
Java Programming II

Lab1

514770-1
Fall 2023
9/12/2023

Kyoung Shin Park
Computer Engineering

Dankook University

DRY (Don’t Repeat Yourself) Principle

 In the book “The Pragmatic Programmer”, DRY is defined
as “Every piece of knowledge must have a single,
unambiguous, authoritative representation within a
system."

 Knowledge – a precise functionality or an algorithm

Violations of DRY
 WET, "We enjoy typing," or “Waste everyone’s time”.

How to Achieve DRY

 To avoid violating the DRY principle, divide your system into
pieces. Divide your code and logic into smaller reusable units
and use that code by calling it where you want.

DRY Benefits

 Less code is good: It saves time and effort, is easy to maintain,
and also reduces the chances of bugs.

KISS (Keep It Simple Stupid) Principle

 “Keep It Simple Stupid”, “Keep It Short and Simple”

 The KISS principle is descriptive to keep the code
simple and clear, making it easy to understand.

Violations of KISS
 "Why they have written these unnecessary lines and conditions

when we could do the same thing in just 2-3 lines?"

How to Achieve KISS

 To avoid violating the KISS principle, try to write simple code.
Whenever you find lengthy code, divide that into multiple
methods — refactor.

 KISS Benefits

 If the code is written simply, then there will not be any difficulty
in understanding that code, and also will be easy to modify.

YAGNI (You Aren’t Gonna Need It) Principle

 YAGNI says “don’t implement something until it is
necessary.” YAGNI tells us to cut off any unnecessary part
while KISS advises to make the rest as simple as possible.

Violations of YAGNI
 “over engineering“ - a feature for every possible case, functions

with a lot of input parameters, multiple if-else branches, rich and
detailed interfaces, all those could be a smell of over engineering.

How to Achieve YAGNI

 Always implement things when you actually need them, never
when you just foresee that you need them.

 YAGNI Benefits

 Software developers don’t have enough information to make the
call on extra features, the time spent could be used elsewhere
more productively. Extra features mean extra development time,
testing time, documentation time, code review time.

SOLID Principle

 Single Responsibility Principle
 “A class should have one, and only one, reason to change.“

Open/Closed Principle

 “Software entities (e.g. classes, modules, functions, etc) should be
open for extension, but closed for modification.”

 Liskov Substitution Principle
 “Objects in a program should be replaceable with instances of

their subtypes without altering the correctness of that program.”

 Interface Segregation Principle
 “Clients should not be forced to depend upon interfaces that they

do not use.” Reduce fat interfaces into multiple smaller and more
specific client specific interfaces.

Dependency Inversion Principle
 One should depend on abstractions (interfaces and abstract

classes) instead of concrete implementations (classes).

Lab1

Given a 3 x 3 Board program (Board3x3 and
Board3x3Test class), write a n x n Board program to
display board elements, rows, and columns.

 Similar to 3x3 Board program, BoardTest class should
display 2x2, 3x3, 4x4, 5x5 Board elements, rows, and
columns.

Write the following classes

Board

 IBoardDisplay

BoardDisplay

BoardShaper

BoardTest

Lab1

Lab1

 Board
 List<Integer> spots; int size;

 Board(int size)

Creates ArrayList<Integer> based on size, e.g. if size is 2 => 1,2,3,4

 Board(List<Integer> spots)

Assigns spots and then calculate size, e.g. if 1,2,3,4 => size is 2

 int size()

Returns size

 int valueAt(int index)

Returns this.spots.get(index)

 List<Integer> valuesAt(List<Integer> indices)

Returns List<Integer> values

Lab1

 BoardShaper
 Board board;

 setBoard(Board board)

 Sets this.board to board

 List<Integer> row(int rowIndex)

Returns List<Integer> row

 List<Integer> column(int columnIndex)

Returns List<Integer> column

 List<Integer> diagonal()

Returns List<Integer> diagonal

 Board transpose()

Returns transpose

Lab1

 BoardDisplay implements IBoardDisplay
 void display(Board board)

 1|2

3|4

 1|2|3

4|5|6

7|8|9

 1|2|3|4

5|6|7|8

9|10|11|12

13|14|15|16

 1|2|3|4|5

6|7|8|9|10

11|12|13|14|15

16|17|18|19|20

21|22|23|24|25

public class BoardTest {
Board[] boards = {new Board(2), new Board(3), new Board(4), new Board(5)};
IBoardDisplay presenter = new BoardDisplay();
BoardShaper shaper = new BoardShaper();
public BoardTest() {
for (Board board: boards) {
// board display
presenter.display(board);
// set board in a shaper
shaper.setBoard(board);
// boardReturnsRow
for (int index = 1 ; index <= board.size(); index++) {

System.out.println("row#" + index + " " + shaper.row(index));
}
// boardReturnsColumn
for (int index = 1 ; index <= board.size(); index++) {

System.out.println("column#" + index + " " + shaper.column(index));
}
// boardReturnsDiagonal
System.out.println("diagonal " + shaper.diagonal());
// boardReturnsTranspose
Board transpose = shaper.transpose();
System.out.println("transpose");
presenter.display(transpose);

}
}

}

Submit to e-learning

Add your code (e.g., additional method, class, routine,
etc) in the Lab1 assignment.

 Submit the Lab1 assignment (including the report) to
e-learning (due by 9/18).

