SOLID Design Principles

S.O.L.I.D.: First 5 Principles of OOD

514770-1
Fall 2021
9/13/2021
Kyoung Shin Park
Computer Engineering
Dankook University

o Robert C. Martin collected 10 principles of Object Oriented
Design.
m The first 5 principles - so called SOLID — deal with the design of

classes. This principles is for easy-to-understand, flexible, and easy-
to-maintain software development.

SRP Single Responsibility Thel MY 23

oCP Open-Closed JH - o 2 A

LSP Liskov Substitution g AR X2t 23
ISP Interface Segregation ~ QIHI{|O|A 22| §A
DIP Dependency Inversion 2|& A7 &%

Single Responsibility Principle

o A class should only have a single responsibility. In

a

other words, it should have only one reason to
change.
Responsibility as a ‘reason to change’

Gather together those things that change for the
same reason, and separate those things that change
for different reasons.

If there are too many features in a class, it makes
difficult to maintain.

Single Responsibility Principle

@ Book

O author: String

O publishedYear: int
O price: double

0 isbn: String

@ Book{author: String, year: int, price: double, isbn: String)
o load()
@ show()

o Book class example
= load() reads the Book information and store it in member variables
= show() displays the Book information on the console screen

Single Responsibility Principle

Single Responsibility Principle

© Book

© BookManager
O author: String

0 books: ArrayList<Book> g>—— 0 publishedYear: int
o price: double
O isbn: String

@ load()
o show()

o Book(author: String, year: int, price: double, isbn: String)

o Book & BookManager class example
= Book remove load() and show()
m BookManager add load() & show()

load() reads the Book information from a file and store it in member
variables

show() displays the books on the console screen
m |f the program is no longer modified, this design keeps SRP.

= However, if you add features or new behavior, you must reconsider
SRP.

What if you create load() that reads and stores book data from a
database rather than a file?

What if you create show() that displays the contents of a book on the
GUI(Graphical User Interface) screen instead of the console screen?

© BookManager © Book

o books: ArrayList<Book=> o author: String
0 loader: BookDataLoader t>—— 0 publishedYear: int
O viewer: BookDataViewer 0 price: double
isbn: Stri
o setBookDataLoader{loader: BookDataloader) L= =1 niry)
o setBookViewer(viewer: BookDataViewer) @ Book(author: String, vear: int, price: double, isbn: String)
/ . .\
© BookDatalLoader © BookDataViewer
@ load() @ show()

Open-Closed Principle

O “Software entities (class, module, etc) should be open
for extension, but closed for modification.”

o You should be able to extend a class behavior,
without modifying it.

O Example: Assume a program that opens a door
m There are three types of doors
Sliding door — door that slide
Knob door — door with a handle
Automatic door — button type automatic door

Open-Closed Principle

o Version 1
= Using the if-statement depending on the type of door
= However, if a new door is added, the code modification is

inevitable.
if (door instanceof AutomaticDoor) (©)ctient| pressOpen() _|(@) AutomaticDoor
client.pressOpen(door);
else if (door instanceof KnobDoor) _ _
client.twistOpen(door); el L wacaal
L 4

else if (door instanceof SlidingDoor) —
client.slideOpen(door); @sion] | @it

Open-Closed Principle

Open-Closed Principle

o Version 2
= Using polymorphism
m If a new door is added, you just add a new door class and
override the open() method.

door.open(); Y- (©) poor

O isOpen

@ open()

‘F

© AutomaticDoor © KnobDoor @ SlidingDoor

o Another example
= BookManager.load() method
= BookDataloader class reads the data from the file.

= BookDatalLoaderFromDB class reads the data from the
database.

Open-Closed Principle

Open-Closed Principle

o Version 1
m Using the if-statement depending on the type of loader
= if a new loader is added, the code modification is inevitable.
if (loader instanceof BookDatalLoaderFromFile)
manager.loadFromFile(loader);
else if (loader instanceof BookDatalLoaderFromDB)
manager.loadFromDB(loader);

(©) BookDataLoader

@ load()
@ BookDatalLoaderFromDB @ BookDatalLoaderFromFile
@ load() @ load()

o Version 2
= Using polymorphism

loader.load();

@ BookManager © Book

o author: String
£>— O publishedYear: int
O price: double

0 Isbn: String

O books: ArrayList<Book>
0 viewer: BookDataViewer
0 loader: BookDalaloader

@ load()

@ Book(authar: String, year: int, prica: doubla, isbn: String)

/A

© BookDataloader © BookDataViewer|
o load() @ show()
© BookDataLoaderFromDB @ BookDataLoaderFromFile

@ load() @ load()

Liskov Substitution Principle

o "Objects in a program should be replaceable with
instances of their subtypes without altering the
correctness of that program.”

O Subtypes should be substitutable for their base types.

O Child classes should never break the parent class’ type
definitions.

O /n other words, even if you do upcasting, there should
be no problem.

O "a violation of LSP is a latent violation of OCP"

Liskov Substitution Principle

o Example: Rectangle and Square class
m Square is a special kinds of rectangle.
m |s the Square class really the subclass of the Rectangle class in
programming?
@ Rectangle

O width: int
0 height: int

@ Rectangle(w: int, h: int)
o getPerimeter() : int

o setWidth(w: int)

o setHeight(h: int)

?

© Square

Square(w : int)
@ setWidth(w: int)
o setHeight(h: int)

Liskov Substitution Principle

class Rectangle {
private int width;
private int height;
public Rectangle(int w, int h) {
width = w;
height = h;
}
public int getPerimeter() {
return 2 * (width + height);
}
public void setWidth(int w) { width = w; }
public void setHeight(int h) { height = h; }

Liskov Substitution Principle

class Square extends Rectangle {
public Square(int w) {

super(w, w);

}

@Override

public void setWidth(int w) {
super.setWidth(w);
super.setHeight(w);

}

@Override

public void setHeight(int h) {
super.setWidth(h);
super.setHeight(h);

}

}

Liskov Substitution Principle

Interface Segregation Principle

class Main {
public static void main(String[] args) {

Rectangle r = new Rectangle(3, 5);
System.out.printin(r.getPerimeter()); // 16 (2*8)
Square s = new Square(3);
System.out.printin(s.getPerimeter()); // 12 (2*6)
r=s;
rsetWidth(3);
rsetHeight(5);
System.out.printIn(r.getPerimeter()); // 20 (2*10)

}

O Square cannot completely substitute Rectangle. The
correct design should be both Rectangle and Square
derive from a common Shaoe class.

o “Many client-specific interfaces are better than one
general-purpose interface.”

O “do not force any client to implement an interface
which is irrelevant to them'

o Each interface should have a specific responsibility.

@ ILoader

getName(): String
loadBooks(): void
loadCDs(): void
loadMP3s(): void

A

I
@ BookManager

@ getName(): String
@ loadBooks(): void
R ED St

-

Interface Segregation Principle

Interface Segregation Principle

@ iLoader

getMarme(): String
loadBooks(): void
loadCDs(): void
loadMP3s(): void

fﬁ b\

! Y
r LY
@ BookManager @ CDManager

@ getMame(): String @ getMame(): String
@ loadBooks(): void t

© IoadCDs(): void

@ ILoader

getMame(): String
loadBooks(): void
loadCDs(): void
loadMP3s(): void

Fd Q A
| ~
rd b
e | Y
@ BookManager @ CDManager @ MP3Manager
@ getNamel): 5tring @ gethNamel): 5tring @ gethNamel): 5tring
@ loadBooks(): void =toetEookestroT—| =toetEookestroT—|
et @ loadCDs(): void -
loadlRz el vaid loadMRz el vaid @ loadMP3s(): void

Interface Segregation Principle

O Interface Segregation

@ ILoader

getMame(): String

@ IBookLoader @ ICDLoader @ IMP3Loader
loadBooks(): void loadCDs(): void loadMP3s(): void
A n ()

I | 1

I I |
©BookManager @ CDManager @MP3Manager

@ getName(): String @ getName(): String @ getMame(): String
@ loadBooks(): void @ loadCDs(): void @ loadMP3s(): void

Dependency Inversion Principle

o “One should depend upon abstractions, not
concretions.”

o You should write a code that uses abstract classes or
interfaces rather than concrete classes or methods that
implement the functionality.

o What is a dependency between classes?

= When one class performs a function, and needs a service of
another class.

= To become OCP, DIP must be satisfied basically.

o How do you distinguish between easy-to-change and
hard-to-change?
= Hard-to-change: “policy”, “strategy”

noon

= Easy-to-change: “concrete way”, “things”

Dependency Inversion Principle

Dependency Inversion Principle

© BookManager © Book

o books: ArrayList<Book=> o author: String
0 loader: BookDataLoader t>—— 0 publishedYear: int
O viewer: BookDataViewer 0O price: double
isbn: Stri
o setBookDataLoader{loader: BookDataloader) L= =1 niry)
o setBookViewer(viewer: BookDataViewer) @ Book(author: String, vear: int, price: double, isbn: String)
/ ' '\
© BookDatalLoader © BookDataViewer
@ load() @ show()

o Implementation of inheritance from concrete class

© BookManager © Book

O books: Arraylist<Book> O author: String
O loader: BookDataloader >—— O publishedYear: int
O viewer: BookDataViewer O price: double
@ setBookDataloader(loader: BookDataloaderFromFile) 0 ison: string
EookViewer(viewer: BookDataViewerC I @ Book(author: String, year: int, price: double, isbn: String)
/ ' \
@ BookDataloaderFromFile © BookDataViewerConsole
© load() © show()

‘f

@ BookDataLoaderFromDEFile

© load()

Dependency Inversion Principle Dependency Inversion Principle

o Apply DIP - Implementation of inheritance from abstract

class (©) BookManager ©) sook
O books: ArrayList<Book= O author: String
© BookManager @ Book O loader: BookDatalLoader >— O publishedYear: int
0 viewer: BookDataViewer 0 price: double
o books._ ArrayList=Book> | 0 author: String - e setBookDataloader(icader: BookDataLoader) O iskn: String
0 loader: BookDatal cader - 0 publishedYear: int v i N K Vi " hor: St o ice: double. isbr: Stri
O viewer: BookDataViewer 0 price: double o zetBookViewer(viewer. BookDataViewer) @ Book(author: String, year: int, price: double, isbn: String)
Isbn: Stril
@ setBookDataloader(loader: BookDataloader) Eienn no
o setBookViewar(viewer: BookDataViewer) @ Book(author: String, year: int, price: double, isbn: String)
7N 7 A
~ N (@) sookoataviewer @) sookpatatoaden
@ sh @ load
(®) Bookpataviewer (®) sookpataLoader °"‘:i g m
© show() © load() /
}’ "\ (©) BookDataviewerconsole (©) BookDataLoaderFromFile (©) BookDataLoaderFromDBFile
© show() o load() o load()
© BookDataViewerConsole © BookDatalLoaderFromFile

o show() o load()

