SOLID Design Principles

514770-1
Fall 2020
9/15/2020
Kyoung Shin Park
Computer Engineering
Dankook University

0 Robert C. Martin collected 10 principles of Object Oriented
Design.
The first 5 principles - so called SOLID — deal with the design of

classes. This principles is for easy-to-understand, flexible, and easy-
to-maintain software development.

>t
=
o
s

i

SRP Single Responsibility

o 19l 2]
OCP Open-Closed k- A &=
LSP Liskov Substitution 2| ATE XK=t A
ISP Interface Segregation Ol mo|A 22| | &
DIP Dependency Inversion 2|& G A&

Single Responsibility Principle

O A class should only have a single responsibility. In
other words, it should have only one reason to
change.

O Responsibility as a ‘reason to change’

O Gather together those things that change for the
same reason, and separate those things that change
for different reasons.

O If there are too many features in a class, it makes
difficult to maintain.

Single Responsibility Principle

© Book

O author: String

O publishedYear: int
O price: double

O isbn: String

© Book(author: String, year: int, price: double, isbn: String)
0@ load()
@ show()

0 Book class example
= |load() reads the Book information and store it in member variables
= show() displays the book information on the console screen

Single Responsibility Principle

© Book

© BookManager
0 author: String

0 books: ArrayList<Book> K>—— 0O publishedYear: int
0 price: double
O isbn: String

o load()
© show()

o Book(author: String, year: int, price: double, isbn: String)

0 Book & BookManager class example
= Book remove load() and show()

m BookManager load() reads the Book information from a file and
store it in member variables

= BookManager show() displays the books on the console screen
m |f the program is no longer modified, this design keeps SRP.

Single Responsibility Principle

= However, if you add features or new behavior, you must reconsider
SRP.

What if you create load() that reads and stores book data from a
database rather than a file?

What if you create show() that displays the contents of a book on the
GUI(Graphical User Interface) screen instead of the console screen?

© BookManager © Book

O books: ArrayList<Book> o author: String
0O loader: BookDatalLoader <>—— O publishedYear: int
O viewer: BookDataViewer O price: double
isbn: Strin
o setBookDataloader(loader: BookDataloader) H g
o setBookViewer(viewer: BookDataViewer) o Book(author: String, year: int, price: double, isbn: String)
/ | ‘\
© BookDataloader © BookDataViewer

o load() @ show()

Open-Closed Principle

O “Software entities (class, module, etc) should be open
for extension, but closed for modification.”

0 You should be able to extend a class behavior,
without modifying it.

0 Example: Assume a program that opens a door

m There are three types of doors
Sliding door — door that pushes open and close
Knob door — door with a handle
Automatic door — button type automatic door

Open-Closed Principle

O Version 1

= Using the if-statement depending on the type of door
m However, if a new door is added, the code modification is

Inevitable.

if (door instanceof AutomaticDoor)
client.pressOpen(door);

else if (door instanceof KnobDoor)
client.twistOpen(door);

else if (door instanceof SlidingDoor)
client.slideOpen(door);

©Client

pressOpen()

\ﬁistOpenNdeOpen()

@ KnobDoor ©SIidingDoor

@ AutomaticDoor

Open-Closed Principle

O Version 2

m Using polymorphism
m If a new door is added, you just add a new door class and
override the open() method.

door.open();

© Client

© Door

© AutomaticDoor

0 isOpen

© KnobDoor

/%%\

©SIidingDoor

Open-Closed Principle

0 Another example
= BookManager.load() method
= BookDatalLoader class reads the data from the file.

m BookDatalLoaderFromDB class reads the data from the
database.

Open-Closed Principle

O Version 1

= Using the if-statement depending on the type of loader
m if a new loader is added, the code modification is inevitable.

if (loader instanceof BookDatalLoaderFromeFile)
manager.loadFromFile(loader);

else if (loader instanceof BookDatalLoaderFromDB)
manager.loadFromDB(loader);

@ BookDatalLoader
o load()
© BookDatalLoaderFromDB @ BookDatalLoaderFromFile

o load() o load()

Open-Closed Principle

O Version 2

m Using polymorphism

loader.load();

@ BookManager

@ Book

O books: ArrayList<Book>
O viewer: BookDataViewer
O loader: BookDatal oader

O author: String

O publishedYear: int
O price: double

O isbn: String

© load()

@ Book(author: String, year: int, price: double, isbn: String)

/N

@ BookDatalLoader

@ BookDataViewer

@ load()

© show()

/

N\

@ BookDatalLoaderFromDB

© BookDatalLoaderFromFile

© load()

© load()

0 “Objects in a program should be replaceable with
instances of their subtypes without altering the
correctness of that program.”

O Subtypes should be substitutable for their base types.

O Child classes should never break the parent class’ type
definitions.

O /n other words, even if you do upcasting, there should
be no problem.

O "a violation of LSP is a latent violation of OCP"

Liskov Substitution Principle

0 Example: Rectangle and Square class
m Square is a special kinds of rectangle.
m |s the Square class really the subclass of the Rectangle class in

programming?
@ Rectangle

0O width: int
O height: int

o Rectangle(w: int, h: int)
o getPerimeter() : int

o setWidth{w: int)
o setHeight(h: int)

© Square

Square(w : int)
o setWidth({w: int)
o setHeight(h: int)

Liskov Substitution Principle

class Rectangle {

}

Ou
Ou
Ou

orivate int width;
orivate int height;
oublic Rectangle(int w, int h) {

width = w;
height = h;

0
0

0

ic void setWidth(int w) { width = w; }
iIc void setHeight(int h) { height = h; }
iIc int getPerimeter() { return 2 * (width + height); }

Liskov Substitution Principle

class Square extends Rectangle {
public Square(int w) {
super(w, w);
}
@OQverride
public void setWidth(int w) {
super.setWidth(w);
super.setHeight(w);
}
@OQverride
public void setHeight(int h) {
super.setWidth(h);
super.setHeight(h);
}
}

Liskov Substitution Principle

class Main {
public static void main(String[] args) {

Rectangle r = new Rectangle(3, 5);
System.out.printin(r.getPerimeter()); // 16 (2*8)
Square s = new Square(3);
System.out.printin(s.getPerimeter()); // 12 (2*6)
r=-s;
rsetWidth(3);
r.setHeight(5);
System.out.printin(r.getPerimeter()); // 20 (2*10)

}
}

O Square cannot completely substitute Rectangle. The
correct design should be both Rectangle and Square
derive from a common Shape class.

Interface Segregation Principle

0 “Many client-specific interfaces are better than one
general-purpose interface.”

O “do not force any client to implement an interface
which is irrelevant to them'

0 Each interface should have a specific responsibility.

@ ILoader

getMame(): String
loadBooksi(): void
loadCDs(): void
loadMP3s(): void

A

|
@ BookManager

@ getMame(): String
@ loadBooks(): void

Interface Segregation Principle

@ ILoader

£
f

getMame(): String
loadBooks(): void
loadCDs(): void
loadMP3s(): void

s
@ BookManager

%

%
3
@ CDManager

@ getName(): 5tring
@ loadBooks(): void

@ getName(): 5tring

@ loadCDs{): void

Interface Segregation Principle

@ ILoader

getName(): String
loadBooks(): void
loadCDs(): void
loadMP3s(): void

&
@ BookManager

*
@ MP3Manager

I
@ CDManager

@ getMame(): 5tring
@ loadBooks(): void

@ getMame(): 5tring @ getMame(): 5tring

@ loadCDs(): void .
iyl @ loadMP3s(): void

Interface Segregation Principle

O Interface Segregation

@ ILoader

getName(): String

4 e
@ IBookLoader

loadBooks(): void

\

@ ICDLoader

loadCDs(): void

S)

@ IMP3Loader

loadMP3s(): void

J

L

[

I
@ BookManager

@ getName(): 5tring
@ loadBooks(): void

:’_I_‘x

I
@ CDManager

@ getName(): 5tring
@ loadCDsl(): void

L

1

|
@ MP3Manager

@ getName(): String
@ loadMP3s(): void

Dependency Inversion Principle

O “One should depend upon abstractions, not
concretions.”

O You should write a code that uses abstract classes or
Interfaces rather than concrete classes or methods that
implement the functionality.

0 What is a dependency between classes?

= When one class performs a function, and needs a service of
another class.

m To become OCP, DIP must be satisfied basically.
0 How do you distinguish between easy-to-change and
hard-to-change?
= Hard-to-change: “policy”, “strategy”
= Easy-to-change: “concrete way”, “things”

Dependency Inversion Principle

© BookManager @ Book

O books: ArrayList=Book=> O author: String
O loader: BookDatalLoader >—— O publishedYear: int
O viewer: BookDataViewer O price: double
isbn: Strin
© setBookDataloader(loader: BookDataloader) - g
o setBookViewer(viewer: BookDataViewer) © Book(author: String, year: int, price: double, isbn: String)
© BookDatalLoaderFromFile © BookDataViewerConsole

o load() © show()

Dependency Inversion Principle

0 Implementation of inheritance from concrete class

© BookManager © Book

O books: Arraylist<Book> O author: String
O loader: BookDatalLoader >—— O publishedYear: int
O viewer: BookDataViewer O price: double

isbn: Stri
© setBookDataloader(loader: BookDatalLoaderFromrFile) b 1sbn- ~ting

@ setBookViewer(viewer: BookDataViewerConsole) © Book(author: String, year: int, price: double, isbn: String)
v q
©BookDataLoaderFromFi|e ©BookDataViewerConsole
@ load() @ show()

© BookDataLoaderFromDBFile

@ load()

Dependency Inversion Principle

0 Apply DIP - Implementation of inheritance from abstract

@ BookManager © Book
0 books: ArraylList<=Book> O author: String
O loader: BookDatal oader >— O publishedYear: int
O viewer: BookDataViewer O price: double
isbn: Stri
o setBookDatal oader(loader: BookDatal oader) H 1shn e
o setBookViewer(viewer: BookDataViewer) o Book(author: String, year: int, price: double, isbn: String)

VAN
/ N\

@ BookDataViewer @ BookDatal oader

o show() @ load()

/\ A

I |

© BookDataViewerConsole © BookDatalLoaderFromkFile

o show() o load()

Dependency Inversion Principle

© BookManager

O books: ArrayList<Book>
O loader: BookDataloader
0O viewer: BookDataViewer

© Book

0 setBookDataloader(loader: BookDataloader)
© setBookViewer(viewer: BookDataViewer)

O author: String

0 publishedYear: int
O price: double

O isbn: String

© Book(author: String, year: int, price: double, isbn: String)

\

© BookDataViewerConsole

© BookDatalLoaderFromFile

@ BookDatalLoaderFromDBFile

@ show()

@ load()

0 load()

