
Singleton Pattern

514770-1
Fall 2023
10/3/2023

Kyoung Shin Park
Computer Engineering

Dankook University

Singleton Pattern

 “Ensure a class only has one instance, and provide a
global point of access to it.”

 Sometimes we need to have exactly one instance of our
class, e.g. a printer spooler (where we only need one
print managing the work list), or a single database
connection (shared by multiple objects).

 java.lang.Runtime#getRuntime()

 java.awt.Desktop#getDesktop()

 java.lang.System#getSecurityManager()

Singleton Pattern

 The most popular approach is to implement Singleton:
 A private default constructor

 A static field containing the singleton instance

 A static factory method for obtaining the singleton instance

 While this is a common approach, it's important to note that
it can be problematic in multithreading scenarios

Singleton Pattern

Description

Pattern Singleton

Problem Sometimes we need to have exactly one instance
of our class, e.g. printer spooler, DB connection,
configuration manager, etc

Solution It was created as a solution to classes that need
to be instantiated only once.

Result Consistent state because there is only one
instance.

Classic Implementation of Singleton
Pattern

 Classic Implementation of Singleton Pattern
 Private default constructor

 Create static field containing its only instance

 Create static factory method for obtaining the instance

 This code can be a problem for multi-threaded
programs (the solution is described later).

Classic Implementation of Singleton
Pattern

public class Singleton {
// static field containing its only instance
private static Singleton uniqueInstance;

// other member fields ..

// private default constructor
private Singleton() { }
// static factory method for obtaining the

instance
public static Singleton getInstance() {

if (uniqueInstance == null) {
uniqueInstance = new Singleton();

}
return uniqueInstance;

}
// other member methods ..

}

Classic Implementation of Singleton
Pattern

 Class Diagram

Chocolate Factory (HFDP Ch. 5)

 Chocolate factories have computer controlled
chocolate boilers.

 The job of the boiler is to take in chocolate and milk,
bring them to a boil, and then pass them on to the
next phase of making chocolate bars.

 The controller class for Choc-O-Holic, Inc.’s industrial
strength Chocolate Boiler.
 Ensure that bad things don’t happen, like draining 500 gallons

of unboiled mixture, or filling the boiler when it’s already full,
or boiling an empty boiler.

Chocolate Factory (HFDP Ch. 5)

public class ChocolateBoiler {
private boolean empty;
private boolean boiled;
public ChocolateBoiler() {

empty = true; // empty boiler
boiled = false;

}
public boolean isEmpty() {

return empty;
}
public boolean isBoiled() {

return boiled;
}
public void fill() {

if (isEmpty()) { // to fill, it must be empty
empty = false;
boiled = false;
// fill boiler with milk/chocolate mixture

}

Chocolate Factory (HFDP Ch. 5)

// to drain, it must be full(non empty) and boiled
// once it is drained, we set empty back to true
public void drain() {

if (!isEmpty() && isBoiled()) {
// drain the boiled milk and chocolate
empty = true;

}
}
// to boil, it must be full and not already boiled
public void boil() {

if (!isEmpty() && !isBoiled()) {
// bring the contents to a boil
boiled = true;

}
}

}

Chocolate Factory (HFDP Ch. 5) – Using
Singleton Pattern

public class ChocolateBoiler {
private static ChocolateBoiler uniqueInstance;
private boolean empty;
private boolean boiled;

private ChocolateBoiler() {
empty = true; // empty boiler
boiled = false;

}

public static ChocolateBoiler getInstance() {
if (uniqueInstance == null) {

uniqueInstance = new ChocolateBoiler();
}
return uniqueInstance;

}
// rest of code..

}

 The main problem with the classic implementation of
Singleton is that it is not thread safe.

 Using synchronized makes sure that only one thread at
a time can execute getInstance().

Thread-Safe Singleton

public class Singleton {
private static Singleton uniqueInstance;
private Singleton() { }
// only one thread can execute this at a time
public static synchronized Singleton getInstance() {
if (uniqueInstance == null) {
uniqueInstance = new Singleton();

}
return uniqueInstance;

}
// rest of code..

}

Thread-Safe Singleton (Eager Initialization)

 The main disadvantage of this method is that using
synchronized every time while creating the singleton
object is expensive and may decrease the performance
of your program.

 Eager Instantiation
 If performance of getInstance() is not critical for your application,

 Here we have created instance of singleton in static initializer.

public class Singleton {
// static initializer
private static Singleton inst = new Singleton();
private Singleton() { }
public static Singleton getInstance() {
return inst;

}
// rest of code..

}

Thread-Safe Singleton (Lazy Initialization
with DCL)

 DCL(Double Checked Locking) to reduce the use of
synchronization in getInstance()
 If you notice carefully once an object is created,

synchronization is no longer useful because now object will
not be null and any sequence of operations will lead to
consistent results.

 So we will only acquire lock on the getInstance() once,
when the object is null. This way we only synchronize the
first way through, just what we want.

Thread-Safe Singleton (Lazy Initialization
with DCL)

public class Singleton {
// Double Checked Locking
private static volatile Singleton inst;
private Singleton() { }
public static Singleton getInstance() {
// we only synchronize the first time
if (inst == null) {
synchronized (Singleton.class) {
if (inst == null) {
inst = new Singleton();

}
}

}
return inst;

}
// other member methods..

}

Thread-Safe Singleton

 volatile (since Java5)
 The volatile keyword marks a variable that always goes to the

main memory, for both reads and writes, of the multiple
threads accessing it (and not just to the CPU cache).

 The volatile keyword guarantees visibility of changes to
variables across threads.

 synchronized
 The synchronized keyword will cause all modifications

guarded by considered lock to synchronize with main
memory and adds mutual exclusion.

 Mutual exclusion prevents an object from being seen in an
inconsistent state by one thread while some other thread is
updating that object.

 When Singleton loads at first by JVM, since there is no
static data member in the class; SingletonHolder does not
loads or creates inst.

 This will happen only when we invoke getInstance().
JLS(Java Language Specification) guaranteed the
sequential execution of the class initialization; that
means thread-safe.

Singleton (Inner Static Class)

public class Singleton {
// inner static class
private static class SingletonHolder {
static final Singleton inst = new Singleton();

}
private Singleton() { }
public static Singleton getInstance() {
return SingletonHolder.inst;

}
}

Singleton vs Static Class

 Singleton provides only one instance during application
life cycle.

 Static class is a class which only contains static methods.

 Java supports static variables, static methods, static block
and static classes. Java allows nested classes. A static
nested class may be instantiated without instantiating its
outer class.

 Both Singleton pattern (e.g. java.lang.Runtime) and
static class (e.g. java.lang.Math) can be used without
creating object and both provide only one instance.

 The fundamental difference between Singleton pattern
and static class is, one represent an object while other
represent a method.

Singleton vs Static Class

 If Singleton is not maintaining any state, and just
providing global access to methods, than consider
using static class.

 Singleton uses inheritance and polymorphism to
extend a base class, and implements an interface.
 E.g. In java.lang.Runtime, getRuntime() method returns

different implementations based on different JVM, but
guarantees only one instance per JVM.

Singleton Pattern Static Class

Lazy loaded Eagerly loaded (static binding in compile-time)

OOP, inheritance, polymorphism Static methods cannot be overridden

Slow performance Fast performance by static binding

Easier test Hard to test

Heap memory Stack memory

A Single Threaded program

begin

body

end

void main(..)
{
…
…
…
…
}

A Multithreaded Program

Main Thread

Thread A Thread B Thread C

start start
start

Threads may switch or exchange data/results

Single vs Multithreaded Process

Threads are light-weight processes within a process

https://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/4_Threads.html

Java Threads

 Java has built in support for Multithreading

 Synchronization

 Thread Scheduling

 Inter-Thread Communication:
 currentThread start setPriority

 yield run getPriority

 sleep stop suspend

 resume

 Java Garbage Collector is a low-priority thread

Thread

MyThread

Runnable

MyClass

Thread

(objects are threads) (objects with run() body)

Java Threads

1. Create a class that extends the Thread class

2. Create a class that implements the Runnable
interface

1. Extending the Thread Class

 Create a class by extending Thread class and override
run() method:
class MyThread extends Thread
{

public void run()
{

// thread body of execution
}

}

 Create a thread:
MyThread thr1 = new MyThread();

 Start Execution of threads:
thr1.start();

 Create and Execute:
new MyThread().start();

1. Extending the Thread Class

class MyThread extends Thread {
public void run() {

System.out.println(" this thread is running ... ");
}

}

class ThreadEx1 {
public static void main(String [] args) {

MyThread t = new MyThread();
t.start();

}
}

2. Threads by implementing Runnable
interface
 Create a class that implements the interface Runnable

and override run() method:
class MyThread implements Runnable
{
.....
public void run()
{

// thread body of execution
}

}

 Creating Object:
MyThread myObject = new MyThread();

 Creating Thread Object:
Thread thr1 = new Thread(myObject);

 Start Execution:
thr1.start();

2. Threads by implementing Runnable
interface

class MyThread implements Runnable {
public void run() {

System.out.println(" this thread is running ... ");
}

}

class ThreadEx2 {
public static void main(String [] args) {

Thread t = new Thread(new MyThread());
t.start();

}
}

Life Cycle of Thread

new

ready

start()

running

deadstop()

dispatch

completion

wait()

waiting
sleeping blocked

notify()

sleep()

Block on I/O

I/O completed

Time expired/
interrupted

suspend()

resume()

