances
 - Buttons that appear clickable

www.baddesigns.com/doorhand.html www.baddesigns.com/doors.html

Why is the basic Automobile Easy to Figure out?

- Things are **visible**
- Good mappings between controls and things controlled
 - Easy to determine relationships between actions and results, controls and their effects, system state and what's visible
- **□** Good conceptual model
 - User given consistent in presentation of operations and results
- □ Good feedback
 - Immediate and obvious effect

Two Conceptual Models

- Two conceptual models
 - The **designer**'s conceptual model
 - The user's conceptual model
- ☐ The **system image** is the visible part of a device (including the physical structure, the documentation, instructions, etc).
 - The designer only talks to the user through the system image.
 - If the system image doesn't make the design model clear then the user will create a different model through their interactions.
- Mental model
 - Conceptual model of the way something works, often constructed from fragmentary evidence.
- □ Jef Raskin "To the user the interface is the product."

Visibility

- Know state of device and actions available
- Natural design: No explanations needed
- □ The more visible functions are, the more likely users will be able to know what to do next.
- When functions are "out of sight", it makes them more difficult to find and know how to use.

Visibility

- Poor visibility
 - Boeing 757 Flight Management System did not show names of beacons when selecting where to navigate
- Good visibility
 - Google search page makes it clear where you can enter search text

Visibility

www.baddesigns.com/elcard.html

- □ Getting the elevator to go to your floor
 - This is a control panel for an elevator of a nice hotel in Los Angeles.
 - How does it work?
 - Push a button for the floor you want?
 - Nothing happens. Push any other button? Still nothing. What do you need to do?
 - It is not visible as to what to do!
 - You need to insert your room card in the elevator before it will work.
 - You think you need to slide the card in the vertical crack?
 - You try sliding the card and pushing the button. It doesn't work.
 - You flip the card over and try again. This time it works!

Visibility

www.baddesigns.com/elcard.html

- □ How would you make this action more visible?
 - Make the card reader more obvious
 - Provide an auditory message, that says what to do
 - Provide a big label next to the card reader that flashes when someone enters
 - Make relevant parts visible
 - Make what has to be done obvious

Visibility

- Here are some things that would have made it easier to see the "push to start" buttons
 - Make it larger
 - Using colors that contrasted with the background
 - Removing some of the nearby stickers and decals
 - Making it more centrally located on the gas pump
 - Using a real 3D button

Feedback

- Sending information back to the user about what action has been done and what has been accomplished
- □ Includes tactile, verbal, sound, highlighting, animation and combinations of these
 - E.g. when screen button clicked on provides **sound** or **red highlight feedback** Previous → "ccclichhk"

- Needs to be immediate
 - Imagine writing with a pen and waiting for the ink to show up on paper?
- Helps users detect errors
- Helps users explore technologies

Feedback

- Poor feedback
 - Boeing 757 Flight Management System provided no feedback on what beacon was selected
- Good feedback
 - Typing on keyboard (assuming no delays)

Feedback

- □ Controls with **conflicting feedback**. More coffee or less?
 - The top switch turns the coffee maker on/off.
 - When it's on, its light goes on. No light appears when the coffee maker is off.
 - The bottom switch selects the quantity of coffee desired.
 - The problem is with the light on this bottom switch. When its light goes on, for the smaller quantity or for the larger quantity?
 - People naturally expect more coffee to be associated with more light (light on)and less coffee to be associated with less light (light off)

www.baddesigns.com/coffee rs2.htm

Constraints

- Restricting the possible user actions that can be performed
- Helps prevent user from selecting incorrect options and thereby reduces the chance of making a mistake
- □ Three main types (Norman, 1999)
 - Physical
 - Cultural
 - Logical

Physical Constraints

- Refer to the way physical objects restrict the movement of things
 - E.g. only one way you can insert a key into a lock
- How many ways can you insert a CD or DVD disk into a computer?
- How physically constraining is this action?
- How does it differ from the insertion of a floppy disk into a computer?

Logical Constraints

- Rely on people's understanding of the way the world works
- Exploits people's everyday common sense reasoning about the way the world works
- Making actions and their effects obvious enables people to logically deduce what further actions are required
- E.g. Disabling menu options when not appropriate for the task in hand

Physical Constraints

- Labels that look like push buttons
 - Elevator controls and labels on the bottom row all look the same. So, it is easy to push a label by mistake instead of a control button
 - People do not make same mistake for the labels and push buttons on the top row. Why not?

www.baddesigns.com/elecon.html

Logical Constraints

Things that don't work the way you expect. Out of order?

- Need to push button first to activate the bill reader
- Normally insert money first before making selection
- Printed instructions, even obvious ones, aren't going to be read by some people.
- Contravenes well known convention

www.baddesigns.com/parking2.html

Cultural Constraints

Learned arbitrary conventions like red triangles for warning

□ Which are universal or which are culturally specific?

Cultural Constraints

■ What do these signs mean? Road sign in Mexico

□ What do these symbols mean? Controls on a rental car (intended to imitate European designs)

www.baddesigns.com/autoicons.html

Constraints

- Poor use of constraints
 - Tokyo Stock Exchange software did not prevent trader from making an outrageous trade
 - Command line systems force you to remember spelling and syntax of commands
- Good use of constraints
 - Click on icons to invoke commands
 - Gray out unavailable actions

Mappings

Natural mappings: No explanations needed

Mappings

- Relationship between controls and their movements and the results in the world
- Why is this a poor mapping of control buttons?

□ Why is this a better mapping?

□ The control buttons are mapped better onto the sequence of actions of fast rewind, rewind, play and fast forward

Mappings

■ Which controls go with which burners?

Why is this a better design?

www.baddesigns.com/ranges.html

Mappings

- □ Where do you plug in the mouse & keyboard?
- □ Top or bottom connector?
- Do the color coded icons help?

http://www.baddesigns.com/mouseconnector.html

Mappings

- How to design them more logically?
 - A provides direct adjacent mapping between icon and connector

 B provides color coding to associate the connectors with the labels

Mappings

- □ User **intentions** to available **actions**
 - Is there a natural mapping between what users want to do and what appears possible?
 - Do users stare at technology for sometime before they take action?
 - Or do they immediately know what to do?
 - Simplicity can help
- Poor mapping
 - Stove top controls
 - Clustered light switches
- Good mapping
 - Consistent play, rewind, fast forward, stop controls on media devices
 - Clearly visible and labeled power buttons

Mappings

- □ Perceived system state to actual system state
 - Perceived system state to actual system state
 - Users think the technology is doing one thing when it really is doing something else
 - Users unlikely to quickly detect problems
- Poor mapping
 - 757 Flight Management System had pilots thinking they were traveling towards different beacon
- Good mapping
 - Well-implemented progress bars

Mappings

- Available actions to perceived system state
 - The user should not be surprised with what happened after they completed an action
 - Technologies should behave in expected ways
 - Quick feedback is very important
 - Problems more likely if the mappings between user intentions and available actions were not good
- Poor mapping
 - Pull from a door knob when you were supposed to push
 - Try to close an application that won't close
- Good mapping
 - Press gas pedal, feel car accelerate

Mappings

- Actual system state to user intentions
 - Does the system allow states that users would never want?
 - Difficult to implement
 - Important for critical systems
- Poor mapping
 - 757 Flight Management System did disengage brakes when accelerating and pulling up to clear mountain
 - Tokyo Stock Exchange software sold stocks far below market prices (and more than were available)
- Good mapping
 - Voting systems that allow you to select only one candidate for President

Consistency

- □ Design interfaces to have **similar operations** and use **similar elements** for achieving **similar tasks**
- For example,
 - always use ctrl key plus first initial of the command for an operation – ctrl+C, ctrl+S, ctrl+O
- Main benefit is consistent interfaces are easier to learn and use
 - Users have to learn only a single mode of operation that is applicable to all objects

Internal and External Consistency

- □ Internal consistency refers to designing operations to behave the same within an application
 - But, difficult to achieve with complex interfaces
- External consistency refers to designing operations, interfaces, etc., to be the same across applications and devices
 - Very rarely the case, based on different designer's preference

When Consistency Breaks Down

- What happens if there is more than one command starting with the same letter?
 - E.g. save, spelling, select, style
- Have to find other initials or combinations of keys, thereby breaking the consistency rule
 - E.g. ctrl+S, ctrl+Sp, ctrl+shift+L
- □ Increases learning burden on user, making them more prone to errors
- A design solution is to create categories of commands that can be mapped into subsets of operations
 - E.g. All commands that are concerned with file operations (save, open, close) are placed together in the same file menu

Keypad Numbers Layout

- A case of external inconsistency
- (a) phones, remote controls

1	2	3
4	5	6
7	8	9
	0	

(b) calculators, computer keypads

7	8	9		
4	5	6		
1	2	3		
0				

Consistency

- Poor consistency
 - Boeing 757 Flight Management System almost always selected intended beacon when entering first letter
- Good consistency
 - Home button in web browsers always takes you home, no matter what page you are looking at

Heuristics

- Visibility of system status
 - Keep users informed about what is going on, through providing appropriate feedback within reasonable time
- Match between system and real world
 - Speak user's language rather than system-oriented language
- User control and freedom
 - User should feel in control
 - Stop technology from doing something
 - Undo
- Consistency and standards
 - Avoid making users wonder whether different words, situations or actions mean the same thing

Heuristics

- Design principles commonly referred to as heuristics
 - Interpreted in the design context, drawing on past experience of, how to design feedback and what it means for something to be consistent
- Usability Principles [Nielsen, 2001]
 - Visibility of system status
 - Match between system and the real world
 - User control and freedom
 - Consistency and standards
 - Help user recognize, diagnose, and recover from errors
 - Error prevention
 - Recognition rather than recall
 - Flexibility and efficiency of use
 - Aesthetic and minimalist design
 - Help and documentation

Heuristics

- □ Help users recognize, diagnose, recover from errors
 - Use feedback, visible system status, undo
- Error prevention
 - Make it difficult for errors to occur
- Recognition rather than recall
 - Make objects, actions, options visible
- □ Flexibility and efficiency of use
 - Provide shortcuts for experts

Heuristics

- Aesthetic and minimalist design
 - Give more prominence to information and options more likely to be used
 - Don't waste space showing rarely needed information
 - Use technology to reduce task complexity
- Help and documentation
 - Easy to search
 - Provide concrete steps

Reference

- □ Preece, Rogers & Sharp, Interaction Design: Beyond Human-Computer Interaction (Ch1)
- □ Norman, The Design of Everyday Things
- □ http://www.evl.uic.edu/aej/422/week01.html
- http://www.baddesigns.com/
- □ https://www.amazon.com/dp/0465050654?tag=useitcomusablein