
Java Programming II

Lab1
514770-1
Fall 2020
9/15/2020

Kyoung Shin Park
Computer Engineering

Dankook University



DRY (Don’t Repeat Yourself) Principle

 In the book “The Pragmatic Programmer”, DRY is defined 
as “Every piece of knowledge must have a single, 
unambiguous, authoritative representation within a 
system." 
 Knowledge – a precise functionality or an algorithm

Violations of DRY
 WET, "We enjoy typing," or “Waste everyone’s time”. 

How to Achieve DRY
 To avoid violating the DRY principle, divide your system into 

pieces. Divide your code and logic into smaller reusable units 
and use that code by calling it where you want. 

DRY Benefits
 Less code is good: It saves time and effort, is easy to maintain, 

and also reduces the chances of bugs.



KISS (Keep It Simple Stupid) Principle

 “Keep It Simple Stupid”, “Keep It Short and Simple”
 The KISS principle is descriptive to keep the code 

simple and clear, making it easy to understand. 
Violations of KISS

 "Why they have written these unnecessary lines and conditions 
when we could do the same thing in just 2-3 lines?"

How to Achieve KISS
 To avoid violating the KISS principle, try to write simple code. 

Whenever you find lengthy code, divide that into multiple 
methods — refactor.

 KISS Benefits
 If the code is written simply, then there will not be any difficulty 

in understanding that code, and also will be easy to modify.



YAGNI (You Aren’t Gonna Need It) Principle

 YAGNI says “don’t implement something until it is 
necessary.” YAGNI tells us to cut off any unnecessary part 
while KISS advises to make the rest as simple as possible.

Violations of YAGNI
 “over engineering“ - a feature for every possible case, functions 

with a lot of input parameters, multiple if-else branches, rich and 
detailed interfaces, all those could be a smell of over engineering. 

How to Achieve YAGNI
 Always implement things when you actually need them, never 

when you just foresee that you need them.

 YAGNI Benefits
 Software developers don’t have enough information to make the 

call on extra features, the time spent could be used elsewhere 
more productively. Extra features mean extra development time, 
testing time, documentation time, code review time.



SOLID Principle

 Single Responsibility Principle
 “A class should have one, and only one, reason to change.“

Open/Closed Principle
 “Software entities (e.g. classes, modules, functions, etc) should be 

open for extension, but closed for modification.” 

 Liskov Substitution Principle
 “Objects in a program should be replaceable with instances of 

their subtypes without altering the correctness of that program.”

 Interface Segregation Principle
 “Clients should not be forced to depend upon interfaces that they 

do not use.” Reduce fat interfaces into multiple smaller and more 
specific client specific interfaces. 

Dependency Inversion Principle
 One should depend on abstractions (interfaces and abstract 

classes) instead of concrete implementations (classes).



Lab1

 Practice to write a word processor program that has 
the ability to spell checking and save in different file 
formats.

Given ISpellChecker interface, DocumentConverter
abstract class, and Main class

Write the following classes
EnglishSpellChecker
DocxDocumentConverter
PdfDocumentConverter
TxtDocumentConverter
WordProcessor



Lab1



Lab1

 EnglishSpellChecker
 Class implements ISpellChecker
 check() – print "English Spell Checking...“

DocxDocumentConverter, PdfDocumentConverter, 
TxtDocumentConverter
Constructor call super and assign the extension of 

the file format that it converts ("docx", "pdf", “txt")
 save() – print “Convert the file to filename.ext”

 filename – the filename passed as a parameter to save()
 ext – the extension assigned in DocumentConverter



Lab1

WordProcessor
 WordProcessor()

Get the filename from the user and store it

 addDocumentConverter()
Add document converter object to Map (key - extension, value -

DocumentConverter)

 convertDocumentTo()
Convert the document to the specific extension (file format)

 setSpellChecker()
 Set SpellChecker

 checkSpelling()
Call the assigned SpellChecker’s check()



Lab1

public interface ISpellChecker {
void check();

}



Lab1

public abstract class DocumentConverter {
private String ext;

public DocumentConverter(String extension) {
ext = extension;

}

public String getExtension() {
return ext;

}

public abstract void save(String filename);
}



public class Main {
public static void main(String[] args) {

WordProcessor wp = 
new WordProcessor("doc1.docx");

wp.setSpellChecker(new EnglishSpellChecker());
wp.addDocumentConverter(

new DocxDocumentConverter());
wp.addDocumentConverter(

new PdfDocumentConverter());
wp.addDocumentConverter(

new TxtDocumentConverter());
wp.checkSpelling();
wp.convertDocumentTo("txt");
wp.convertDocumentTo("pdf");
wp.convertDocumentTo("docx");
wp.convertDocumentTo("wps");

}
}



Lab1

 Execution



Submit to e-learning

Add your code (e.g., additional method, class, routine, 
etc) in the Lab1 assignment.

 Submit the Lab1 assignment (including the report) to 
e-learning.


