
SOLID Design Principles

514770-1
Fall 2020
9/15/2020

Kyoung Shin Park
Computer Engineering

Dankook University



S.O.L.I.D.: First 5 Principles of OOD

 Robert C. Martin collected 10 principles of Object Oriented 
Design. 
 The first 5 principles - so called SOLID – deal with the design of 

classes. This principles is for easy-to-understand, flexible, and easy-
to-maintain software development.  

Acronym Principle 한글 명칭
SRP Single Responsibility 단일 책임 원칙

OCP Open-Closed 개방-폐쇄 원칙

LSP Liskov Substitution 리스코프 치환 원칙

ISP Interface Segregation 인터페이스 분리 원칙

DIP Dependency Inversion 의존 역전 원칙



Single Responsibility Principle

 A class should only have a single responsibility. In 
other words, it should have only one reason to 
change.

 Responsibility as a ‘reason to change’ 
 Gather together those things that change for the 

same reason, and separate those things that change 
for different reasons.

 If there are too many features in a class, it makes 
difficult to maintain.



Single Responsibility Principle

 Book class example
 load() reads the Book information and store it in member variables
 show() displays the book information on the console screen



Single Responsibility Principle

 Book & BookManager class example
 Book remove load() and show()
 BookManager load() reads the Book information from a file and 

store it in member variables
 BookManager show() displays the books on the console screen
 If the program is no longer modified, this design keeps SRP.



Single Responsibility Principle

 However, if you add features or new behavior, you must reconsider 
SRP.
 What if you create load() that reads and stores book data from a 

database rather than a file?
 What if you create show() that displays the contents of a book on the 

GUI(Graphical User Interface) screen instead of the console screen?



Open-Closed Principle

 “Software entities (class, module, etc) should be open 
for extension, but closed for modification.”

 You should be able to extend a class behavior, 
without modifying it.

 Example: Assume a program that opens a door
 There are three types of doors

 Sliding door – door that pushes open and close
 Knob door – door with a handle
 Automatic door – button type automatic door



Open-Closed Principle

 Version 1
 Using the if-statement depending on the type of door
 However, if a new door is added, the code modification is 

inevitable.

if (door instanceof AutomaticDoor)
client.pressOpen(door);

else if (door instanceof KnobDoor) 
client.twistOpen(door);

else if (door instanceof SlidingDoor)
client.slideOpen(door);



Open-Closed Principle

 Version 2
 Using polymorphism
 If a new door is added, you just add a new door class and 

override the open() method.

door.open();



Open-Closed Principle

 Another example
 BookManager.load() method
 BookDataLoader class reads the data from the file.
 BookDataLoaderFromDB class reads the data from the 

database.



Open-Closed Principle

 Version 1
 Using the if-statement depending on the type of loader

 if a new loader is added, the code modification is inevitable.

if (loader instanceof BookDataLoaderFromFile)
manager.loadFromFile(loader);

else if (loader instanceof BookDataLoaderFromDB) 
manager.loadFromDB(loader);



Open-Closed Principle

 Version 2
 Using polymorphism

loader.load();



Liskov Substitution Principle

 “Objects in a program should be replaceable with 
instances of their subtypes without altering the 
correctness of that program.”

 Subtypes should be substitutable for their base types.
 Child classes should never break the parent class’ type 

definitions.
 In other words, even if you do upcasting, there should 

be no problem.
 "a violation of LSP is a latent violation of OCP"



Liskov Substitution Principle

 Example: Rectangle and Square class
 Square is a special kinds of rectangle.
 Is the Square class really the subclass of the Rectangle class in 

programming?



Liskov Substitution Principle

class Rectangle {
private int width;
private int height;
public Rectangle(int w, int h) {

width = w;
height = h;

}
public void setWidth(int w) { width = w; }
public void setHeight(int h) { height = h; }
public int getPerimeter() { return 2 * (width + height); }

}



Liskov Substitution Principle

class Square extends Rectangle {
public Square(int w) {

super(w, w);
}
@Override
public void setWidth(int w) { 

super.setWidth(w);
super.setHeight(w);

}
@Override
public void setHeight(int h) { 

super.setWidth(h);
super.setHeight(h);

}
}



Liskov Substitution Principle

class Main {
public static void main(String[] args) {

Rectangle r = new Rectangle(3, 5);
System.out.println(r.getPerimeter()); // 16 (2*8)
Square s = new Square(3);
System.out.println(s.getPerimeter()); // 12 (2*6)
r = s;
r.setWidth(3);
r.setHeight(5);
System.out.println(r.getPerimeter()); // 20 (2*10)        

}
}

 Square cannot completely substitute Rectangle. The 
correct design should be both Rectangle and Square 
derive from a common Shape class.



Interface Segregation Principle

 “Many client-specific interfaces are better than one 
general-purpose interface.”

 “do not force any client to implement an interface 
which is irrelevant to them“

 Each interface should have a specific responsibility.



Interface Segregation Principle



Interface Segregation Principle



Interface Segregation Principle

 Interface Segregation



Dependency Inversion Principle

 “One should depend upon abstractions, not 
concretions.”

 You should write a code that uses abstract classes or 
interfaces rather than concrete classes or methods that 
implement the functionality.

 What is a dependency between classes?
 When one class performs a function, and needs a service of 

another class.
 To become OCP, DIP must be satisfied basically.

 How do you distinguish between easy-to-change and 
hard-to-change?
 Hard-to-change: “policy”, “strategy”
 Easy-to-change: “concrete way”, “things”  



Dependency Inversion Principle



Dependency Inversion Principle

 Implementation of inheritance from concrete class



Dependency Inversion Principle

 Apply DIP - Implementation of inheritance from abstract 
class



Dependency Inversion Principle


