Command Pattern

514770-1
Fall 2020
11/3/2020
Kyoung Shin Park
Computer Engineering
Dankook University

Command Pattern

0O “Encapsulate a request as an object, thereby letting you
parameterize clients with different requests, queue or
log requests, and support undoable operations.”

0 Promote “invocation of a method on an object” to full
object status

0 Also known as “an object-oriented callback”
0 Command is useful for “undo” operations.

o All implementations of java.lang.Runnable interface and
All implementations of javax.swing.Action interface are
good examples of how the command pattern is
iImplemented.

Design Problem

O Suppose you are building a home automation system.

= There is a programmable remote controller which can be used
to turn on and off various items in your home like light,
stereo, AC etc.
= Items have different APIs
Garage door up()
Light on()
TV pressOn()

Design Problem

©TV

@ on()

@ off()

0@ setlnputChannel()
@ volumeUp()
© volumeDown()

©Cei|ingFan

@ high()

© medium()
@ low()

@ off()

© getSpeed()

© Stereo

@ on()

@ off()

0 setCd()

@ setDvd()

@ setRadiol()

@ volumeUp()

@ volumeDown()

Objectville Diner (HFDP Ch. 6)

0 How the Diner operates:
= The customer give the waitress your order.

= The waitress takes the order, place it on the order counter
and says “Order up!”

m The cook prepares your meal from the order.

Objectville Diner (HFDP Ch. 6)

O Let's think about the object and method calls.

createOrder()
Customer

makeBurger ()
makeShake()

Objectville Diner (HFDP Ch. 6)

‘ Customer I ‘ Drderl ‘WEIitI’ESS I ‘ Cook I

| createQOrder()

>
orderUp()

i
i
i
takeOrder() :
l
i
i

<

makeBur Erl[}lI
0 : -

makeShake() | ,

|
|
-
|
|
|
|
|
|
|
|
|
|
|
!

‘ Customer I ‘ Drderl ‘WEIItI’EES I ‘ Cr;:r;:k I

Objectville Diner (HFDP Ch. 6)

O Order

m Order is an object that acts as a request to prepare a meal.

= |t can be passed around from Waitress to the order counter or
to the next Waitress.

= It has an interface that consists of only one method, orderUp().
orderUp() encapsulates the actions needed to prepare the meal.
= It also has a reference to the object that needs to prepare it (in
this case, the Cook).

O Waitress

= Waitress's job is to take the Order from the Customer, then
invoke the orderUp() method to have the meal prepared.

= Waitress really isn't worried about what's on the Order or who
IS going to prepare it.

= Waitress's takeOrder() method gets parameterized with different
order from different customers.

Objectville Diner (HFDP Ch. 6)

O Cook

m The Cook is the object that really knows how to prepare the
meal.

= Notice the Waitress and the Cook are totally decoupled; the
Waitress has the Order that encapsulate the details of the meal;
she just calls a method on each order to get it prepared; the
Cook gets his instructions from the Order; he never needs to
directly communicate with the Waitress.

= The Waitress has invoked the orderUp(); The Cook takes over
and implements all the methods that are needed to create
meals.

0O In our remote control API, we need to separate the
code that gets invoked when we press a button from
the objects of the vendor-specific classes that carry out
those requests.

Pattern

Problem

Solution

Result

Command

The object APIs do not follow a regular pattern (e.g. camera
start/stop recording, light on/off, speaker volume up/down).

Separate execution and request. The command object
contains all the details needed to execute the request.

It creates more (small) classes, but removes and hides the
complexity of using objects (the method name becomes the
same).

Command Pattern

[4] buttonPressed() © Invoker

[5] execute()

@ Command

[3] setCommand()

setCommand()

[2] new(r)

©Concrete00mmand

action()

execute()
undo()

execute()
undo()

Define Command Pattern

o Command

= Defines an interface for executing an operation or set of
operations.

O ConcreteCommand

= Implements the Command interface to perform the
operations. Typically acts as an intermediary to a Receiver
object.

= Command knows Receiver, and calls Receiver method
s Command contains the values of parameters used in Receiver
method.
O Receiver
m Perform the command operations
= Example: Light on/off, GarageDoor open/close

Define Command Pattern

O Invoker

= Invoker receives a request and bind the Command interface to
execute the request.

= Invoker knows only the Command interface. It doesn’t know
how the command actually works.

m Example: RemoteControl

O Client

= Client decides what to request and pass the request command
to the Invoker.

= Example: main() method

0 Decoupling

Client

Command

Invoker

Receiver

Create the Client
command object

and set its receiver

Define a binding Order
between an action

and a receiver

Connect the
Command interface
to take order and
execute

Perform an action Cook

Waitress

Recognize the function of
the remote control button
and press the button

Connect the actual object
(TV, light, etc) to the button

Press the remote control
button to execute the
function

Actual objects such as TV,
light, etc

Objectville Dinner and Command Pattern

createCo Object()
@
createCommandObject()
Command ,//, client
setCon ,/'CD
@
setCommand()
Invoker
execute()
actionl()
Command | action2()
actionl(), Receiver

action2()

Define Command Object

0 Implementing the Command interface
= All command objects implement the same interface, which
consists of one method.
In the Dinner, we called this method orderUp().
Typically, we just use the method execute().

public interface Command {
void execute();
}

O Implementing a Command to turn a light on
The Light class has two methods, on() and off().

public class LightOnCommand implements Command {
Light light; // specific light that is going
to be the Receiver of the request

public LightOnCommand(Light light) {
this.light = light;
}

public void execute() {
light.on();

O Let's say we've got a remote control with only one
button and corresponding slot to hold a device to
control.

public class SimpleRemoteControl {
Command slot;

public SimpleRemoteControl() {}
public void setCommand(Command command) {
slot = command;

public void buttonWasPressed() {
slot.execute();
¥

0 SimpleRemoteControlTest

public class RemoteControlTest {
public static void main(String[] args) {

SimpleRemoteControl remote

= new SimpleRemoteControl();
Light light = new Light();
LightOnCommand 1lightOn

= new LightOnCommand(light);
remote.setCommand(lightOn);
remote.buttonWasPressed();

0O If you want to add GarageDoor

public class RemoteControlTest {
public static void main(String[] args) {
SimpleRemoteControl remote
= new SimpleRemoteControl();

Light light = new Light();
LightOnCommand 1lightOn

= new LightOnCommand(light);
GarageDoor garageDoor = new GarageDoor();
GarageDoorOpenCommand garageOpen

= new GarageDoorOpenCommand(garageDoor);
remote.setCommand(lightOn);
Pemote.buttonWasPressed();
remote.setCommand(garageOpen);
remote.buttonWasPressed();

Command Pattern Defined

0 Command object

= A command object encapsulates a request by binding
together a set of actions on a specific receiver.

= To achieve this, it packages the actions and the receiver up
into an object that exposes just one method, execute().

= When called, execute() causes the actions to be invoked on
the receiver.

m From the outside, no other objects really know what actions
get performed on what receiver; they just know that if they
cal the execute() method, their request will be served.

Commang @
R =

er

execute() {
receiver.action();

}

Command Pattern Defined

O Parameterizing an object with a command

= In the Diner, the Waitress was parameterized with multiple
orders throughout the day.

= In the sample remote control, we first loaded the button slot
with a “light on” command, and then later replaced it with a
“garage door open” command.
o Invoker(Waitress or remote control) doesn’t need to
know what actually happens in the command object,
as long as it has a specific interface | Blueg(\nted.

CeilingFanHigh @
r RemoteSlot
LightOnCommand @
StereoOff

public class RemoteControl {
Command[] onCommands;
Command[] offCommands;

public RemoteControl() {
onCommands = new Command[7];
offCommands = new Command[7];
Command noCommand = new NoCommand();
for (int 1 = 0; 1 < 7; i++) {
onCommands[i] = noCommand;
offCommands[i] = noCommand;

}

public void setCommand(int slot,
Command onCommand, Command offCommand) {
onCOmmands[slot] = onCommand;
offCommands[slot] = offCommand;

¥

public void onButtonWasPushed(int slot) {
onCommands[slot].execute();

}
public void offButtonWasPushed(int slot) {
offCommands[slot].execute();

¥
public String toString() {
StringBuffer stringBuff = new StringBuffer();

stringBuff.append("\n------ Remote Control --
____\nll);

for (int 1 = @0; 1 < onCommands.length; i++) {
stringBuff.append("[slot " + i + "] " +
onCommands[i].getClass().getName() + " "+
offCommands[i].getClass().getName() + "\n");

}
return stringBuff.toString();
}

¥

public class LightOffCommand implements Command {
Light light;
public LightOffCommand(Light light) {
this.light = light;

public void execute() {
light.off();

}
}
public class StereoOnWithCDCommand
implements Command {
Stereo stereo;

public StereoOnWithCDCommand(Stereo stereo) {
this.stereo = stereo;

public void execute() {
stereo.on();
stereo.setCD();
stereo.setVolume(11l);

}
¥

public class RemotelLoader {
public static void main(String[] args) {
RemoteControl remoteControl = new RemoteControl();
Light livingRoomLight = new Light("Living Room");
Light livingRoomLight = new Light("Kitchen");
Stereo stereo = new Stereo("Living Room");
LightOnCommand livingRoomLightOn =
new LightOnCommand(livingRoomLight);
LightOffCommand livingRoomLightOff =
new LightOffCommand(livingRoomLight);
LightOnCommand kitchenLightOn =
new LightOnCommand(kitchenLight);
LightOffCommand kitchenLightOff =
new LightOffCommand(kitchenLight);
StereoOnWithCDCommand stereoOnWithCD =
new StereoOnWithCDCommand(stereo);
StereoOffiWithCDCommand stereoOff =
new StereoOffCommand(stereo);

remoteControl.setCommand(0,
livingRoomLightOn, livingRoomLightOff);
remoteControl.setCommand(1,
kitchenLightOn, kitchenLightOff);
remoteControl.setCommand(3,
stereoOnWithCD, stereoOff);
System.out.println(remoteControl);
remoteControl.onButtonWasPushed(9);
remoteControl.offButtonWasPushed(9);
remoteControl.onButtonWasPushed(1);
remoteControl.offButtonWasPushed(1);
remoteControl.onButtonWasPushed(3);
remoteControl.offButtonWasPushed(3);

}
}

public class NoCommand implements Command A
public void execute() {}

}

public interface Command {
public void execute();
public void undo();

¥

public class LightOnCommand implements Command A
Light light; // light is Receiver

public LightOnCommand(Light light) {
this.light = light;

public void execute() {
light.on();

public void undo() {
light.off();

public class LightOffCommand implements Command {
Light light;
public LightOffCommand(Light light) {
this.light = light;

public void execute() {
light.off();

}
public void undo() {
light.on();

Command Pattern Define

public class RemoteControlWithUndo {
Command[] onCommands;
Command[] offCommands;
Command undoCommand;

public RemoteControlWithUndo() {
onCommands = new Command[7];
offCommands = new Command[7];
Command noCommand = new NoCommand();
for (int 1 = 0; 1 < 7; i++) {
onCommands[i] = noCommand;
offCommands[i] = noCommand;

undoCommand = noCommand;

public void setCommand(int slot,
Command onCommand, Command offCommand) {
onCOmmands[slot] = onCommand; —_—
offCommands[slot] = offCommand;

public void onButtonWasPushed(int slot) {
onCommands[slot].execute();
undoCommand = onCommands[slot];

}

public void offButtonWasPushed(int slot) {
offCommands[slot].execute();
undoCommand = offCommands[slot];

public void undoButtonWasPushed() ({
undoCommand.undo();

¥
public String toString() {
// rest of code..

}
}

public class RemotelLoader {
public static void main(String[] args) {
RemoteControlWithUndo remoteControl = new
— RemoteControlWithuUndo();
Light livingRoomLight = new Light("Living Room");
LightOnCommand livingRoomLightOn =
new LightOnCommand(livingRoomLight);
LightOffCommand livingRoomLightOff =
new LightOffCommand(livingRoomLight);
remoteControl.setCommand(0@, livingRoomLightOn,
livingRoomLightOff);

remoteControl.onButtonWasPushed(9);
remoteControl.offButtonWasPushed(0);
System.out.println(remoteControl);
remoteControl.undoButtonWasPushed();
remoteControl.offButtonWasPushed(9);
remoteControl.onButtonWasPushed(0);
System.out.println(remoteControl);
remoteControl.undoButtonWasPushed();

Adding Undo for Ceiling Fan Command

public class CeilingFan {
public static final int HIGH =
public static final int MEDIUM
public static final int LOW = 1;
public static final int OFF = ©;
String location;
int speed;
public CeilingFan(String location) {
this.location = location;
speed = OFF;

3;
=2;

}
public void high() {
speed = HIGH; // set speed to HIGH

public void medium() { speed = MEDIUM; }
public void low() { speed = LOW; }
public void off() { speed = OFF; }
public int getSpeed() { return speed; }

Adding Undo for Ceiling Fan Command

public class CeilingFanHighCommand implements
Command A

CeilingFan ceilingFan;

int prevSpeed;

public CeilingFanHighCommand(CeilingFan
ceilingFan) {
this.ceilingFan = ceilingFan;

public void execute() {
prevSpeed = ceilingFan.getSpeed();
ceilingFan.high();

}

Adding Undo for Ceiling Fan Command

public void undo() {

if (prevSpeed == CeilingFan.HIGH) {
ceilingFan.high();

} else if (prevSpeed == CeilingFan.MEDIUM) {
ceilingFan.medium();

} else if (prevSpeed == CeilingFan.LOW) {
ceilingFan.low();

} else if (prevSpeed == CeilingFan.OFF) {
ceilingFan.off();

}

public class RemotelLoader {
public static void main(String[] args) {
RemoteControlWithUndo remoteControl
= new RemoteControlWithUndo();
CeilingFan ceilingFan
= new CeilingFan("Living Room");
CeilingFanMediumCommand ceilingFanMedium =
new CeilingFanMediumCommand(ceilingFan);
CeilingFanHighCommand ceilingFanMedium =
new CeilingFanHighCommand(ceilingFan);
CeilingFanOffCommand ceilingFanMedium =
new CeilingFanOffCommand(ceilingFan);
remoteControl.setCommand(@, ceilingFanMedium,
ceilingFanOff);
remoteControl.setCommand(1l, ceilingFanHigh,
ceilingFanOff);

RemoteControlWithUndoTest

remoteControl.onButtonWasPushed(0); // medium
remoteControl.offButtonWasPushed(0); // medium off
System.out.println(remoteControl);
remoteControl.undoButtonWasPushed();// medium again
remoteControl.onButtonWasPushed(1); // high
System.out.println(remoteControl);
remoteControl.undoButtonWasPushed();// medium again

0 Add the macro command that darkens the light by
pressing a button, turns on audio and TV, changes to
DVD mode, and even fills the bathtub with water.

public class MacroCommand implements Command {
Command[] commands;
public MacroCommand(Command[] commands) {
this.commands = commands;

public void execute() {
for (int i = @; i < commands.length; i++) {
commands[i].execute();

Light light = new Light("Living Room");

TV tv = new TV("Living Room");

Stereo stereo = new Stereo("Living Room");

Hottub hottub = new Hottub();

LightOnCommand lightOn = new LightOnCommand(light);
StereoOnCommand stereoOn = new
StereoOnCommand(stereo);

TVOnCommand tvOn = new TVOnCommand(tv);
HottubOnCommand hottubOn = new
HottubOnCommand(hottubOn);

Command[] partyOn = {lightOn, stereoOn, tvOn,
hottubOn};

Command[] partyOff = {lightOff, stereoOff, tvOff,
huttubOff};

MacroCommand partyOnMacro = new
MacroCommand(partyOn);
MacroCommand partyOffMacro
MacroCommand(partyOff);
remoteControl.setCommand(@, partyOnMacro,
partyOffMacro);

new

remoteControl.onButtonWasPushed(9);
remoteControl.offButtonWasPushed(09);

