State Pattern

514770-1
Fall 2021
11/22/2021
Kyoung Shin Park
Computer Engineering
Dankook University

State Pattern

o "Allow an object to alter its behavior when its internal
state changes. The object will appear to change its
class.”

O Also known as “"Objects for States”

0 An object-oriented state machine

O The State pattern is used when an object changes its
behavior based on its internal state.

O In State pattern we create objects which represent
various states and a context object whose behavior
varies as its state object changes.

O The State pattern is closely related to the concept of a
Finite State Machine.

Finite State Machine

o Finite State Machine (FSM) or Finite Automata, or
simply a state machine.

o An FSM is defined by a list of its states, its initial state,
and the inputs that trigger each transition.
= States

= Inputs O Input X = 1

= Transitions
o For example, —
. InputY =7
m Game character: walk, run, stop

m Electronic goods: on, off, sleep
m Turnstile: locked, unlocked

Input Z = 3

Input X = 2

State Pattern

Pattern State

Problem State machines are usually implemented with lots
of conditional operators (if or switch) that select
the appropriate behavior depending on the
current state of the object.

Solution  The State pattern allows the object for changing
its behavior without changing its class.

Result Single Responsibility Principle, Open/Closed
Principle, Cleaner and more maintainable code




State Pattern

Define State Pattern

© Context

O state:State

@ State

© setState(State):void
© getState():State

/
/
/

Q doAction()
R

/ \

"

\
\

© ConcreteStateA © ConcreteStateB

o Context

= Context stores a reference to one of the concrete state
objects and delegates to it all state-specific work. Context
communicates with the state object via the state interface.
Context exposes a setter for passing it a new state object.

o State

m The State interface declares the state-specific methods (what
each concrete state should do).

o ConcreteStateA, ConcreteStateB

m They provide their own implementations for state-specific
methods. To avoid duplication of similar code across multiple
states, you may provide intermediate abstract classes that
encapsulate some common behavior.

Gumball Machine (HFDP Ch. 10)

Gumball Machine (HFDP Ch. 10)

Out of
Gumballs

No
Quarter

Finite State Machine

Has
Quarter

Gumball
Sold

o Implementing state machines
m First, gather up your states:

Has

No Quarter

Quarter

Gumball
Sold

Out of
Gumballs




Gumball Machine (HFDP Ch. 10)

= Next, create an instance variable to hold the current state, and
define values for each of the states:

final static int SOLD_OUT = ©;
final static int NO_QUARTER = 1;
final static int HAS_QUARTER = 2;
final static int SOLD = 3;

int state = SOLD_OUT;

= Now, gather up all the actions that can happen in the system.
Ejects quarter
Inserts quarter

Turns crank

dispense

Gumball Machine (HFDP Ch. 10)

o Now, create a class that acts as the state machine.

public class GumballMachine {
final static int SOLD_OUT = ©;
final static int NO_QUARTER = 1;
final static int HAS_QUARTER = 2;
final static int SOLD = 3;

int state
int count

SOLD_OUT;
0;

public GumballMachine(int count) {
this.count = count;
if (count > @) {
state = NO_QUARTER;
}

}

Gumball Machine (HFDP Ch. 10)

o Implement the actions as methods.

public void insertQuarter() {
if (state == HAS_QUARTER) {
System.out.println("You can’t insert another
quarter.");
} else if (state == SOLD OUT) {
System.out.println("You can’t insert a quarter,
the machine is sold out.");
} else if (state == SOLD) {
System.out.println("Please wait, we’re already
giving you a gumball.");
} else if (state = NO_QUARTER) {
state = HAS_QUARTER;
System.out.println("You inserted a quarter.");

}
}

Gumball Machine (HFDP Ch. 10)

public void ejectQuarter() {
if (state == HAS_QUARTER) {
System.out.println("Quarter returned.");
state = NO_QUARTER;
} else if (state == NO_QUARTER) {
System.out.println("You haven’t inserted a
quarter.");
} else if (state == SOLD) {
System.out.println("Sorry, you already turned
the crank.");
} else if (state = SOLD _OUT) {
System.out.println("You can’t eject, you
haven’t inserted a quarter yet. ");

}
}




Gumball Machine (HFDP Ch. 10)

public void turnCrank() {
if (state == SOLD) {
System.out.println("Turing twice doesn’t get
you another gumball!");
} else if (state == NO_QUARTER) {
System.out.println("You turned, but there’s
no quarter.");
} else if (state == SOLD _OUT) {
System.out.println("You turned, but there are
no gumballs.");
} else if (state = HAS_QUARTER) {
System.out.println("You turned..");
state = SOLD;
dispense();

public void dispense() {
if (state == SOLD) {
System.out.println("A Gumball comes rolling
“lout the slot.");
count = count - 1;
if (count == 9) {
) System.out.println("Oops, out of gumballs!
3
state = SOLD_OUT;
} else {
state = NO_QUARTER;

}
} else if (state == NO_QUARTER) {
System.out.println("You need to pay first.");
} else if (state == SOLD _OUT) {
System.out.println("No gumball dispensed.");
} else if (state = HAS_QUARTER) {
System.out.println("No gumball dispensed.");

}
// other methods..
}

Gumball Machine (HFDP Ch. 10)

public class GumballMachineTestDrive {
public static void main(String[] args) {
GumballMachine gumballMachine = new
GumballMachine(5);
System.out.println(gumballMachine);

gumballMachine.insertQuarter();
gumballMachine.turnCrank();

System.out.println(gumballMachine);

gumballMachine.insertQuarter();
gumballMachine.turnCrank();
gumballMachine.insertQuarter();
gumballMachine.turnCrank();
gumballMachine.ejectQuarter();

System.out.println(gumballMachine);

Gumball Machine (HFDP Ch. 10)

gumballMachine.insertQuarter();
gumballMachine.insertQuarter();
gumballMachine.turnCrank();
gumballMachine.insertQuarter();
gumballMachine.turnCrank();
gumballMachine.insertQuarter();
gumballMachine.turnCrank();

System.out.println(gumballMachine);




Gumball Machine (HFDP Ch. 10)

o A change request
m 10% of the time, when the crank is turned, the customer gets
two gumballs instead of one.
Be a WINNER! One in ten get a free gumball.
First, you'd have to add a new WINNER state.

.. But then, you'd have to add a new conditional in every single
method (insertQuater, ejectQuarter, dispense) to handle the
WINNER state —> that's a lot of code to modify.

turnCrank() will get especially messy, because you'd have to
add code to check to see whether you've got a WINNER and
then switch to either the WINNER state or the SOLD state.

Gumball Machine (HFDP Ch. 10)

o The new design

= First, define a State interface that contains a method for
every action in the Gumball Machine.

= Then, implement a State class for every state of the machine.

= Finally, get rid of all of our conditional code and instead
delegate to the state class to do the work for us.

@ State

@ insertQuarter()
@ ejectQuarter()
@ turnCrank()

V o dispense() v N
o - ﬂ b = ™

-
P ; A ~

~
- /! A

-
-
© SoldState © SoldOutState © MoQuarterState © HasQuarterState

@ insertQuarter() @ insertQuarter() @ insertQuarter() @ insertQuarter()
@ ejectQuarter() @ ejectQuarter() @ ejectQuarter() @ ejectQuarter()
@ turnCrank() @ turnCrank() @ turnCrank() @ turnCrank()
@ dispense() o dispense() @ dispense() @ dispense()

Gumball Machine (HFDP Ch. 10)

© NoQuarterState

Go to HasQuarterState \

Tell the customer, [ © insertQuarter()

"You haven’t inserted —— | © ejectQuarter()
© turnCrank()

© dispense()

a quarter."

© HasQuarterState

© insertQuarter()

© ejectQuarter()
Go to SoldState ———— L@ turnCrank()

© dispense()

Gumball Machine (HFDP Ch. 10)

Tell the customer, © SoldState

"Please wait, we’re already
giving you a gumball."

@ insertQuarter()
© ejectQuarter()
Dispense one gumball. Check @ turnCrank()

number of gumballs; if > @, go 1o dispense()
to NoQuarterState, otherwise,

go to SoldOutState.

© SoldOutState

0 insertQuarter()
0 ejectQuarter()
" turnCrank()
© dispense()

Tell the customer,
"There are no gumballs." T




Gumball Machine (HFDP Ch. 10)

public class NoQuarterState implements State {
GumballMachine gm;

public NoQuarterState(GumballMachine gm) {
this.gm = gm;

public void insertQuarter() {
System.out.println("You inserted a quarter.");
gm.setState(gm.getHasQuarterState());

public void ejectQuarter() {
System.out.println("You haven’t inserted a
quarter.");

Gumball Machine (HFDP Ch. 10)

public void turnCrank() {
System.out.println("You turned, but there’s no
quarter.");

public void dispense() {
System.out.println("You need to pay first.");

Gumball Machine (HFDP Ch. 10)

o Reworking the Gumball Machine

= Switch the code from the state related instance variables
using integers to using state objects.

public class GumballMachine {
State soldOutState;
State noQuarterState;
State hasQuarterState;
State soldState;

State state = soldOutState;
int count = 0;

public GumballMachine(int numberGumballs) {
soldOutState = new SoldOutState(this);
noQuarterState = new NoQuarterState(this);
hasQuarterState = new HasQuarterState(this);
soldState = new SoldState(this);

Gumball Machine (HFDP Ch. 10)

this.count = numberGumballs;
if (numberGumballs > @ ) {
state = noQuarterState;

public void insertQuarter() {
state.insertQuarter();

public void ejectQuarter() {
state.ejectQuarter();

by

public void turnCrank() {
state.turnCrank();
state.dispense();

}

void setState(State state) {
this.state = state;

}




Gumball Machine (HFDP Ch. 10)

void releaseBall()
System.out.println("A gumball comes rolling out
the slot..");
if (count != 0) {
count = count - 1;
}

}

// more methods including getters for each State

}

Gumball Machine (HFDP Ch. 10)

o Implementing HasQuarterState

public class HasQuarterState implements State {
GumballMachine gm;

public HasQuarterState(GumballMachine gm) {
this.gm = gm;

public void insertQuarter() {
System.out.println("You can’t insert another
quarter.");

public void ejectQuarter() {
System.out.println("Quarter returned.");
gm.setState(gm.getNoQuaterState());

Gumball Machine (HFDP Ch. 10)

public void turnCrank() {
System.out.println("You turned..");
gm.setState(gm.getSoldState());

public void dispense() {
System.out.println("No gumball dispensed.");

Gumball Machine (HFDP Ch. 10)

o Implementing SoldState

public class SoldState implements State {
GumballMachine gm;

public SoldState(GumballMachine gm) {
this.gm = gm;

public void insertQuarter() {
System.out.println("Please wait, we’re already
giving you a gumball.");
}

public void ejectQuarter() {
System.out.println("Sorry, you already turned
the crank.");

}




Gumball Machine (HFDP Ch. 10)

Gumball Machine (HFDP Ch. 10)

public void turnCrank() {
System.out.println("Turing twice doesn’t get you
another gumball!");

}

public void dispense() {
gm.releaseBall();
if (gm.getCount() > 0) {
gm.setState(gm.getNoQuarterState());
} else {
System.out.println("Oops, out of gumballs!");
gm.setState(gm.getSoldOutState());

o Implementing SoldOutState

public class SoldOutState implements State {
GumballMachine gm;

public SoldOutState(GumballMachine gm) {
gm = gm;

public void insertQuarter() {
System.out.println("You can’t insert a quarter,
the machine is sold out.");

}

public void ejectQuarter() {
System.out.println("You can’t eject, you haven’t
inserted a quarter yet.");

}

Gumball Machine (HFDP Ch. 10)

Gumball Machine (HFDP Ch. 10)

public void turnCrank() {
System.out.println("You turned, but there are no
gumballs!");

public void dispense() {
System.out.println("No gumball dispensed.");

O In State pattern, states are class.
O It gets rid of if-statements.

o State machine is open to extensions that add new
state classes, such as Winner State.




Gumball Machine (HFDP Ch. 10)

Out of
Gumballs

umballs > ©
\5\ e gumba

Daspel

Gumball Machine (HFDP Ch. 10)

o To make a gumball machine that gives you an extra
gumball every ten times

public class WinnerState implements State {
GumballMachine gm;

public WinnerState(GumballMachine gm) {
this.gm = gm;

public void insertQuarter() {
System.out.println("Please wait, we’re already
giving you a Gumball.");
}

public void ejectQuarter() {
System.out.println("Please wait, we’re already
giving you a Gumball.");
}

public void turnCrank() {
System.out.println("Turning again doesn’t get you
Tanother Gumballl!");

}

public void dispense() {
gm.releaseBall();
if (gm.getCount() == 0) {
gm.setState(gm.getSoldOutState());
} else {
gm.releaseBall();
System.out.println("YOU’RE A WINNER! You got
two gumballs for your quarter.");
if (gm.getCount() > @) {
gm.setState(gm.getNoQuarterState());
} else {
System.out.println("Oops, out of gumballs!");
gm.setState(gm.getSoldOutState());

Gumball Machine (HFDP Ch. 10)

o Reworking HasQuarterState

public class HasQuarterState implements State {
Random random = new Random(
System.currentImeMillis());
public void turnCrank() {
System.out.println("You turned...");
int winner = random.nextInt(10);
if ((winner == 9)
&& (gumballMachine.getCount() > 1)) {
gumballMachine.setState(
gumballMachine.getWinnerState());
} else {
gumballMachine.setState(
gumballMachine.getSoldState());




